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1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can
(a) Find the O(1) cells of Gα that could contain nn(q),

where α = ‖p− q‖ rounded down to the next power 2−i

(b) Use (1.), starting from these cells
Now, 1/r = O(n) relative to α = O(nr)

This requires O(n)-ANN→ today
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Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by
1/ε-well-separated pairs of point sets {A,B}:

d(A,B)r

r
A

B

with r ≤ εd(A,B)

good: O(n) pairs are enough (size of WSPD)

but: might require
∑
i |Ai|+ |Bi| = Θ(n2)

(weight of WSPD)
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Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)
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b = b(p, α) 2-approx. smallest ball containing n/c1 points
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Choose: c1 := 3c

b(p, 8α) contains≤ c n3c < n/2 points

ri := bi \ bi−1, are n ranges in
bn = b(p, α(1 + 1/n)n) ⊂ b(p, αe) ⊂ b(p, 8α)

b(p, 8α) can be covered by c = O(1) disks of radius α/2

>n/2

pigeonhole principle: There is an empty range ri
bi−1 contains n/c1 points, ri empty,
> n/2 points outside of ball of twice the radius
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A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T with corresponding subset Pv ⊂ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it

• The interior of the ring is of width t

t

Apply algorithm for ring separator recursively

Result: A 1
n -ring separator tree

A n-semi-separated pair decomposition
of weight Θ(n log n)
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Ring Separator Tree

For every node v we ensure:

There is a ball bv = b(cv, rv) s.t. all points of P in
v = Pv ∩ bv are in one child of v

(the inner child)

t

All other points of Pv are outside b(cv, (1 + t)rv)
and stored in the other child (the outer child)

repv

Store an arbitrary repv ∈ P in
v in v
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Intuition of correctness

trepv

Case distinction:
1.) q in bv → points outside of bv too far away

(to invalidate repv as 1/t-ANN)
2.) q outside enlarged bv
→ points inside bv all have approximately
the same distance to q
→ sufficient to test 1 point in bv : repv

q

3.) q in ring
1.) or 2.) applies with slightly worse bounds
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The algorithm finds a (1 + 4/t)-ANN.

Node w of T : Last node on search path such that nn(q) ∈ Pw .

Case 1: nn(q) ∈ Pwout but ‖q − cw‖ ≤ rw(1 + 1/t)
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‖q−repw‖
‖q−nn(q)‖ ≤
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(t/2)rw
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Ring separator: n-semi-separated pair decomposition

Ring separator tree: O(n)-ANN

(1/ε)-semi-separated pair decomposition – brief sketch
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(1/ε)-Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)

Pin = P ∩ b, Pfar = P \ b(p, 2r/ε)
Pout = P \ (Pin ∪ Pfar)

1. Pin, Pfar semi-separated
2. recurse on Pin, Pin
3. recurse on P \ Pin, P \ Pin
difficult: 4. Pin, Pout
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Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

` := minp∈Pin,q∈Pout ‖p− q‖ ≥ r/n

snap points to a grid Gα with α = ε`/10

Use WSPD algorithm for bounded spread to
compute WSPs with A ⊂ Pin and B ⊂ Pout

• grid size: O(n/ε2)

• levels in quadtree: O(log(n/ε2))
→ # pairs = O(n log n) (low weight)

• snapping: since ` ≥ r/n distances between p ∈ Pin
and q ∈ Pout approximately stay the same.
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Summary

(1/ε)-Semi-separated pair decomposition (SSPD)

min(rA, rB) ≤ εd(A,B)

Ring separator tree: n-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c, r) s.t. dist(A,P \A) ≥ r/n

Ring separator tree: O(n)-ANN
data structure of size O(n) computed in O(n log n) time,
which gives n-ANN in O(log n) time

(1/ε)-semi-separated pair decomposition
n-ring separator + snap to grid + WSPD


