Coresets (for directional width)

Geometric Approximation Algorithms

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution
a trivial (useless) example:
geometric problem: smallest axis-aligned bounding box of $P \subset \mathbb{R}^{d}$

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

a trivial (useless) example:

geometric problem: smallest axis-aligned bounding box of $P \subset \mathbb{R}^{d}$
S : points with minimum and maximum coordinate (for each coordinate)

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

example:

geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

example:

geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

example:

geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

example:

geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Why?

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution
example:
geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Why?

slow (exact) algorithm + coreset $=$ fast approximation algorithm

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

example:

geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Why?

slow (exact) algorithm + coreset $=$ fast approximation algorithm
example (continued):
exact algorithm: min-volume bounding box of $P \subset \mathbb{R}^{3}$ in $O\left(n^{3}\right)$ time.

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

example:

geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Why?

slow (exact) algorithm + coreset $=$ fast approximation algorithm
example (continued):
exact algorithm: min-volume bounding box of $P \subset \mathbb{R}^{3}$ in $O\left(n^{3}\right)$ time. coreset for min-volume in \mathbb{R}^{3} with "error" ε :
size $O\left(1 / \varepsilon^{3 / 2}\right)$, construction time $O\left(n+1 / \varepsilon^{9 / 2}\right)$

Coreset

setting: Geometric optimization problem on a point set P
coreset: Small subset $S \subset P$ that captures the structure of optimal solution

example:

geometric problem: min-volume bounding box of $P \subset \mathbb{R}^{d}$

Why?

slow (exact) algorithm + coreset $=$ fast approximation algorithm
example (continued):
exact algorithm: min-volume bounding box of $P \subset \mathbb{R}^{3}$ in $O\left(n^{3}\right)$ time. coreset for min-volume in \mathbb{R}^{3} with "error" ε :
size $O\left(1 / \varepsilon^{3 / 2}\right)$, construction time $O\left(n+1 / \varepsilon^{9 / 2}\right)$
combined: $(1+\varepsilon)$-approximation in $O\left(n+1 / \varepsilon^{9 / 2}\right)$ time

Overview

Coreset for directional width

- definition
- applications
- construction algorithm

Extra ingredient: Minimum volume bounding box

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\mathrm{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\operatorname{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Question 1: Which two points give the width in direction v ?

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\operatorname{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\operatorname{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Question 1: Which two points give the width in direction v ? 3,4

Question 2: Which v with $\|v\|=1$ has the largest directional width?

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\mathrm{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Question 1: Which two points give the width in direction v ? 3,4

Question 2: Which v with $\|v\|=1$ has the largest directional width?

The unit vector in direction from 2 to 8 (or vice versa)

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\operatorname{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Question 1: Which two points give the width in direction v ? 3,4

Question 2: Which v with $\|v\|=1$ has the largest directional width?

The unit vector in direction from 2
to 8 (or vice versa)
Question 3: Which are the only points of P relevant for computing directional width?

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\mathrm{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Question 1: Which two points give the width in direction v ? 3,4

Question 2: Which v with $\|v\|=1$ has the largest directional width?

The unit vector in direction from 2
to 8 (or vice versa)
Question 3: Which are the only points of P relevant for computing directional width?

Only points on convex hull
(i.e. 1, 2, 3, 6, 9, 8, 4)

Directional Width

Definition: The directional width of $P \subset \mathbb{R}^{d}$ with respect to a vector $v \in \mathbb{R}^{d} \backslash\{0\}$ is

$$
\mathrm{wd}(v, P):=\max _{p \in P}\langle v, p\rangle-\min _{p \in P}\langle v, p\rangle
$$

Properties:

- translation invariant
- scales linearly
- $\operatorname{wd}(v, P)=\operatorname{wd}(v, \operatorname{conv}(P))$
- monotone: if $Q \subset P$, then $\mathrm{wd}(v, Q) \leq \mathrm{wd}(v, P)$

Coreset for directional width

Definition: The set $S \subset P$ is an ε-coreset for directional width if for every unit vector v

$$
\mathrm{wd}(v, S) \geq(1-\varepsilon) \mathrm{wd}(v, P)
$$

Coreset for directional width

Definition: The set $S \subset P$ is an ε-coreset for directional width if for every unit vector v

Coreset for directional width

Definition: The set $S \subset P$ is an ε-coreset for directional width if for every unit vector v

$$
\mathrm{wd}(v, S) \geq(1-\varepsilon) \mathrm{wd}(v, P)
$$

- captures the (outer) geometry of P, and (hopefully) is much smaller than P

Coreset for directional width

Definition: The set $S \subset P$ is an ε-coreset for directional width if for every unit vector v

$$
\mathrm{wd}(v, S) \geq(1-\varepsilon) \mathrm{wd}(v, P)
$$

- captures the (outer) geometry of P, and (hopefully) is much smaller than P
- sketch property: If S is ε-coreset of S^{\prime} and S^{\prime} is ε^{\prime}-coreset of P, then S is $\left(\varepsilon+\varepsilon^{\prime}\right)$ coreset of P

Coreset for directional width

Definition: The set $S \subset P$ is an ε-coreset for directional width if for every unit vector v

$$
\mathrm{wd}(v, S) \geq(1-\varepsilon) \mathrm{wd}(v, P)
$$

- captures the (outer) geometry of P, and (hopefully) is much smaller than P
- sketch property: If S is ε-coreset of S^{\prime} and S^{\prime} is ε^{\prime}-coreset of P, then S is $\left(\varepsilon+\varepsilon^{\prime}\right)$ coreset of P (Exercise)
- merge property: If S is ε-coreset of P and S^{\prime} is ε^{\prime}-coreset of P^{\prime}, then $S \cup S^{\prime}$ is $\left(\varepsilon+\varepsilon^{\prime}\right)$-coreset of $P \cup P^{\prime}$

Coreset for directional width

Definition: The set $S \subset P$ is an ε-coreset for directional width if for every unit vector v

$$
\mathrm{wd}(v, S) \geq(1-\varepsilon) \mathrm{wd}(v, P)
$$

- captures the (outer) geometry of P, and (hopefully) is much smaller than P
- sketch property: If S is ε-coreset of S^{\prime} and S^{\prime} is ε^{\prime}-coreset of P, then S is $\left(\varepsilon+\varepsilon^{\prime}\right)$ coreset of P (Exercise)
- merge property: If S is ε-coreset of P and S^{\prime} is ε^{\prime}-coreset of P^{\prime}, then $S \cup S^{\prime}$ is $\left(\varepsilon+\varepsilon^{\prime}\right)$-coreset of $P \cup P^{\prime}$
- general concept: other objective functions f instead of directional width

Overview

Coreset for directional width

- definition
- applications
- construction algorithm

Extra ingredient: Minimum volume bounding box

Use case: min volume bounding box

Given $\varepsilon>0, P \subset \mathbb{R}^{d}$, let S be a δ-coreset of P for directional width $(\delta=\varepsilon /(8 d)$). Let $\mathcal{B}(P)$ (resp. $\mathcal{B}(S))$ be the min volume bounding box of P (resp. S), and let B be $\mathcal{B}(S)$ scaled by $(1+3 \delta)$ around the center of $\mathcal{B}(S)$.

Then $P \subset B$, and $\operatorname{Vol}(B) \leq(1+\varepsilon) \operatorname{Vol}(\mathcal{B}(P))$.

Use case: min volume bounding box

Given $\varepsilon>0, P \subset \mathbb{R}^{d}$, let S be a δ-coreset of P for directional width $(\delta=\varepsilon /(8 d)$). Let $\mathcal{B}(P)$ (resp. $\mathcal{B}(S))$ be the min volume bounding box of P (resp. S), and let B be $\mathcal{B}(S)$ scaled by $(1+3 \delta)$ around the center of $\mathcal{B}(S)$.

Then $P \subset B$, and $\operatorname{Vol}(B) \leq(1+\varepsilon) \operatorname{Vol}(\mathcal{B}(P))$.

Proof.

Use case: min volume bounding box

Given $\varepsilon>0, P \subset \mathbb{R}^{d}$, let S be a δ-coreset of P for directional width $(\delta=\varepsilon /(8 d)$). Let $\mathcal{B}(P)$ (resp. $\mathcal{B}(S)$) be the min volume bounding box of P (resp. S), and let B be $\mathcal{B}(S)$ scaled by $(1+3 \delta)$ around the center of $\mathcal{B}(S)$. Then $P \subset B$, and $\operatorname{Vol}(B) \leq(1+\varepsilon) \operatorname{Vol}(\mathcal{B}(P))$.

Proof.

Volume claim: $(1+3 \delta)^{d}<(1+\varepsilon)$

Use case: min volume bounding box

Given $\varepsilon>0, P \subset \mathbb{R}^{d}$, let S be a δ-coreset of P for directional width $(\delta=\varepsilon /(8 d)$). Let $\mathcal{B}(P)$ (resp. $\mathcal{B}(S)$) be the min volume bounding box of P (resp. S), and let B be $\mathcal{B}(S)$ scaled by $(1+3 \delta)$ around the center of $\mathcal{B}(S)$.

Then $P \subset B$, and $\operatorname{Vol}(B) \leq(1+\varepsilon) \operatorname{Vol}(\mathcal{B}(P))$.

Proof.

Volume claim: $(1+3 \delta)^{d}<(1+\varepsilon)$

$(1+3 \delta)^{d}=\left(1+\frac{3 \varepsilon / 8}{d}\right)^{d} \leq \exp (3 \varepsilon / 8)$

Use case: min volume bounding box

Given $\varepsilon>0, P \subset \mathbb{R}^{d}$, let S be a δ-coreset of P for directional width $(\delta=\varepsilon /(8 d)$). Let $\mathcal{B}(P)$ (resp. $\mathcal{B}(S)$) be the min volume bounding box of P (resp. S), and let B be $\mathcal{B}(S)$ scaled by $(1+3 \delta)$ around the center of $\mathcal{B}(S)$.

Then $P \subset B$, and $\operatorname{Vol}(B) \leq(1+\varepsilon) \operatorname{Vol}(\mathcal{B}(P))$.

Proof.

Volume claim: $(1+3 \delta)^{d}<(1+\varepsilon)$

$(1+3 \delta)^{d}=\left(1+\frac{3 \varepsilon / 8}{d}\right)^{d} \leq \exp (3 \varepsilon / 8)$
$\leq 1+6 \varepsilon / 8<1+\varepsilon \quad(\exp (x) \leq 1+2 x$ for $0 \leq x \leq 1)$

Use case: min volume bounding box

Given $\varepsilon>0, P \subset \mathbb{R}^{d}$, let S be a δ-coreset of P for directional width $(\delta=\varepsilon /(8 d)$). Let $\mathcal{B}(P)$ (resp. $\mathcal{B}(S)$) be the min volume bounding box of P (resp. S), and let B be $\mathcal{B}(S)$ scaled by $(1+3 \delta)$ around the center of $\mathcal{B}(S)$.

Then $P \subset B$, and $\operatorname{Vol}(B) \leq(1+\varepsilon) \operatorname{Vol}(\mathcal{B}(P))$.

Proof.

Volume claim: $(1+3 \delta)^{d}<(1+\varepsilon)$

$(1+3 \delta)^{d}=\left(1+\frac{3 \varepsilon / 8}{d}\right)^{d} \leq \exp (3 \varepsilon / 8)$
$\leq 1+6 \varepsilon / 8<1+\varepsilon \quad(\exp (x) \leq 1+2 x$ for $0 \leq x \leq 1)$

Still need: B contains P

Proof: $P \subset B$

$$
\left.\begin{array}{|llllllll|}
\hline 0 & 0 & 0 & 0 & & 0 & & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & & 0 & & 0 \\
0 & 0 & 0 & & & 0 & 0 & 0
\end{array}\right]
$$

Proof: $P \subset B$

Proof: $P \subset B$

$(1-\delta)\left|q q^{\prime}\right| \leq\left|r r^{\prime}\right|=2|t r|$ as S is δ-coreset.

Proof: $P \subset B$

$(1-\delta)\left|q q^{\prime}\right| \leq\left|r r^{\prime}\right|=2|t r|$ as s is δ-coreset. $\Rightarrow\left|q q^{\prime}\right|-\left|r r^{\prime}\right| \leq \delta\left|q q^{\prime}\right|$

Proof: $P \subset B$

$$
(1-\delta)\left|q q^{\prime}\right| \leq\left|r r^{\prime}\right|=2|t r| \text { as } S \text { is } \delta \text {-coreset. } \Rightarrow\left|q q^{\prime}\right|-\left|r r^{\prime}\right| \leq \delta\left|q q^{\prime}\right|
$$

$$
|t q| \leq|t r|+\delta\left|q q^{\prime}\right| \leq\left(1+\frac{2 \delta}{1-\delta}\right)|t r| \leq(1+3 \delta)|t r|=|t p|
$$

Proof: $P \subset B$

$$
(1-\delta)\left|q q^{\prime}\right| \leq\left|r r^{\prime}\right|=2|t r| \text { as } S \text { is } \delta \text {-coreset. } \Rightarrow\left|q q^{\prime}\right|-\left|r r^{\prime}\right| \leq \delta\left|q q^{\prime}\right|
$$

$$
|t q| \leq|t r|+\delta\left|q q^{\prime}\right| \leq\left(1+\frac{2 \delta}{1-\delta}\right)|t r| \leq(1+3 \delta)|t r|=|t p|
$$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B
$\Rightarrow\left|o p^{\prime}\right|>|o b|=(1+\varepsilon)|o a|$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B
$\Rightarrow\left|o p^{\prime}\right|>|o b|=(1+\varepsilon)|o a|$
$\mathrm{wd}(v, P)-\mathrm{wd}(v, S) \geq\left|p^{\prime} a\right|$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B

$$
\begin{aligned}
& \Rightarrow\left|o p^{\prime}\right|>|o b|=(1+\varepsilon)|o a| \\
& \mathrm{wd}(v, P)-\mathrm{wd}(v, S) \geq\left|p^{\prime} a\right| \\
& \geq \varepsilon \frac{\left|a a^{\prime}\right|}{2} \geq \frac{\varepsilon}{2} \mathrm{wd}(v, S)
\end{aligned}
$$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B

$$
\begin{aligned}
& \Rightarrow\left|o p^{\prime}\right|>|o b|=(1+\varepsilon)|o a| \\
& \mathrm{wd}(v, P)-\mathrm{wd}(v, S) \geq\left|p^{\prime} a\right| \\
& \geq \varepsilon \frac{\left|a a^{\prime}\right|}{2} \geq \frac{\varepsilon}{2} \mathrm{wd}(v, S)
\end{aligned}
$$

$\operatorname{wd}(v, S) \leq \frac{1}{1+\varepsilon / 2} \operatorname{wd}(v, P)$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B

$$
\begin{aligned}
& \Rightarrow\left|o p^{\prime}\right|>|o b|=(1+\varepsilon)|o a| \\
& \mathrm{wd}(v, P)-\mathrm{wd}(v, S) \geq\left|p^{\prime} a\right| \\
& \geq \varepsilon \frac{\left|a a^{\prime}\right|}{2} \geq \frac{\varepsilon}{2} \mathrm{wd}(v, S)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{wd}(v, S) & \leq \frac{1}{1+\varepsilon / 2} \mathrm{wd}(v, P) \\
& =\left(1-\frac{\varepsilon / 2}{1+\varepsilon / 2}\right)_{\varepsilon<2}^{<}\left(1-\frac{\varepsilon}{4}\right) \mathrm{wd}(v, P)
\end{aligned}
$$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Proof by contradiction:

Suppose $p \in P$ is outside B

$$
\begin{aligned}
& \Rightarrow\left|o p^{\prime}\right|>|o b|=(1+\varepsilon)|o a| \\
& \mathrm{wd}(v, P)-\mathrm{wd}(v, S) \geq\left|p^{\prime} a\right| \\
& \geq \varepsilon \frac{\left|a a^{\prime}\right|}{2} \geq \frac{\varepsilon}{2} \mathrm{wd}(v, S)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{wd}(v, S) & \leq \frac{1}{1+\varepsilon / 2} \mathrm{wd}(v, P) \\
& =\left(1-\frac{\varepsilon / 2}{1+\varepsilon / 2}\right)_{\varepsilon<2}^{<}\left(1-\frac{\varepsilon}{4}\right) \mathrm{wd}(v, P)
\end{aligned}
$$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Comparison to ε-samples:

ε-sample:

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Comparison to ε-samples:

ε-sample:
guarantees most points in $\mathcal{B}(S)$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Comparison to ε-samples:

ε-sample:
guarantees most points in $\mathcal{B}(S)$ combinatorial/statistical error

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Comparison to ε-samples:

ε-sample:
guarantees most points in $\mathcal{B}(S)$ combinatorial/statistical error does not guarantee $p \in B$

Use Case: minimum enclosing ball

If S is an $\varepsilon / 4$-coreset of P for directional width, then the smallest enclosing ball of $S, \mathcal{B}(S)$, scaled by $(1+\varepsilon)$ around its center, B, contains P.

Comparison to ε-samples:
ε-sample:
guarantees most points in $\mathcal{B}(S)$
combinatorial/statistical error does not guarantee $p \in B$
coreset: geometric error (bounded for all points)

Overview

Coreset for directional width

- definition
- applications
- construction algorithm

Extra ingredient: Minimum volume bounding box

Computing a tight (enough) bounding box

We can compute a bounding box B of P in $O\left(d^{2} n\right)$ time s.t.

$$
\text { (i) } \operatorname{Vol}\left(B_{o p t}(P)\right) \leq \operatorname{Vol}(B) \leq 2^{d} d!\operatorname{Vol}\left(B_{o p t}(P)\right)
$$

and (ii) there is a shift $x \in \mathbb{R}^{d}$ and $c>0$ that depends only on d, s.t. $x+c B \subset \operatorname{conv}(P)$.

(without proof, for now)

Constructing a coreset

Input: $P \subset \mathbb{R}^{d}, \varepsilon>0$ (and bounding box B s.t. $c_{d} B \subset \operatorname{conv}(P) \subset B$)
Output: an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{d-1}\right)$
Construction time: $O(n)$ (also depends on d and ε).

Constructing a coreset

Input: $P \subset \mathbb{R}^{d}, \varepsilon>0$ (and bounding box B s.t. $c_{d} B \subset \operatorname{conv}(P) \subset B$)
Output: an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{d-1}\right)$
Construction time: $O(n)$ (also depends on d and ε).

Algorithm

1. Divide B into $M \times \cdots \times M$ grid cells with $M=\left\lceil\frac{2}{\varepsilon c_{d}}\right\rceil$

Constructing a coreset

Input: $P \subset \mathbb{R}^{d}, \varepsilon>0$ (and bounding box B s.t. $c_{d} B \subset \operatorname{conv}(P) \subset B$)
Output: an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{d-1}\right)$
Construction time: $O(n)$ (also depends on d and ε).

Algorithm

1. Divide B into $M \times \cdots \times M$ grid cells with $M=\left\lceil\frac{2}{\varepsilon c_{d}}\right\rceil$

Pillar of cell $\left(i_{1}, \ldots, i_{d}\right):\left(i_{1}, \ldots, i_{d-1}\right)$
pillars

Constructing a coreset

Input: $P \subset \mathbb{R}^{d}, \varepsilon>0$ (and bounding box B s.t. $c_{d} B \subset \operatorname{conv}(P) \subset B$)
Output: an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{d-1}\right)$
Construction time: $O(n)$ (also depends on d and ε).

Algorithm

1. Divide B into $M \times \cdots \times M$ grid cells with $M=\left\lceil\frac{2}{\varepsilon c_{d}}\right\rceil$

$$
\text { Pillar of cell }\left(i_{1}, \ldots, i_{d}\right):\left(i_{1}, \ldots, i_{d-1}\right)
$$

2. For each of the M^{d-1} pillars, find point with max and point with $\min x_{d}$-coordinate

Constructing a coreset

Input: $P \subset \mathbb{R}^{d}, \varepsilon>0$ (and bounding box B s.t. $c_{d} B \subset \operatorname{conv}(P) \subset B$)
Output: an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{d-1}\right)$
Construction time: $O(n)$ (also depends on d and ε).

Algorithm

1. Divide B into $M \times \cdots \times M$ grid cells with $M=\left\lceil\frac{2}{\varepsilon c_{d}}\right\rceil$

$$
\text { Pillar of cell }\left(i_{1}, \ldots, i_{d}\right):\left(i_{1}, \ldots, i_{d-1}\right)
$$

2. For each of the M^{d-1} pillars, find point with max and point with $\min x_{d}$-coordinate

Constructing a coreset proof (S is coreset):

Constructing a coreset

proof (S is coreset):

Let $Q=$ union of cells containg a point of S.

Constructing a coreset

proof (S is coreset):

Let $Q=$ union of cells containg a point of S.
$P \subset \operatorname{conv}(Q) \Rightarrow \mathrm{wd}(v, P) \leq \mathrm{wd}(v, \operatorname{conv}(Q))$ for all v

Constructing a coreset

proof (S is coreset):

Let $Q=$ union of cells containg a point of S.
$P \subset \operatorname{conv}(Q) \Rightarrow \mathrm{wd}(v, P) \leq \mathrm{wd}(v, \operatorname{conv}(Q))$ for all v $\mathrm{wd}(v, P) \leq \mathrm{wd}(v, Q) \leq \mathrm{wd}(v, S)+2 \mathrm{wd}(v, B / M)$

Constructing a coreset

proof (S is coreset):

Let $Q=$ union of cells containg a point of S.
$P \subset \operatorname{conv}(Q) \Rightarrow \mathrm{wd}(v, P) \leq \mathrm{wd}(v, \operatorname{conv}(Q))$ for all v $\mathrm{wd}(v, P) \leq \mathrm{wd}(v, Q) \leq \mathrm{wd}(v, S)+2 \mathrm{wd}(v, B / M)$ $\operatorname{wd}(v, B / M)=\frac{\mathrm{wd}(v, B)}{M}=\frac{\mathrm{wd}\left(v, c_{d} B\right)}{c_{d} M}$

pillars

Constructing a coreset

proof (S is coreset):

Let $Q=$ union of cells containg a point of S.
$P \subset \operatorname{conv}(Q) \Rightarrow \mathrm{wd}(v, P) \leq \mathrm{wd}(v, \operatorname{conv}(Q))$ for all v $\mathrm{wd}(v, P) \leq \mathrm{wd}(v, Q) \leq \mathrm{wd}(v, S)+2 \mathrm{wd}(v, B / M)$

$$
\begin{aligned}
\mathrm{wd}(v, B / M) & =\frac{\mathrm{wd}(v, B)}{M}=\frac{\mathrm{wd}\left(v, c_{d} B\right)}{c_{d} M} \\
& \leq \frac{\mathrm{wd}(v, P)}{c_{d} M} \leq \frac{\mathrm{wd}(v, P)}{2 / \varepsilon}=\frac{\varepsilon}{2} \mathrm{wd}(v, P)
\end{aligned}
$$

pillars

Constructing a coreset

proof (S is coreset):

Let $Q=$ union of cells containg a point of S.
$P \subset \operatorname{conv}(Q) \Rightarrow \mathrm{wd}(v, P) \leq \mathrm{wd}(v, \operatorname{conv}(Q))$ for all v $\mathrm{wd}(v, P) \leq \mathrm{wd}(v, Q) \leq \mathrm{wd}(v, S)+2 \mathrm{wd}(v, B / M)$

$$
\begin{aligned}
\mathrm{wd}(v, B / M) & =\frac{\mathrm{wd}(v, B)}{M}=\frac{\mathrm{wd}\left(v, c_{d} B\right)}{c_{d} M} \\
& \leq \frac{\mathrm{wd}(v, P)}{c_{d} M} \leq \frac{\mathrm{wd}(v, P)}{2 / \varepsilon}=\frac{\varepsilon}{2} \mathrm{wd}(v, P)
\end{aligned}
$$

pillars
$\Rightarrow \mathrm{wd}(v, P)\left(1-2 \frac{\varepsilon}{2}\right) \mathrm{wd}(v, P) \leq \mathrm{wd}(v, S)$

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant).

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant). algorithm ideas/proof sketch:

- two stages: first the previous algo. for $\varepsilon / 2$ gives S^{\prime}, then this (slower) algorithm for $\varepsilon / 2$ on S^{\prime} gives S
- make conv (P) fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X:=$ a $c \sqrt{\varepsilon}$-packing in ∂B
- Let $S=$ nearest point to each $x \in X$

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant). algorithm ideas/proof sketch:

- two stages: first the previous algo. for $\varepsilon / 2$ gives S^{\prime}, then this (slower) algorithm for $\varepsilon / 2$ on S^{\prime} gives S
- make conv (P) fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X:=$ a $c \sqrt{\varepsilon}$-packing in ∂B

- Let $S=$ nearest point to each $x \in X$

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant).
algorithm ideas/proof sketch:

- two stages: first the previous algo. for $\varepsilon / 2$ gives S^{\prime}, then this (slower) algorithm for $\varepsilon / 2$ on S^{\prime} gives S
- make conv (P) fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X:=$ a $c \sqrt{\varepsilon}$-packing in ∂B

- Let $S=$ nearest point to each $x \in X$

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant). algorithm ideas/proof sketch:

- two stages: first the previous algo. for $\varepsilon / 2$ gives S^{\prime}, then this (slower) algorithm for $\varepsilon / 2$ on S^{\prime} gives S
- make conv (P) fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X:=$ a $c \sqrt{\varepsilon}$-packing in ∂B

- Let $S=$ nearest point to each $x \in X$

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant). algorithm ideas/proof sketch:

- two stages: first the previous algo. for $\varepsilon / 2$ gives S^{\prime}, then this (slower) algorithm for $\varepsilon / 2$ on S^{\prime} gives S
- make conv (P) fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X:=$ a $c \sqrt{\varepsilon}$-packing in ∂B

- Let $S=$ nearest point to each $x \in X$

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant).
algorithm ideas/proof sketch:

- two stages: first the previous algo. for $\varepsilon / 2$ gives S^{\prime}, then this (slower) algorithm for $\varepsilon / 2$ on S^{\prime} gives S
- make conv (P) fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X:=$ a $c \sqrt{\varepsilon}$-packing in ∂B

- Let $S=$ nearest point to each $x \in X$

Constructing a smaller coreset

Given $\varepsilon>0$ and $P \subset \mathbb{R}^{d}$, we can compute an ε-coreset $S \subseteq P$ of size at most $|S|=O\left(1 / \varepsilon^{(d-1) / 2}\right)$ in $O\left(n+1 / \varepsilon^{3(d-1) / 2}\right)$ time (where d is a fixed constant).
algorithm ideas/proof sketch:

- two stages: first the previous algo. for $\varepsilon / 2$ gives S^{\prime}, then this (slower) algorithm for $\varepsilon / 2$ on S^{\prime} gives S
- make conv (P) fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X:=$ a $c \sqrt{\varepsilon}$-packing in ∂B

- Let $S=$ nearest point to each $x \in X$

Overview

Coreset for directional width

- definition
- applications
- construction algorithm

Extra ingredient: Minimum volume bounding box

Computing a tight (enough) bounding box

We can compute a bounding box B of P in $O\left(d^{2} n\right)$ time s.t.

$$
\text { (i) } \operatorname{Vol}\left(B_{o p t}(P)\right) \leq \operatorname{Vol}(B) \leq 2^{d} d!\operatorname{Vol}\left(B_{o p t}(P)\right)
$$

and (ii) there is a shift $x \in \mathbb{R}^{d}$ and $c>0$ that depends only on d, s.t. $x+c B \subset \operatorname{conv}(P)$.

Computing a tight (enough) bounding box

We can compute a bounding box B of P in $O\left(d^{2} n\right)$ time s.t.

$$
\text { (i) } \operatorname{Vol}\left(B_{o p t}(P)\right) \leq \operatorname{Vol}(B) \leq 2^{d} d!\operatorname{Vol}\left(B_{o p t}(P)\right)
$$

and (ii) there is a shift $x \in \mathbb{R}^{d}$ and $c>0$ that depends only on d, s.t. $x+c B \subset \operatorname{conv}(P)$.

1. Approximate diameter:

Computing a tight (enough) bounding box

We can compute a bounding box B of P in $O\left(d^{2} n\right)$ time s.t.

$$
\text { (i) } \operatorname{Vol}\left(B_{o p t}(P)\right) \leq \operatorname{Vol}(B) \leq 2^{d} d!\operatorname{Vol}\left(B_{o p t}(P)\right)
$$

and (ii) there is a shift $x \in \mathbb{R}^{d}$ and $c>0$ that depends only on d, s.t. $x+c B \subset \operatorname{conv}(P)$.

1. Approximate diameter:

Let $s \in P$ arbitrary and let $s^{\prime} \in P$ most distant form s. If t, t^{\prime} realize the diameter of P, then

$$
\operatorname{diam}(P)=\left|t t^{\prime}\right| \leq|t s|+\left|s t^{\prime}\right| \leq 2\left|s s^{\prime}\right|
$$

Computing a tight (enough) bounding box

We can compute a bounding box B of P in $O\left(d^{2} n\right)$ time s.t.

$$
\text { (i) } \operatorname{Vol}\left(B_{o p t}(P)\right) \leq \operatorname{Vol}(B) \leq 2^{d} d!\operatorname{Vol}\left(B_{o p t}(P)\right)
$$

and (ii) there is a shift $x \in \mathbb{R}^{d}$ and $c>0$ that depends only on d, s.t. $x+c B \subset \operatorname{conv}(P)$.

- s'

1. Approximate diameter:

Let $s \in P$ arbitrary and let $s^{\prime} \in P$ most distant form s. If t, t^{\prime} realize the diameter of P, then

$$
\operatorname{diam}(P)=\left|t t^{\prime}\right| \leq|t s|+\left|s t^{\prime}\right| \leq 2\left|s s^{\prime}\right|
$$

Wlog. $s s^{\prime}$ parallel to x_{d} axis.

Recursive step

$$
\begin{aligned}
& P \stackrel{0}{0} \mathrm{o}
\end{aligned}
$$

Recursive step

$d=1$: return interval containing points

$$
\begin{aligned}
& P=0 \quad 0 \quad S_{0}^{0} \\
& Q \underset{O^{\circ} \circ{ }^{\circ}{ }^{\circ}(Q)}{ } x^{x_{d}=0}
\end{aligned}
$$

Recursive step

$d=1$: return interval containing points
$d>1$:
$Q:=\pi(P)$
$B(Q):=$ bounding box of Q (recursion)

Recursive step

d = 1: return interval containing points
$d>1$:
$Q:=\pi(P)$
$B(Q):=$ bounding box of Q (recursion)
$\left[z, z^{\prime}\right]:=$ shortest interval on x_{d} axis covering projection of P

Recursive step

d = 1: return interval containing points
$d>1$:
$Q:=\pi(P)$
$B(Q):=$ bounding box of Q (recursion)
$\left[z, z^{\prime}\right]:=$ shortest interval on x_{d} axis covering projection of P

$$
B:=B(Q) \times\left[z, z^{\prime}\right]
$$

Still need: $\operatorname{Vol}_{d}(\operatorname{conv}(P)) \geq \operatorname{Vol}_{d}(B) /\left(2^{d} d!\right)$

Volume bound

Upper hull conv ${ }^{\uparrow}(P)$ as function: $U p: \operatorname{conv}(Q) \rightarrow \mathbb{R}^{d}$ is concave Lower hull $\operatorname{con}^{\downarrow}(P)$ as function: $L o: \operatorname{conv}(Q) \rightarrow \mathbb{R}^{d}$ is convex

Volume bound

Upper hull $\operatorname{conv}^{\uparrow}(P)$ as function: $U p: \operatorname{conv}(Q) \rightarrow \mathbb{R}^{d}$ is concave Lower hull conv ${ }^{\downarrow}(P)$ as function: $L o: \operatorname{conv}(Q) \rightarrow \mathbb{R}^{d}$ is convex

Up - Lo is concave
$\Rightarrow \underset{q \in \operatorname{conv}(Q)}{A}:=\bigcup[0 p(q)-L o(q)]$ is convex

Volume bound

Upper hull $\operatorname{conv}^{\uparrow}(P)$ as function: $U p: \operatorname{conv}(Q) \rightarrow \mathbb{R}^{d}$ is concave Lower hull conv ${ }^{\downarrow}(P)$ as function: $L o: \operatorname{conv}(Q) \rightarrow \mathbb{R}^{d}$ is convex

Up - Lo is concave
$\Rightarrow \underset{q \in \operatorname{conv}(Q)}{A}:=\bigcup[0 p(q)-L o(q)]$ is convex

At $\pi(s)$, height of A is at least $\left|s s^{\prime}\right|$.
A contains pyramid with base conv (Q) and pole length $\geq\left|s s^{\prime}\right|$.

Volume bound

$$
\begin{aligned}
\operatorname{Vol}_{d}(B) & \geq \operatorname{Vol}_{d}\left(B_{o p t}\right) \\
& \geq \operatorname{Vol}_{d}(\operatorname{conv}(P))=\operatorname{Vol}_{d}(A) \\
& \left.\geq \operatorname{Vol}^{(p y r a m i d}\right) \\
& \geq \frac{\operatorname{Vol}_{d-1}(\operatorname{conv}(Q))\left|s s^{\prime}\right|}{d} \\
& \geq \frac{\operatorname{Vol}_{d-1}\left(B(Q) /\left(2^{d-1}(d-1)!\right)\right) 2\left|s s^{\prime}\right|}{2 d} \\
& \geq \frac{\operatorname{Vol}_{d-1}(B(Q))\left|z z^{\prime}\right|}{2^{d} d!} \\
& =\frac{\operatorname{Vol}_{d}(B)}{2^{d} d!}
\end{aligned}
$$

Volume bound

$$
\begin{aligned}
\operatorname{Vol}_{d}(B) & \geq \operatorname{Vol}_{d}\left(B_{o p t}\right) \\
& \geq \operatorname{Vol}_{d}(\operatorname{conv}(P))=\operatorname{Vol}_{d}(A) \\
& \left.\geq \operatorname{Vol}^{(p y r a m i d}\right) \\
& \geq \frac{\operatorname{Vol}_{d-1}(\operatorname{conv}(Q))\left|s s^{\prime}\right|}{d} \\
& \geq \frac{\operatorname{Vol}_{d-1}\left(B(Q) /\left(2^{d-1}(d-1)!\right)\right) 2\left|s s^{\prime}\right|}{2 d} \\
& \geq \frac{\operatorname{Vol}_{d-1}(B(Q))\left|z z^{\prime}\right|}{2^{d} d!} \\
& =\frac{\operatorname{Vol}_{d}(B)}{2^{d} d!}
\end{aligned}
$$

Running time: $T(n, d)=O(n d)+T(n, d-1)=O\left(n d^{2}\right)$.

Summary

Coreset: small (sub-)set capturing the relevant geometry slow algorithm + coreset $=$ fast approximation algorithm a coreset is constructed for specific geometric optimization problem

Coreset for directional width:

construction using grids (+ bounding box)
solves various other problems too: min-volume bounding box, min-enclosing ball, diameter, ...

