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Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 -+ £)-approximate nearest neighbor of ¢ in
time O(1/e% 4 log(1/r)) time, where r = d(q, nn(q))
Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can

(a) Find the O(1) cells of GG, that could contain nn(q),
where o = ||p — ¢|| rounded down to the next power 2~*

(b) Use (1.), starting from these cells
Now, 1/r = O(n) relative to @« = O(nr)

This requires O(n)-ANN — today
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Well-separated pair decomposition: Cover all pairs of points by
1 /e-well-separated pairs of point sets { A, B }:

d(A, B)
with r < ed(A, B)

good: O(n) pairs are enough (size of WSPD)

but: might require > | 4;| + | B;| = ©(n?)
(weight of WSPD)
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>Nn/2
b = b(p, o) 2-approx. smallest ball containing n./c; points
= no disk of radius » = «/2 contains more than n/c; points
b(p, 8ar) can be covered by ¢ = O(1) disks of radius a;/2
Choose: ¢c1 := 3c
b(p, 8cx) contains < c5- < n/2 points T — =

r; := b; \ bj_1, are n ranges in
b, = b(p,a(1+1/n)") C b(p, ce) C b(p, 8c)

pigeonhole principle: There is an empty range r;
b;_1 contains n/cy points, r; empty,
> n /2 points outside of ball of twice the radius

N\
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Ring Separator tree

A binary tree I having the points of P as leaves is a -ring tree for P iff:

» Every node v € 1" with corresponding subset P, C P is associated with a ring’ that
separates the points of P, into two sets

* The interior of the ring has no points inside it

» The interior of the ring is of width ¢ .

Apply algorithm for ring separator recursively .

Result: A l-ring separator tree
n

A n-semi-separated pair decomposition
of weight ©(n logn) ‘
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Ring Separator Tree

For every node v we ensure:

There is a ball b, = b(¢,, ) s.t. all points of P = P, N b, are in one child of v
(the inner child)

All other points of P, are outside b(c,,, (1 +t)r,)
and stored in the other child (the outer child) *

Store an arbitrary rep, € P"inv .
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Intuition of correctness

Case distinction:

1.)qgin b, — points outside of b, too far away
(to invalidate rep,, as 1/t-ANN)

2.) q outside enlarged b,

— points inside b,, all have approximately . *
the same distance to g

— sufficient to test 1 pointin b,: rep,
3.) g in ring
1.) or 2.) applies with slightly worse bounds
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Correctness

The algorithm finds a (1 + 4/t)-ANN.
Node w of T": Last node on search path such that nn(q) € P,.

Case 1: nn(q) € P, but|lg — cy|| < 1yw(1+1/7)

la—repull < +t/Dre < 4 47y

lg=nn(g)|l —  (t/2)7w xq

Case 2: nn(q) € Pjy but ||qg — cyl|| > Tw(1 + 1/t)

lg—repwll ~ lla=nn(g)|[+[[nn(g)—=repw| v
lg=nn(g)|l — lg—nn(q)] ‘
<14 2w =144/t . .

(t/2)7w
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(1/¢)-Semi-Separated Pairs

Py, = PN b, Pyor = P\ b(p, 2r/c)
Pout:P\(PinUPfar)

1. Py, Prar Semi-separated

2. recurse on P, Py,
3.recurseon P\ P,,, P\ P,
difficult: 4. Py, Pyt

ring separator:

» ball b = b(p, r) containing > n/c; points
» nopointinb(p,r(1+1/n))\b
+ > n/cq points outside b(p, 2r)
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Dealing with F;,,, P, (sketch)

diam (P, U Poyy) < 2r/e

€:=minyep,, geP,,, |IP —all = 7/n

snap points to a grid G, with a = £//10

Use WSPD algorithm for bounded spread to
compute WSPs with A C P;,, and B C P,;

+ grid size: O(n/e?)
+ levels in quadtree: O(log(n/?))
— # pairs = O(nlogn) (low weight)

* snapping: since £ > r/n distances between p € P;,
and g € P,,; approximately stay the same.
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Summary

(1/€)-Semi-separated pair decomposition (SSPD)
min(ra,rg) < ed(A, B)

Ring separator tree: n-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c, r) s.t. dist(A, P\ A) > r/n

Ring separator tree: O(n)-ANN

data structure of size O(n) computed in O(n logn) time,
which gives n-ANN in O(log n) time

(1/€e)-semi-separated pair decomposition
n-ring separator + snap to grid + WSPD



