
Coresets (for directional width)
Geometric Approximation Algorithms
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Coreset
setting: Geometric optimization problem on a point set P
coreset: Small subset S ⊂ P that captures the structure of optimal solution

example:
geometric problem: min-volume bounding box of P ⊂ Rd

Why?
slow (exact) algorithm + coreset = fast approximation algorithm

example (continued):
exact algorithm: min-volume bounding box of P ⊂ R3 in O(n3) time.
coreset for min-volume in R3 with "error" ε:
size O(1/ε3/2), construction time O(n + 1/ε9/2)

combined: (1 + ε)-approximation in O(n + 1/ε9/2) time



Overview

Coreset for directional width

Extra ingredient: Minimum volume bounding box

• applications

• definition

• construction algorithm
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Directional Width

Definition: The directional width of P ⊂ Rd with respect to a vector v ∈ Rd \ {0} is

wd(v, P) := max
p∈P
〈v, p〉 −min

p∈P
〈v, p〉
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Question 1: Which two points give the width in
direction v? 3, 4
Question 2: Which v with ‖v‖ = 1 has the largest
directional width? The unit vector in direction from 2

to 8 (or vice versa)
Question 3: Which are the only points of P relevant for
computing directional width?

Only points on convex hull
(i.e. 1, 2, 3, 6, 9, 8, 4)



Directional Width

Definition: The directional width of P ⊂ Rd with respect to a vector v ∈ Rd \ {0} is

wd(v, P) := max
p∈P
〈v, p〉 −min

p∈P
〈v, p〉

Properties:

• translation invariant

• scales linearly

• wd(v, P) = wd(v, conv(P))

• monotone: if Q ⊂ P, then
wd(v,Q) ≤ wd(v, P)

v

wd(v, P)
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Definition: The set S ⊂ P is an ε-coreset for directional width if for every unit
vector v

wd(v, S) ≥ (1− ε)wd(v, P)

• captures the (outer) geometry of P, and (hopefully) is much smaller than P

• general concept: other objective functions f instead of directional width

• sketch property: If S is ε-coreset of S′ and S′ is ε′-coreset of P, then S is (ε + ε′)-
coreset of P (Exercise)
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(ε + ε′)-coreset of P ∪ P′ (Exercise)
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Use case: min volume bounding box

B(S)

Given ε > 0, P ⊂ Rd, let S be a δ-coreset of P for directional width (δ = ε/(8d)).
Let B(P) (resp. B(S)) be the min volume bounding box of P (resp. S), and let B be
B(S) scaled by (1 + 3δ) around the center of B(S).
Then P ⊂ B, and Vol(B) ≤ (1 + ε)Vol(B(P)).

Volume claim: (1 + 3δ)d < (1 + ε) S

B(P)

Proof.

Still need: B contains P

(1 + 3δ)d =
(
1 + 3ε/8

d

)d
≤ exp(3ε/8)

≤ 1 + 6ε/8 < 1 + ε (exp(x) ≤ 1 + 2x for 0 ≤ x ≤ 1)
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|tq| ≤ |tp| (and |tq′| ≤ |tp′|)

(1− δ)|qq′| ≤ |rr′| = 2|tr| as S is δ-coreset. ⇒ |qq′| − |rr′| ≤ δ|qq′|
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|tr| ≤ (1 + 3δ)|tr| = |tp|
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Use Case: minimum enclosing ball

B(S)

B

If S is an ε/4-coreset of P for directional width, then the smallest enclosing ball of
S, B(S), scaled by (1 + ε) around its center, B, contains P.

p
Comparison to ε-samples:

ε-sample:
guarantees most points in B(S)
combinatorial/statistical error
does not guarantee p ∈ B

coreset: geometric error (bounded for all points)
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Computing a tight (enough) bounding box

We can compute a bounding box B of P in O(d2n) time s.t.

(i) Vol(Bopt(P)) ≤ Vol(B) ≤ 2dd!Vol(Bopt(P))
and (ii) there is a shift x ∈ Rd and c > 0 that depends only on d, s.t.
x + cB ⊂ conv(P).

B
x + cB

(without proof, for now)
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Input: P ⊂ Rd, ε > 0 (and bounding box B s.t. cdB ⊂ conv(P) ⊂ B)

Output: an ε-coreset S ⊆ P of size at most |S| = O(1/εd−1)

Construction time: O(n) (also depends on d and ε).
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Algorithm
1. Divide B into M× · · · × M grid cells with M = d 2
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Constructing a coreset

2. For each of the Md−1 pillars, find point with max
and point with min xd-coordinate

S
|S| ≤ 2Md−1 = O(1/εd−1), still need: S is coreset

Input: P ⊂ Rd, ε > 0 (and bounding box B s.t. cdB ⊂ conv(P) ⊂ B)

Output: an ε-coreset S ⊆ P of size at most |S| = O(1/εd−1)

Construction time: O(n) (also depends on d and ε).
B P

S
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Algorithm
1. Divide B into M× · · · × M grid cells with M = d 2

εcd
e

Pillar of cell (i1, ... , id): (i1, ... , id−1)
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Let Q = union of cells containg a point of S.

P ⊂ conv(Q)⇒ wd(v, P) ≤ wd(v, conv(Q)) for all v

wd(v, P) ≤ wd(v,Q) ≤ wd(v, S) + 2wd(v, B/M)

wd(v, B/M) = wd(v,B)
M = wd(v,cdB)

cdM

≤ wd(v,P)
cdM
≤ wd(v,P)

2/ε = ε
2wd(v, P)

⇒ wd(v, P)(1− 2 ε
2 )wd(v, P) ≤ wd(v, S)
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Given ε > 0 and P ⊂ Rd, we can compute an ε-coreset S ⊆ P of size at most
|S| = O(1/ε(d−1)/2) in O(n + 1/ε3(d−1)/2) time (where d is a fixed constant).
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Constructing a smaller coreset

Given ε > 0 and P ⊂ Rd, we can compute an ε-coreset S ⊆ P of size at most
|S| = O(1/ε(d−1)/2) in O(n + 1/ε3(d−1)/2) time (where d is a fixed constant).

algorithm ideas/proof sketch:

• two stages: first the previous algo. for ε/2 gives S′,
then this (slower) algorithm for ε/2 on S′ gives S

• make conv(P) fat via affine transformation into unit
hypercube

• find small enclosing ball B (radius
√
d)

• X := a c
√
ε-packing in ∂B

• Let S = nearest point to each x ∈ X



Overview

Coreset for directional width

Extra ingredient: Minimum volume bounding box

• applications

• definition

• construction algorithm



Computing a tight (enough) bounding box

B
x + cB

We can compute a bounding box B of P in O(d2n) time s.t.

(i) Vol(Bopt(P)) ≤ Vol(B) ≤ 2dd!Vol(Bopt(P))
and (ii) there is a shift x ∈ Rd and c > 0 that depends only on d, s.t.
x + cB ⊂ conv(P).
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We can compute a bounding box B of P in O(d2n) time s.t.

(i) Vol(Bopt(P)) ≤ Vol(B) ≤ 2dd!Vol(Bopt(P))
and (ii) there is a shift x ∈ Rd and c > 0 that depends only on d, s.t.
x + cB ⊂ conv(P).

1. Approximate diameter:
Let s ∈ P arbitrary and let s′ ∈ P most distant form s.
If t, t′ realize the diameter of P, then

diam(P) = |tt′| ≤ |ts| + |st′| ≤ 2|ss′|
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Computing a tight (enough) bounding box

We can compute a bounding box B of P in O(d2n) time s.t.

(i) Vol(Bopt(P)) ≤ Vol(B) ≤ 2dd!Vol(Bopt(P))
and (ii) there is a shift x ∈ Rd and c > 0 that depends only on d, s.t.
x + cB ⊂ conv(P).

1. Approximate diameter:
Let s ∈ P arbitrary and let s′ ∈ P most distant form s.
If t, t′ realize the diameter of P, then

diam(P) = |tt′| ≤ |ts| + |st′| ≤ 2|ss′|

Wlog. ss′ parallel to xd axis.
π := perpendicular projection to xd = 0.

s

s’
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B(Q) := bounding box of Q (recursion)



Recursive step

s

s′

xd = 0

P

Q
B(Q)

B

[z, z′]:= shortest interval on xd axis covering projection of P
B := B(Q)× [z, z′]

xd = z

xd = z′d = 1: return interval containing points

d > 1:

Q := π(P)
B(Q) := bounding box of Q (recursion)



Recursive step

s

s′

xd = 0

P

Q
B(Q)

B

[z, z′]:= shortest interval on xd axis covering projection of P
B := B(Q)× [z, z′]

xd = z

xd = z′

Still need: Vold(conv(P)) ≥ Vold(B)/(2dd!)

d = 1: return interval containing points

d > 1:

Q := π(P)
B(Q) := bounding box of Q (recursion)



Volume bound
Upper hull conv↑(P) as function: Up : conv(Q)→ Rd is concave

Lower hull conv↓(P) as function: Lo : conv(Q)→ Rd is convex

q

Lo(q)

Up(q)
conv(P)

conv(Q)



Volume bound
Upper hull conv↑(P) as function: Up : conv(Q)→ Rd is concave

Lower hull conv↓(P) as function: Lo : conv(Q)→ Rd is convex

Up− Lo is concave

⇒ A :=
⋃

q∈conv(Q)
[0,Up(q)− Lo(q)] is convex

q

Lo(q)

Up(q)
conv(P)

conv(Q)

A



Volume bound
Upper hull conv↑(P) as function: Up : conv(Q)→ Rd is concave

Lower hull conv↓(P) as function: Lo : conv(Q)→ Rd is convex

Up− Lo is concave

⇒ A :=
⋃

q∈conv(Q)
[0,Up(q)− Lo(q)] is convex

s
s′

At π(s), height of A is at least |ss′|.
A contains pyramid with base conv(Q) and pole length≥ |ss′|.

q

Lo(q)

Up(q)
conv(P)

conv(Q)

A



Volume bound

s
s′

q

Lo(q)

Up(q)
conv(P)

conv(Q)

A

Vold(B) ≥ Vold(Bopt)
≥ Vold(conv(P)) = Vold(A)
≥ Vol(pyramid)

≥ Vold−1(conv(Q))|ss′|
d

≥
Vold−1

(
B(Q)/(2d−1(d − 1)!)

)
2|ss′|

2d

≥ Vold−1(B(Q))|zz′|
2dd!

=
Vold(B)
2dd!



Volume bound

s
s′

q

Lo(q)

Up(q)
conv(P)

conv(Q)

A

Vold(B) ≥ Vold(Bopt)
≥ Vold(conv(P)) = Vold(A)
≥ Vol(pyramid)

≥ Vold−1(conv(Q))|ss′|
d

≥
Vold−1

(
B(Q)/(2d−1(d − 1)!)

)
2|ss′|

2d

≥ Vold−1(B(Q))|zz′|
2dd!

=
Vold(B)
2dd!

Running time: T(n, d) = O(nd) + T(n, d − 1) = O(nd2).



Summary

Coreset: small (sub-)set capturing the relevant geometry

slow algorithm + coreset = fast approximation algorithm

a coreset is constructed for specific geometric optimization problem

Coreset for directional width:

construction using grids (+ bounding box)

solves various other problems too: min-volume bounding box, min-enclosing ball,
diameter, ...


