
computing spanning trees with low stabbing number via reweighting

Combinatorial Discrepancy
sampling using discrepancy



ε-samples

r

P

S

Measure: µ(r) = |r∩P||P|
Estimate: µ̂(r) = |r∩S||S|



ε-samples

r

P

S

Measure: µ(r) = |r∩P||P|
Estimate: µ̂(r) = |r∩S||S|

µ(r) = 9
15 = 0.6



ε-samples

r

P

S

Measure: µ(r) = |r∩P||P|
Estimate: µ̂(r) = |r∩S||S|

µ(r) = 9
15 = 0.6

µ̂(r) = 3
6 = 0.5



ε-samples

r

P

S

Measure: µ(r) = |r∩P||P|
Estimate: µ̂(r) = |r∩S||S|

µ(r) = 9
15 = 0.6

µ̂(r) = 3
6 = 0.5

ε-sample S:

for all r ∈ R and any 0 ≤ ε ≤ 1

|µ(r)− µ̂(r)| ≤ ε



ε-samples

r

P

S

Measure: µ(r) = |r∩P||P|
Estimate: µ̂(r) = |r∩S||S|

µ(r) = 9
15 = 0.6

µ̂(r) = 3
6 = 0.5

ε-sample theorem: For constant p > 0 and
VC-dim. a random sample of size O(1/ε2) is an
ε-sample with probability p.

ε-sample S:

for all r ∈ R and any 0 ≤ ε ≤ 1

|µ(r)− µ̂(r)| ≤ ε



ε-samples

r

P

S

Measure: µ(r) = |r∩P||P|
Estimate: µ̂(r) = |r∩S||S|

µ(r) = 9
15 = 0.6

µ̂(r) = 3
6 = 0.5

ε-sample theorem: For constant p > 0 and
VC-dim. a random sample of size O(1/ε2) is an
ε-sample with probability p.

ε-sample S:

for all r ∈ R and any 0 ≤ ε ≤ 1

|µ(r)− µ̂(r)| ≤ ε

Smaller size? Deterministic construction?
Via discrepancy!



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

r



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−

r



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

r



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

|5− 4| = 1
r



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

|5− 4| = 1

Quiz What ismaxr∈R |χ(r)| in this example?

A 2

B 3

C 4

r



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

Quiz What ismaxr∈R |χ(r)| in this example?

A 2

B 3

C 4



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

Quiz What ismaxr∈R |χ(r)| in this example?

A 2

B 3

C 4

r



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

Quiz What ismaxr∈R |χ(r)| in this example?
r

Formally:
coloring χ : X → {−1, 1}



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

Quiz What ismaxr∈R |χ(r)| in this example?
r

Formally:
coloring χ : X → {−1, 1}

χ(r) =
∑

p∈r χ(p)



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

Quiz What ismaxr∈R |χ(r)| in this example?
r

Formally:
coloring χ : X → {−1, 1}

discrepancy of χ: disc(χ) = maxr∈R |χ(r)|

χ(r) =
∑

p∈r χ(p)



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

Quiz What ismaxr∈R |χ(r)| in this example?
r

Formally:
coloring χ : X → {−1, 1}

discrepancy of χ: disc(χ) = maxr∈R |χ(r)|

discrepancy of range space S = (X ,R):

disc(S) = min
χ : X→{−1,1}

disc(χ)

χ(r) =
∑

p∈r χ(p)



Discrepancy
Color P in two colors: ’1’ (red) and ’-1’ (blue)

P+

P−
s.t. |χ(r)| = |red− blue| is small for all ranges r

Quiz What ismaxr∈R |χ(r)| in this example?
r

Formally:
coloring χ : X → {−1, 1}

discrepancy of χ: disc(χ) = maxr∈R |χ(r)|

discrepancy of range space S = (X ,R):

disc(S) = min
χ : X→{−1,1}

disc(χ)

Our goal: Given S, compute χ with low discrepancy

χ(r) =
∑

p∈r χ(p)



Our plan for today

From low discrepancy to ε-samples

Low-discrepancy colorings via perfect
matchings & crossing numbers

Constructing a spanning tree with low
crossing number

From spanning trees to perfect matchings
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From low discrepancy to ε-samples
Assumptions:
|P| = n is a power of 2. (correct up to factor 2)

We can find a coloring χ with disc(χ) ≤ c
√
δn log n

Idea:
P1: blue points (χ(p) = −1), P′1: red points

r

Question: Is P1 an ε-sample?
yes, for ε = c

√
δ log nn

P2 is ε′-sample of P1 with ε′ = c
√
δ log(n/2)n/2
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Quiz
If P1 is an ε1-sample of P, and P2 is an ε2-sample of P1, then P2 is an ...-sample of P.

A ε1 + ε2

B ε1 · ε2
C max(ε1, ε2)

∣∣∣ |r∩P||P| − |r∩P2||P2|

∣∣∣ = ∣∣∣ |r∩P||P| − |r∩P1||P1| + |r∩P1||P1| −
|r∩P2|
|P2|

∣∣∣ ≤∣∣∣ |r∩P||P| − |r∩P1||P1|

∣∣∣ + ∣∣∣ |r∩P1||P1| −
|r∩P2|
|P2|

∣∣∣ ≤ ε1 + ε2
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δ log nk−1

nk−1

Holds for nk−1
log nk−1

≥ c21δ
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Holds for nk−1 ≥ 2 c21δ
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Gives ε-sample of size O( δε2 log
δ
ε2 ) if assumption holds: We can find a coloring χ with

disc(χ) ≤ c
√
δn log n
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Construction via perfect matchings
Assumption: |P| = n is even

Π: perfect matching on P: pairing of points

for (p, q) ∈ Π: at random color 1 red (1) and 1 blue (-1)

|χ(r)|: only pairs (p, q) ∈ Π with p ∈ r and q 6∈ r
(or q ∈ r and p 6∈ r ) matter

r

p
q

crossing number #r : number of such pairs

m := |R|,∆r :=
√
2#r ln(4m)

Using the Chernoff bound (without proof):
P[|χ(r)| > ∆r] < 1

2m

sum over all r: disc(χ) ≤ maxr∈R∆r with prob.≥ 1/2

∆r = O(
√
δn log n) for shattering dim. δ since #r ≤ n/2
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What we have so far
We can compute χ with |χ(r)| = O(

√
δ#r log n)

Since #r ≤ n/2, |χ(r)| = O(
√
dn log n)

From this we can construct ε-sample of size O( δε2 log
δ
ε2 )

How to improve:
Construct perfect matching, such that #r = O(n1−λ)
for some suitable λ > 0

As example, we will considerR = set of halfspaces

r

`r

maxr∈R #r =maximum number of edges crossed by any line `



Computing spanning trees with low crossing number
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Spanning Tree in General

Connected graph G = (V , E)

Spanning tree T = (V , F) of G is a tree with F ⊆ E

Given edge weights c : E → R≥0
What is the minimum weight spanning tree?

Note that |F| = |V| − 1
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Spanning Tree in the Plane
Set P ⊆ R2 of n points

Spanning tree T are n− 1 line segments that span P

p q

p

r s

T = {pq, pr, ps}
Note that pq = qp

Quiz Number of distinct spanning trees?

16: from 5 rotatable variations

Cayley’s Formula: nn−2 trees
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Stabbing number of T is the maximum number of times
any line in the plane intersects T

Theorem. We can always find T with stabbing number O(
√
n) in polynomial time

(1992 Welzl)

Given n points on
√
n×
√
n grid

Max stabbing number using only the grid for T ?
2 · (
√
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Lower bound (Ω)?
Draw 2 · (

√
n− 1) lines

Each line segment crosses at least one line
For at least one line n−1

2·(
√
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√
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The Algorithm

Consider all separating lines L̂ of P

Let two lines `, `′ ∈ L̂ be equivalent if ` and `′

separate the same sets of points

p q

r s

Pick one for each equivalent class of L̂
Let this be set L

What is at most the size of L?

|L| ≤ 4
(n
2

)
, rotate every line until it goes through two points

The two points are the same for at most 4 lines ( (above, above), (above, below), ...).
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Let w(`) = 2#Q(`)

Let #Q(`) be the number of intersections of ` ∈ L with T

For pq (p, q ∈ P) let w(pq) =
∑
`∈L∧¬(`∩pq=∅) w(`)

The running time is polynomial in n

p q

sr `1

`2
w(`1) = 2,w(`2) = 4

If L = {`1, `2} then w(pr) = 0,w(pq) = 6,w(qs) = 2
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The Algorithm
While |P| > 1
1. Calculate the weights of L
2. Calculate the weights of S = {ab | a, b ∈ P}
3. Pick ab ∈ S with minimal weight in T
4. Remove a from P

2
2

2
2

4

1

p q

s

9

5

Removing s leads to stabbing number 2
Removing q leads to stabbing number 3
Asymptotically it does not matter
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Given P ⊆ R2 and lines L in the plane

Consider the arrangementA(L)

Let bQ(p, r) denote all intersections
q ∈ A(L) for which dQ(p, q) ≤ r

pExample bQ(p, 3)

Lemma. For any r ≤ |L|2 we have that |bQ(p, r)| ≥ r2
8

We can shoot a ray from p that intersects at least r
2 lines

For the first r
2 lines, mark all q ∈ A(L) within crossing distance r

2

At least r
2 are marked per line and each can be marked at most twice

|bQ(p, r)| ≥ r
2 ·

r
2 ·

1
2 = r2

8

By the triangle inequality dQ(p, q) ≤ r
2 +

r
2 = r
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Given P ⊆ R2 and lines L in the plane with total weight W

Lemma. You can always find pq with p, q ∈ P for which w(pq) ≤ cW√
n

Weights are integers, for all ` ∈ L replace it by w(`) non-parallel lines

Consider X(r) =
⋃

p∈P bQ(p, r)

If balls disjoint then by previous Lemma |X(r)| ≥ n · r
2

8

Two lines can only intersect once |A(L)| ≤
(W
2

)
Two balls are not disjoint when nr2

8 >
(W
2

)
⇒ r > 2W√

n

Then exists t ∈ A(L) and two points p, q ∈ P for which
dQ(p, q) ≤ dQ(p, t) + dQ(t, q) ≤ 2r ≤ 4W√

n + 3
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Theorem. Any line in the plane crosses T at most O(

√
n) times

Wi is total weight of L after ith iteration, W0 = |L| ≤
(n
2

)
ni = n− i + 1 is size |P| in beginning of ith iteration

(From previous Lemma)

(Apply the previous step i times)

(1 + x ≤ ex for all x ≥ 0)

(Definition nk)

Wi ≤ Wi−1 +
cWi−1√

ni

= (1 +
c
√
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)Wi−1

≤
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k=1

(1 +
c
√
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n−k+1



Proof

Wn ≤ W0e
∑n

k=1
c√

n−k+1 (From previous Slide)

Theorem. Any line in the plane crosses T at most O(
√
n) times



Proof

Wn ≤ W0e
∑n

k=1
c√

n−k+1 (From previous Slide)

Theorem. Any line in the plane crosses T at most O(
√
n) times

≤
(
n
2

)
e
∑n

k=1
c√
k



Proof

Wn ≤ W0e
∑n

k=1
c√

n−k+1 (From previous Slide)

(
∑n

k=1
1√
k
≤ 1 +

∫ n
x=1

1√
xdx ≤ 4

√
n)

Theorem. Any line in the plane crosses T at most O(
√
n) times

≤
(
n
2

)
e
∑n

k=1
c√
k

≤ n2e4c
√
n



Proof

Wn ≤ W0e
∑n

k=1
c√

n−k+1 (From previous Slide)

(
∑n

k=1
1√
k
≤ 1 +

∫ n
x=1

1√
xdx ≤ 4

√
n)

For all ` ∈ L, w(`) = 2#Q(`) ≤ Wn ≤ n2e4c
√
n

Theorem. Any line in the plane crosses T at most O(
√
n) times

≤
(
n
2

)
e
∑n

k=1
c√
k

≤ n2e4c
√
n



Proof

Wn ≤ W0e
∑n

k=1
c√

n−k+1 (From previous Slide)

(
∑n

k=1
1√
k
≤ 1 +

∫ n
x=1

1√
xdx ≤ 4

√
n)
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back to perfect matchings, discrepancy, and ε-samples
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.
This is smaller than our
previous O(1/ε2) !



Summary
We have seen

discrepancy (and there would be so much more too be said about discrepancy)

ε-samples via discrepancy (and we didn’t even discuss how to use this for deterministic construction
and/or ε-nets)

low-discrepancy colorings via perfect matchings (with low crossing number)

spanning trees with low crossing number (and therefore perfect matchings)

second application of reweighing

This was the last lecture about sampling.


