

Übungen zur Vorlesung

Praktische Optimierung, SoSe 2022

Prof. Dr. Günter Rudolph, Dr. Roman Kalkreuth

https://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/POKS/SS2022/lecture.jsp

Blatt Präsenz 10, Block 0

20.06.2021

Abgabe: keine

Multikriterielle Optimierung

In dieser Aufgabe werden wir uns mit multikriterieller Optimierung beschäftigen.

Stellen Sie sich vor, dass Sie sich einen Laptop kaufen wollen und sich lediglich für Gewicht und Preis des Laptops interessieren. Andere Kriterien wie CPU, RAM oder Grafikkarte werden zur Vereinfachung ignoriert. Die nachfolgenden Modelle stehen zur Verfügung:

Gewicht	2	1.7	1.9	2.4	1.9	1.8	2.4	1.4	2.2	2.2
Preis	700	650	620	630	650	700	550	750	650	600

- Welche Punkte sind nicht dominiert?
- Bestimmen Sie die crowding distance für die nicht-dominierten Punkte.
- Der NSGA-II wird nun auf den Datensatz angewendet. Der Algorithmus soll aus dem gegebenen Datensatz 3 Punkte für die nächste Iteration auswählen. Welche Punkte werden gewählt?
- Bestimmen Sie das dominierte Hypervolumen der Menge aller Punkte sowie die Hypervolumenbeiträge der einzelnen Punkte. Verwenden Sie als Referenzpunkt $\binom{2.5}{800}$.
- Der SMS-EMOA wird nun auf den Datensatz angewendet. Der Algorithmus soll aus dem gegebenen Datensatz 7 Punkte für die nächste Iteration auswählen. Welche Punkte werden gewählt? Es wird der zuvor betrachtete Referenzpunkt verwendet.