Combinatorial Discrepancy

sampling using discrepancy
computing spanning trees with low stabbing number via reweighting

ε-samples

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$

Estimate: $\hat{\mu}(r)=\frac{|r \cap s|}{|s|}$

ε-samples

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$
Estimate: $\hat{\mu}(r)=\frac{|r \cap s|}{|s|}$

ε-samples

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$
Estimate: $\hat{\mu}(r)=\frac{|r \cap s|}{|s|}$

ε-samples

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$
Estimate: $\hat{\mu}(r)=\frac{|r \cap s|}{|s|}$
ε-sample S :
for all $r \in \mathcal{R}$ and any $0 \leq \varepsilon \leq 1$
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$

ε-samples

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$
Estimate: $\hat{\mu}(r)=\frac{|r \cap s|}{|s|}$
ε-sample S :
for all $r \in \mathcal{R}$ and any $0 \leq \varepsilon \leq 1$
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$
ε-sample theorem: For constant $p>0$ and VC-dim. a random sample of size $O\left(1 / \varepsilon^{2}\right)$ is an ε-sample with probability p.

ε-samples

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$
Estimate: $\hat{\mu}(r)=\frac{|r \cap s|}{|s|}$
ε-sample S :
for all $r \in \mathcal{R}$ and any $0 \leq \varepsilon \leq 1$
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$
ε-sample theorem: For constant $p>0$ and VC-dim. a random sample of size $O\left(1 / \varepsilon^{2}\right)$ is an ε-sample with probability p.

Smaller size? Deterministic construction? Via discrepancy!

Discrepancy

Color P in two colors: ' 1 ' (red) and '-1' (blue)

Discrepancy

Color P in two colors: ' 1 ' (red) and '-1' (blue)

Discrepancy

Color P in two colors: ' 1 ' (red) and '-1' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Discrepancy

Color P in two colors: ' 1 ' (red) and '-1' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Discrepancy

Color P in two colors: ' 1 ' (red) and '-1' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?
A 2
B 3
C 4

Discrepancy

Color P in two colors: ' 1 ' (red) and '-1' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?
A 2
B 3
C 4

Discrepancy

Color P in two colors: ' 1 ' (red) and '-1' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?
A 2
B 3
C 4

Discrepancy

Color P in two colors: ' 1 ' (red) and ' -1 ' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?
Formally:
coloring $\chi: X \rightarrow\{-1,1\}$

Discrepancy

Color P in two colors: ' 1 ' (red) and ' -1 ' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?

Formally:

coloring $\chi: X \rightarrow\{-1,1\}$
$\chi(r)=\sum_{p \in r} \chi(p)$

Discrepancy

Color P in two colors: ' 1 ' (red) and ' -1 ' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?

Formally:

coloring $\chi: X \rightarrow\{-1,1\}$
$\chi(r)=\sum_{p \in r} \chi(p)$
discrepancy of $\chi: \operatorname{disc}(\chi)=\max _{r \in \mathcal{R}}|\chi(r)|$

Discrepancy

Color P in two colors: ' 1 ' (red) and ' -1 ' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?

Formally:

coloring $\chi: X \rightarrow\{-1,1\}$
$\chi(r)=\sum_{p \in r} \chi(p)$
discrepancy of χ : $\operatorname{disc}(\chi)=\max _{r \in \mathcal{R}}|\chi(r)|$
discrepancy of range space $S=(X, \mathcal{R})$:

$$
\operatorname{disc}(S)=\min _{\chi: x \rightarrow\{-1,1\}} \operatorname{disc}(\chi)
$$

Discrepancy

Color P in two colors: ' 1 ' (red) and ' -1 ' (blue)
s.t. $|\chi(r)|=\mid$ red - blue \mid is small for all ranges r

Quiz What is $\max _{r \in \mathcal{R}}|\chi(r)|$ in this example?

Formally:

coloring $\chi: X \rightarrow\{-1,1\}$
$\chi(r)=\sum_{p \in r} \chi(p)$
discrepancy of χ : $\operatorname{disc}(\chi)=\max _{r \in \mathcal{R}}|\chi(r)|$
discrepancy of range space $S=(X, \mathcal{R})$:

$$
\operatorname{disc}(S)=\min _{\chi: x \rightarrow\{-1,1\}} \operatorname{disc}(\chi)
$$

Our goal: Given S, compute χ with low discrepancy

Our plan for today

From low discrepancy to ε-samples
Low-discrepancy colorings via perfect matchings \& crossing numbers

Constructing a spanning tree with low crossing number

From spanning trees to perfect matchings

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2 . (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2 . (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points P_{1} should be a good, but huge ε-sample

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2 . (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points P_{1} should be a good, but huge ε-sample Iterate:
Compute χ_{1} for P_{1} with $\operatorname{disc}\left(\chi_{1}\right) \leq c \sqrt{\delta(n / 2) \log (n / 2)}$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points P_{1} should be a good, but huge ε-sample Iterate:
Compute χ_{1} for P_{1} with $\operatorname{disc}\left(\chi_{1}\right) \leq c \sqrt{\delta(n / 2) \log (n / 2)}$
P_{2} : blue points $\left(\chi_{1}(p)=-1\right)$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2 . (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points P_{1} should be a good, but huge ε-sample Iterate:
Compute χ_{1} for P_{1} with $\operatorname{disc}\left(\chi_{1}\right) \leq c \sqrt{\delta(n / 2) \log (n / 2)}$
P_{2} : blue points ($\chi_{1}(p)=-1$)
P_{2} should be a good and smaller ε-sample

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points P_{1} should be a good, but huge ε-sample Iterate:
Compute χ_{1} for P_{1} with $\operatorname{disc}\left(\chi_{1}\right) \leq c \sqrt{\delta(n / 2) \log (n / 2)}$
P_{2} : blue points ($\chi_{1}(p)=-1$)
P_{2} should be a good and smaller ε-sample P_{3}, P_{4}, \ldots How long can we iterate?

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points
Question: Is P_{1} an ε-sample?

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points
Question: Is P_{1} an ε-sample?
$\left|\frac{|\digamma \cap P|}{|P|}-\frac{\mid\left\ulcorner\cap P_{1} \mid\right.}{\left|P_{1}\right|}\right|=$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points
Question: Is P_{1} an ε-sample?
$\left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}\right|=\frac{1}{n}| | r \cap P|-2| r \cap P_{1}| |=$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points
Question: Is P_{1} an ε-sample?
$\left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}\right|=\frac{1}{n}| | r \cap P|-2| r \cap P_{1}| |=$
$\frac{1}{n}\left|\left|r \cap P_{2}\right|+\left|r \cap P_{1}\right|-2\right| r \cap P_{1}| | \leq$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points
Question: Is P_{1} an ε-sample?
$\left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}\right|=\frac{1}{n}| | r \cap P|-2| r \cap P_{1}| |=$
$\frac{1}{n}\left|\left|r \cap P_{2}\right|+\left|r \cap P_{1}\right|-2\right| r \cap P_{1}| | \leq$
$\frac{c \sqrt{\delta n \log n}}{n}=C \sqrt{\frac{\delta \log n}{n}}$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points
Question: Is P_{1} an ε-sample?

$$
\text { yes, for } \varepsilon=c \sqrt{\delta \frac{\log n}{n}}
$$

From low discrepancy to ε-samples

Assumptions:

$|P|=n$ is a power of 2. (correct up to factor 2)
We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Idea:

P_{1} : blue points $(\chi(p)=-1), \quad P_{1}^{\prime}$: red points
Question: Is P_{1} an ε-sample?
P_{2} is ε^{\prime}-sample of P_{1} with $\varepsilon^{\prime}=c \sqrt{\delta \frac{\log (n / 2)}{n / 2}}$

Quiz

If P_{1} is an ε_{1}-sample of P, and P_{2} is an ε_{2}-sample of P_{1}, then P_{2} is an ...-sample of P.

A $\varepsilon_{1}+\varepsilon_{2}$
B $\varepsilon_{1} \cdot \varepsilon_{2}$
C $\max \left(\varepsilon_{1}, \varepsilon_{2}\right)$
$\left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{2}\right|}{\left|P_{2}\right|}\right|=$

Quiz

If P_{1} is an ε_{1}-sample of P, and P_{2} is an ε_{2}-sample of P_{1}, then P_{2} is an ...-sample of P.

$$
\begin{aligned}
& \text { A } \varepsilon_{1}+\varepsilon_{2} \\
& \text { B } \varepsilon_{1} \cdot \varepsilon_{2} \\
& \text { C } \quad \max \left(\varepsilon_{1}, \varepsilon_{2}\right) \\
& \left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{2}\right|}{\left|P_{2}\right|}\right|=
\end{aligned}
$$

Quiz

If P_{1} is an ε_{1}-sample of P, and P_{2} is an ε_{2}-sample of P_{1}, then P_{2} is an ...-sample of P.

$$
\begin{aligned}
& \text { A } \varepsilon_{1}+\varepsilon_{2} \\
& \text { B } \varepsilon_{1} \cdot \varepsilon_{2} \\
& \text { C } \max \left(\varepsilon_{1}, \varepsilon_{2}\right) \\
& \left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{2}\right|}{\left|P_{2}\right|}\right|=\left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}+\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}-\frac{\left|r \cap P_{2}\right|}{\left|P_{2}\right|}\right| \leq
\end{aligned}
$$

Quiz

If P_{1} is an ε_{1}-sample of P, and P_{2} is an ε_{2}-sample of P_{1}, then P_{2} is an ...-sample of P.

```
A }\mp@subsup{\varepsilon}{1}{}+\mp@subsup{\varepsilon}{2}{
B \(\quad \varepsilon_{1} \cdot \varepsilon_{2}\)
C \(\max \left(\varepsilon_{1}, \varepsilon_{2}\right)\)
```

$$
\begin{aligned}
\left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{2}\right|}{\left|P_{2}\right|}\right|= & \left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}+\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}-\frac{\left|r \cap P_{2}\right|}{\left|P_{2}\right|}\right| \leq \\
& \left|\frac{|r \cap P|}{|P|}-\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}\right|+\left|\frac{\left|r \cap P_{1}\right|}{\left|P_{1}\right|}-\frac{\left|r \cap P_{2}\right|}{\left|P_{2}\right|}\right| \leq \varepsilon_{1}+\varepsilon_{2}
\end{aligned}
$$

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$
P_{2} has size $n_{2}:=n / 2^{2}$ and is ε_{2}-sample with $\varepsilon_{2}=c \sqrt{\delta \frac{\log n}{n}}+c \sqrt{\delta \frac{\log (n / 2)}{(n / 2)}}$

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$
P_{2} has size $n_{2}:=n / 2^{2}$ and is ε_{2}-sample with $\varepsilon_{2}=c \sqrt{\delta \frac{\log n}{n}}+c \sqrt{\delta \frac{\log (n / 2)}{(n / 2)}}$
P_{k} has size $n_{k}:=n / 2^{k}$ and is ε_{k}-sample with $\varepsilon_{k}=c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log \left(n / 2^{i}\right)}{\left(n / 2^{i}\right)}}$

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$
P_{2} has size $n_{2}:=n / 2^{2}$ and is ε_{2}-sample with $\varepsilon_{2}=c \sqrt{\delta \frac{\log n}{n}}+c \sqrt{\delta \frac{\log (n / 2)}{(n / 2)}}$
P_{k} has size $n_{k}:=n / 2^{k}$ and is ε_{k}-sample with $\varepsilon_{k}=c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log \left(n / 2^{i}\right)}{\left(n / 2^{i}\right)}} \leq \varepsilon$ for which k ?

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$
P_{2} has size $n_{2}:=n / 2^{2}$ and is ε_{2}-sample with $\varepsilon_{2}=c \sqrt{\delta \frac{\log n}{n}}+c \sqrt{\delta \frac{\log (n / 2)}{(n / 2)}}$
P_{k} has size $n_{k}:=n / 2^{k}$ and is ε_{k}-sample with $\varepsilon_{k}=c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log \left(n / 2^{i}\right)}{\left(n / 2^{i}\right)}} \leq \varepsilon$ for which k ?
Like geometric series, last term dominates: $\varepsilon_{k} \leq c_{1} \sqrt{\delta \frac{\log \left(n / 2^{k-1}\right)}{\left(n / 2^{k-1}\right)}}=c_{1} \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$
P_{2} has size $n_{2}:=n / 2^{2}$ and is ε_{2}-sample with $\varepsilon_{2}=c \sqrt{\delta \frac{\log n}{n}}+c \sqrt{\delta \frac{\log (n / 2)}{(n / 2)}}$
P_{k} has size $n_{k}:=n / 2^{k}$ and is ε_{k}-sample with $\varepsilon_{k}=c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log \left(n / 2^{i}\right)}{\left(n / 2^{\prime}\right)}} \leq \varepsilon$ for which k ?
Like geometric series, last term dominates: $\varepsilon_{k} \leq c_{1} \sqrt{\delta \frac{\log \left(n / 2^{k-1}\right)}{\left(n / 2^{k-1}\right)}}=c_{1} \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$
Holds for $\frac{n_{k-1}}{\log n_{k-1}} \geq \frac{c_{1}^{2} \delta}{\varepsilon^{2}}$

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$
P_{2} has size $n_{2}:=n / 2^{2}$ and is ε_{2}-sample with $\varepsilon_{2}=c \sqrt{\delta \frac{\log n}{n}}+c \sqrt{\delta \frac{\log (n / 2)}{(n / 2)}}$
P_{k} has size $n_{k}:=n / 2^{k}$ and is ε_{k}-sample with $\varepsilon_{k}=c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log \left(n / 2^{i}\right)}{\left(n / 2^{\prime}\right)}} \leq \varepsilon$ for which k ?
Like geometric series, last term dominates: $\varepsilon_{k} \leq c_{1} \sqrt{\delta \frac{\log \left(n / 2^{k-1}\right)}{\left(n / 2^{k-1}\right)}}=c_{1} \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$
Holds for $\frac{n_{k-1}}{\log n_{k-1}} \geq \frac{c_{1}^{2} \delta}{\varepsilon^{2}}$
Holds for $n_{k-1} \geq 2 \frac{c_{1}^{2} \delta}{\varepsilon^{2}} \ln \frac{c_{1}^{2} \delta}{\varepsilon^{2}}$

Size of iterated construction

Given ε, how often can we iterate to get ε-sample?
P_{1} has size $n_{1}:=n / 2$ and is ε_{1}-sample with $\varepsilon_{1}=c \sqrt{\delta \frac{\log n}{n}}$
P_{2} has size $n_{2}:=n / 2^{2}$ and is ε_{2}-sample with $\varepsilon_{2}=c \sqrt{\delta \frac{\log n}{n}}+c \sqrt{\delta \frac{\log (n / 2)}{(n / 2)}}$
P_{k} has size $n_{k}:=n / 2^{k}$ and is ε_{k}-sample with $\varepsilon_{k}=c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log \left(n / 2^{i}\right)}{\left(n / 2^{i}\right)}} \leq \varepsilon$ for which k ?
Like geometric series, last term dominates: $\varepsilon_{k} \leq c_{1} \sqrt{\delta \frac{\log \left(n / 2^{k-1}\right)}{\left(n / 2^{k-1}\right)}}=c_{1} \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$
Holds for $\frac{n_{k-1}}{\log n_{k-1}} \geq \frac{c_{1}^{2} \delta}{\varepsilon^{2}}$
Holds for $n_{k-1} \geq 2 \frac{c_{1}^{2} \delta}{\varepsilon^{2}} \ln \frac{c_{1}^{2} \delta}{\varepsilon^{2}}$
Gives ε-sample of size $O\left(\frac{\delta}{\varepsilon^{2}} \log \frac{\delta}{\varepsilon^{2}}\right)$ if assumption holds: We can find a coloring χ with $\operatorname{disc}(\chi) \leq c \sqrt{\delta n \log n}$

Low-discrepancy colorings via perfect matchings \& crossing numbers

Construction via perfect matchings

Assumption: $|P|=n$ is even

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points
for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)
$|\chi(r)|:$ only pairs $(p, q) \in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)
$|\chi(r)|:$ only pairs $(p, q) \in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter
crossing number $\#_{r}$: number of such pairs

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)
$|\chi(r)|:$ only pairs $(p, q) \in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter
crossing number $\#_{r}$: number of such pairs

$$
m:=|\mathcal{R}|, \Delta_{r}:=\sqrt{2 \#_{r} \ln (4 m)}
$$

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)
$|\chi(r)|:$ only pairs $(p, q) \in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter
crossing number $\#_{r}$: number of such pairs

$m:=|\mathcal{R}|, \Delta_{r}:=\sqrt{2 \#_{r} \ln (4 m)}$
Using the Chernoff bound (without proof):

$$
P\left[|\chi(r)|>\Delta_{r}\right]<\frac{1}{2 m}
$$

Construction via perfect matchings

Assumption: $\quad|P|=n$ is even
Π : perfect matching on P : pairing of points for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)
$|\chi(r)|:$ only pairs $(p, q) \in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter
crossing number $\#_{r}$: number of such pairs

$m:=|\mathcal{R}|, \Delta_{r}:=\sqrt{2 \#_{r} \ln (4 m)}$
Using the Chernoff bound (without proof):
$P\left[|\chi(r)|>\Delta_{r}\right]<\frac{1}{2 m}$
sum over all $r: \operatorname{disc}(\chi) \leq \max _{r \in \mathcal{R}} \Delta_{r}$ with prob. $\geq 1 / 2$

Construction via perfect matchings

Assumption: $|P|=n$ is even
Π : perfect matching on P : pairing of points for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)
$|\chi(r)|:$ only pairs $(p, q) \in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter
crossing number $\#_{r}$: number of such pairs

$m:=|\mathcal{R}|, \Delta_{r}:=\sqrt{2 \#_{r} \ln (4 m)}$
Using the Chernoff bound (without proof):
$P\left[|\chi(r)|>\Delta_{r}\right]<\frac{1}{2 m}$
sum over all $r: \operatorname{disc}(\chi) \leq \max _{r \in \mathcal{R}} \Delta_{r}$ with prob. $\geq 1 / 2$
$\Delta_{r}=O(\sqrt{\delta n \log n})$ for shattering dim. δ since $\#_{r} \leq n / 2$

What we have so far

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)$

What we have so far

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)$ Since $\#_{r} \leq n / 2,|\chi(r)|=O(\sqrt{d n \log n})$

What we have so far

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)$
Since $\#_{r} \leq n / 2,|\chi(r)|=O(\sqrt{d n \log n})$
From this we can construct ε-sample of size $O\left(\frac{\delta}{\varepsilon^{2}} \log \frac{\delta}{\varepsilon^{2}}\right)$

What we have so far

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)$
Since $\#_{r} \leq n / 2,|\chi(r)|=O(\sqrt{d n \log n})$
From this we can construct ε-sample of size $O\left(\frac{\delta}{\varepsilon^{2}} \log \frac{\delta}{\varepsilon^{2}}\right)$

How to improve:

Construct perfect matching, such that $\#_{r}=O\left(n^{1-\lambda}\right)$ for some suitable $\lambda>0$

What we have so far

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)$
Since $\#_{r} \leq n / 2,|\chi(r)|=O(\sqrt{d n \log n})$
From this we can construct ε-sample of size $O\left(\frac{\delta}{\varepsilon^{2}} \log \frac{\delta}{\varepsilon^{2}}\right)$

How to improve:

Construct perfect matching, such that $\#_{r}=O\left(n^{1-\lambda}\right)$ for some suitable $\lambda>0$

As example, we will consider $\mathcal{R}=$ set of halfspaces

What we have so far

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)$
Since $\#_{r} \leq n / 2,|\chi(r)|=O(\sqrt{d n \log n})$
From this we can construct ε-sample of size $O\left(\frac{\delta}{\varepsilon^{2}} \log \frac{\delta}{\varepsilon^{2}}\right)$

How to improve:

Construct perfect matching, such that $\#_{r}=O\left(n^{1-\lambda}\right)$ for some suitable $\lambda>0$

As example, we will consider $\mathcal{R}=$ set of halfspaces max $_{r \in \mathcal{R}} \#_{r}=$ maximum number of edges crossed by any line ℓ

Computing spanning trees with low crossing number

Spanning Tree in General

Connected graph $G=(V, E)$

Spanning Tree in General

Connected graph $G=(V, E)$

Spanning tree $T=(V, F)$ of G is a tree with $F \subseteq E$

Spanning Tree in General

Connected graph $G=(V, E)$

Spanning tree $T=(V, F)$ of G is a tree with $F \subseteq E$

Spanning Tree in General

Connected graph $G=(V, E)$

Spanning tree $T=(V, F)$ of G is a tree with $F \subseteq E$

Spanning Tree in General

Connected graph $G=(V, E)$

Spanning tree $T=(V, F)$ of G is a tree with $F \subseteq E$ Note that $|F|=|V|-1$

Spanning Tree in General

Connected graph $G=(V, E)$

Spanning tree $T=(V, F)$ of G is a tree with $F \subseteq E$ Note that $|F|=|V|-1$

Given edge weights $c: E \rightarrow \mathbb{R}_{\geq 0}$
What is the minimum weight spanning tree?

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$
Quiz Number of distinct spanning trees?
A 8
B 12
C 16

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$
Quiz Number of distinct spanning trees?
A 8
B 12
C 16

16: from 5 rotatable variations

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$
Quiz Number of distinct spanning trees?
A 8
B 12

C 16

16: from 5 rotatable variations

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$
Quiz Number of distinct spanning trees?
A 8
B 12

C 16

16: from 5 rotatable variations

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$
Quiz Number of distinct spanning trees?
A 8
B 12

C 16

16: from 5 rotatable variations

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$
Quiz Number of distinct spanning trees?
A 8
B 12

C 16

16: from 5 rotatable variations

Spanning Tree in the Plane

Set $P \subseteq \mathbb{R}^{2}$ of n points
Spanning tree \mathcal{T} are $n-1$ line segments that span P
$\mathcal{T}=\{p q, p r, p s\}$
Note that $p q=q p$
Quiz Number of distinct spanning trees?
A 8
B 12

C 16

16: from 5 rotatable variations
Cayley's Formula: n^{n-2} trees

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

$$
\mathcal{T}=\{p q, p r, p s\}
$$

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}
$\mathcal{T}=\{p q, p r, p s\}$
Stabbing number is 3

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}
$\mathcal{T}=\{p q, p r, p s\}$
Stabbing number is 3
$\mathcal{T}=\{p q, p r, q s\}$

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}
$\mathcal{T}=\{p q, p r, p s\}$
Stabbing number is 3
$\mathcal{T}=\{p q, p r, q s\}$
Stabbing number is 2

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

Given n points on $\sqrt{n} \times \sqrt{n}$ grid

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

Given n points on $\sqrt{n} \times \sqrt{n}$ grid
Max stabbing number using only the grid for \mathcal{T} ?

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

Given n points on $\sqrt{n} \times \sqrt{n}$ grid
Max stabbing number using only the grid for \mathcal{T} ?
$2 \cdot(\sqrt{n}-1)$

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

Given n points on $\sqrt{n} \times \sqrt{n}$ grid
Max stabbing number using only the grid for \mathcal{T} ?
$2 \cdot(\sqrt{n}-1)$
Lower bound (Ω) ?

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

Given n points on $\sqrt{n} \times \sqrt{n}$ grid
Max stabbing number using only the grid for \mathcal{T} ?
$2 \cdot(\sqrt{n}-1)$
Lower bound (Ω) ?
Draw $2 \cdot(\sqrt{n}-1)$ lines
Each line segment crosses at least one line

For at least one line $\frac{n-1}{2 \cdot(\sqrt{n}-1)}=\Omega(\sqrt{n})$ line segment crossings (pigeonhole principle)

Stabbing Number

Stabbing number of \mathcal{T} is the maximum number of times any line in the plane intersects \mathcal{T}

Given n points on $\sqrt{n} \times \sqrt{n}$ grid
Max stabbing number using only the grid for \mathcal{T} ?
$2 \cdot(\sqrt{n}-1)$
Lower bound (Ω) ?
Draw $2 \cdot(\sqrt{n}-1)$ lines
Each line segment crosses at least one line

For at least one line $\frac{n-1}{2 \cdot(\sqrt{n}-1)}=\Omega(\sqrt{n})$ line segment crossings (pigeonhole principle)
Theorem. We can always find \mathcal{T} with stabbing number $O(\sqrt{n})$ in polynomial time (1992 Welzl)

The Algorithm

Consider all separating lines \hat{L} of P

$$
\begin{array}{cc}
p & q \\
\bullet & \bullet \\
& \bullet \\
\bullet & \bullet
\end{array}
$$

The Algorithm

Consider all separating lines \hat{L} of P

The Algorithm

Consider all separating lines \hat{L} of P
Let two lines $\ell, \ell^{\prime} \in \hat{L}$ be equivalent if ℓ and ℓ^{\prime} separate the same sets of points

The Algorithm

Consider all separating lines \hat{L} of P
Let two lines $\ell, \ell^{\prime} \in \hat{L}$ be equivalent if ℓ and ℓ^{\prime} separate the same sets of points

The Algorithm

Consider all separating lines \hat{L} of P
Let two lines $\ell, \ell^{\prime} \in \hat{L}$ be equivalent if ℓ and ℓ^{\prime} separate the same sets of points

Pick one for each equivalent class of \hat{L} Let this be set L

The Algorithm

Consider all separating lines \hat{L} of P
Let two lines $\ell, \ell^{\prime} \in \hat{L}$ be equivalent if ℓ and ℓ^{\prime} separate the same sets of points

Pick one for each equivalent class of \hat{L} Let this be set L

The Algorithm

Consider all separating lines \hat{L} of P
Let two lines $\ell, \ell^{\prime} \in \hat{L}$ be equivalent if ℓ and ℓ^{\prime} separate the same sets of points

Pick one for each equivalent class of \hat{L} Let this be set L

What is at most the size of L ?

$|L| \leq 4\binom{n}{2}$, rotate every line until it goes through two points
The two points are the same for at most 4 lines ((above, above), (above, below), ...).

The Algorithm

Let $\#_{s^{\prime}}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}

The Algorithm

Let $\#_{s_{x}}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}
Let $w(\ell)=2^{\#_{\star}(\ell)}$

The Algorithm

Let $\#_{ء \times}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}
Let $w(\ell)=2^{\#_{\star}(\ell)}$
$w\left(\ell_{1}\right)=2, w\left(\ell_{2}\right)=4$

The Algorithm

Let $\#_{s_{x}}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}

$$
\begin{aligned}
& \text { Let } w(\ell)=2^{\#_{\star}(\ell)} \\
& w\left(\ell_{1}\right)=2, w\left(\ell_{2}\right)=4 \\
& \text { For } p q(p, q \in P) \text { let } w(p q)=\sum_{\ell \in L \wedge \neg(\ell \cap p q=\emptyset)} w(\ell)
\end{aligned}
$$

The Algorithm

Let $\#_{s_{x}}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}
Let $w(\ell)=2^{\#_{\star}(\ell)}$
$w\left(\ell_{1}\right)=2, w\left(\ell_{2}\right)=4$
For $p q(p, q \in P)$ let $w(p q)=\sum_{\ell \in L \wedge \neg(\ell \cap p q=\emptyset)} w(\ell)$
If $L=\left\{\ell_{1}, \ell_{2}\right\}$ then $w(p r)=0, w(p q)=6, w(q s)=2$

The Algorithm

Let $\#_{s_{x}}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}
Let $w(\ell)=2^{\#_{×}(\ell)}$
$w\left(\ell_{1}\right)=2, w\left(\ell_{2}\right)=4$
For $p q(p, q \in P)$ let $w(p q)=\sum_{\ell \in L \wedge \neg(\ell \cap p q=\emptyset)} w(\ell)$
If $L=\left\{\ell_{1}, \ell_{2}\right\}$ then $w(p r)=0, w(p q)=6, w(q s)=2$

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

Let $\#_{s_{x}}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}
Let $w(\ell)=2^{\#_{×}(\ell)}$
$w\left(\ell_{1}\right)=2, w\left(\ell_{2}\right)=4$
For $p q(p, q \in P)$ let $w(p q)=\sum_{\ell \in L \wedge \neg(\ell \cap p q=\emptyset)} w(\ell)$
If $L=\left\{\ell_{1}, \ell_{2}\right\}$ then $w(p r)=0, w(p q)=6, w(q s)=2$

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The running time is polynomial in n

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

The Algorithm

While $|P|>1$

1. Calculate the weights of L
2. Calculate the weights of $S=\{a b \mid a, b \in P\}$
3. Pick $a b \in S$ with minimal weight in \mathcal{T}
4. Remove a from P

Removing s leads to stabbing number 2
Removing q leads to stabbing number 3
Asymptotically it does not matter

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane $d_{\curvearrowright}(p, q)$ is the crossing distance for $p, q \in P$ Number of lines of L that $p q$ crosses

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane $d_{><}(p, q)$ is the crossing distance for $p, q \in P$ Number of lines of L that $p q$ crosses
$d_{\star}(p, q)$?

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane $d_{><}(p, q)$ is the crossing distance for $p, q \in P$ Number of lines of L that $p q$ crosses
$d_{\star<}(p, q)=5$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane $d_{\infty}(p, q)$ is the crossing distance for $p, q \in P$ Number of lines of L that $p q$ crosses
$d_{\star}(p, q)=5$

The triangle inequality holds
$d_{*<(p, q)} \leq d_{*<(p, r)}+d_{*<(r, q)}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane $d_{\infty}(p, q)$ is the crossing distance for $p, q \in P$ Number of lines of L that $p q$ crosses
$d_{\star}(p, q)=5$

The triangle inequality holds
$d_{\gtrdot(p, q)} \leq d_{*(p, r)}+d_{\ngtr(r, q)}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$
Let $b_{\odot<}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\star}(p, q) \leq r$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$
Let $b_{><}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\star}(p, q) \leq r$

Example $b_{*}(p, 3)$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$
Let $b_{><}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{ء<}(p, q) \leq r$

Example $b_{ء<}(p, 3)$

Lemma. For any $r \leq \frac{|L|}{2}$ we have that $\left|b_{ء}(p, r)\right| \geq \frac{r^{2}}{8}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$
Let $b_{><}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\star}(p, q) \leq r$

Example $b_{><}(p, 3)$

Lemma. For any $r \leq \frac{|L|}{2}$ we have that $\left|b_{\odot}(p, r)\right| \geq \frac{r^{2}}{8}$ We can shoot a ray from p that intersects at least $\frac{r}{2}$ lines

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$
Let $b_{><}(p, r)$ denote all intersections
$q \in \mathcal{A}(L)$ for which $d_{ء<}(p, q) \leq r$
Example $b_{\&<}(p, 3)$
Lemma. For any $r \leq \frac{|L|}{2}$ we have that $\left|b_{\odot}(p, r)\right| \geq \frac{r^{2}}{8}$
We can shoot a ray from p that intersects at least $\frac{r}{2}$ lines
 For the first $\frac{r}{2}$ lines, mark all $q \in \mathcal{A}(L)$ within crossing distance $\frac{r}{2}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$
Let $b_{><}(p, r)$ denote all intersections
$q \in \mathcal{A}(L)$ for which $d_{\gg}(p, q) \leq r$
Example $b_{\&<}(p, 3)$
Lemma. For any $r \leq \frac{|L|}{2}$ we have that $\left|b_{ء}(p, r)\right| \geq \frac{r^{2}}{8}$
We can shoot a ray from p that intersects at least $\frac{r}{2}$ lines
 For the first $\frac{r}{2}$ lines, mark all $q \in \mathcal{A}(L)$ within crossing distance $\frac{r}{2}$
By the triangle inequality $d_{><}(p, q) \leq \frac{r}{2}+\frac{r}{2}=r$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane
Consider the arrangement $\mathcal{A}(L)$
Let $b_{\odot<}(p, r)$ denote all intersections
$q \in \mathcal{A}(L)$ for which $d_{\star}(p, q) \leq r$
Example $b_{s<}(p, 3)$
Lemma. For any $r \leq \frac{|L|}{2}$ we have that $\left|b_{ء}(p, r)\right| \geq \frac{r^{2}}{8}$
We can shoot a ray from p that intersects at least $\frac{r}{2}$ lines

For the first $\frac{r}{2}$ lines, mark all $q \in \mathcal{A}(L)$ within crossing distance $\frac{r}{2}$
By the triangle inequality $d_{><}(p, q) \leq \frac{r}{2}+\frac{r}{2}=r$
At least $\frac{r}{2}$ are marked per line and each can be marked at most twice
$\left|b_{*}(p, r)\right| \geq \frac{r}{2} \cdot \frac{r}{2} \cdot \frac{1}{2}=\frac{r^{2}}{8}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane with total weight W
Lemma. You can always find $p q$ with $p, q \in P$ for which $w(p q) \leq \frac{c w}{\sqrt{n}}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane with total weight W
Lemma. You can always find $p q$ with $p, q \in P$ for which $w(p q) \leq \frac{c W}{\sqrt{n}}$
Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane with total weight W
Lemma. You can always find $p q$ with $p, q \in P$ for which $w(p q) \leq \frac{c w}{\sqrt{n}}$
Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines
Consider $X(r)=\bigcup_{p \in P} b_{\gtrdot<}(p, r)$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane with total weight W
Lemma. You can always find $p q$ with $p, q \in P$ for which $w(p q) \leq \frac{c w}{\sqrt{n}}$
Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines
Consider $X(r)=\bigcup_{p \in P} b_{*<}(p, r)$
If balls disjoint then by previous Lemma $|X(r)| \geq n \cdot \frac{r^{2}}{8}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane with total weight W
Lemma. You can always find $p q$ with $p, q \in P$ for which $w(p q) \leq \frac{c w}{\sqrt{n}}$
Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines
Consider $X(r)=\bigcup_{p \in P} b_{\lessgtr}(p, r)$
If balls disjoint then by previous Lemma $|X(r)| \geq n \cdot \frac{r^{2}}{8}$ Two lines can only intersect once $|\mathcal{A}(L)| \leq\binom{ w}{2}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane with total weight W
Lemma. You can always find $p q$ with $p, q \in P$ for which $w(p q) \leq \frac{c w}{\sqrt{n}}$
Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines
Consider $X(r)=\bigcup_{p \in P} b_{*}(p, r)$
If balls disjoint then by previous Lemma $|X(r)| \geq n \cdot \frac{r^{2}}{8}$
Two lines can only intersect once $|\mathcal{A}(L)| \leq\binom{ w}{2}$
Two balls are not disjoint when $\frac{n r^{2}}{8}>\binom{w}{2} \Rightarrow r>\frac{2 w}{\sqrt{n}}$

Proof

Given $P \subseteq \mathbb{R}^{2}$ and lines L in the plane with total weight W
Lemma. You can always find $p q$ with $p, q \in P$ for which $w(p q) \leq \frac{c w}{\sqrt{n}}$
Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines
Consider $X(r)=\bigcup_{p \in P} b_{\gg}(p, r)$
If balls disjoint then by previous Lemma $|X(r)| \geq n \cdot \frac{r^{2}}{8}$
Two lines can only intersect once $|\mathcal{A}(L)| \leq\binom{ w}{2}$
Two balls are not disjoint when $\frac{n r^{2}}{8}>\binom{w}{2} \Rightarrow r>\frac{2 w}{\sqrt{n}}$ Then exists $t \in \mathcal{A}(L)$ and two points $p, q \in P$ for which
 $d_{\star<}(p, q) \leq d_{><}(p, t)+d_{><}(t, q) \leq 2 r \leq \frac{4 W}{\sqrt{n}}+3$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times
W_{i} is total weight of L after ith iteration, $W_{0}=|L| \leq\binom{ n}{2}$
$n_{i}=n-i+1$ is size $|P|$ in beginning of i th iteration

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times
W_{i} is total weight of L after ith iteration, $W_{0}=|L| \leq\binom{ n}{2}$ $n_{i}=n-i+1$ is size $|P|$ in beginning of i th iteration

$$
W_{i} \leq W_{i-1}+\frac{c W_{i-1}}{\sqrt{n_{i}}} \quad \text { (From previous Lemma) }
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times W_{i} is total weight of L after ith iteration, $W_{0}=|L| \leq\binom{ n}{2}$ $n_{i}=n-i+1$ is size $|P|$ in beginning of i th iteration

$$
\begin{aligned}
W_{i} & \leq W_{i-1}+\frac{c W_{i-1}}{\sqrt{n_{i}}} \quad \text { (From previous Lemma) } \\
& =\left(1+\frac{c}{\sqrt{n_{i}}}\right) W_{i-1}
\end{aligned}
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times W_{i} is total weight of L after ith iteration, $W_{0}=|L| \leq\binom{ n}{2}$ $n_{i}=n-i+1$ is size $|P|$ in beginning of i th iteration

$$
\begin{aligned}
W_{i} & \leq W_{i-1}+\frac{c W_{i-1}}{\sqrt{n_{i}}} \quad \text { (From previous Lemma) } \\
& =\left(1+\frac{c}{\sqrt{n_{i}}}\right) W_{i-1} \\
& \leq \prod_{k=1}^{i}\left(1+\frac{c}{\sqrt{n_{k}}}\right) W_{0} \quad \text { (Apply the previous step } i \text { times) }
\end{aligned}
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times W_{i} is total weight of L after ith iteration, $W_{0}=|L| \leq\binom{ n}{2}$ $n_{i}=n-i+1$ is size $|P|$ in beginning of i th iteration

$$
\begin{array}{rlr}
W_{i} & \leq W_{i-1}+\frac{c W_{i-1}}{\sqrt{n_{i}}} & \\
& \text { (From previous Lemma) } \\
& =\left(1+\frac{c}{\sqrt{n_{i}}}\right) W_{i-1} & \\
& \leq \prod_{k=1}^{i}\left(1+\frac{c}{\sqrt{n_{k}}}\right) W_{0} & \text { (Apply the previous step } i \text { times) } \\
& \leq W_{0} \prod_{k=1}^{i} e^{\frac{c}{\sqrt{n_{k}}}} & \\
\left(1+x \leq e^{x} \text { for all } x \geq 0\right)
\end{array}
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times W_{i} is total weight of L after ith iteration, $W_{0}=|L| \leq\binom{ n}{2}$ $n_{i}=n-i+1$ is size $|P|$ in beginning of i th iteration

$$
\begin{array}{rlrl}
W_{i} & \leq W_{i-1}+\frac{c W_{i-1}}{\sqrt{n_{i}}} & \text { (From previous Lemma) } \\
& =\left(1+\frac{c}{\sqrt{n_{i}}}\right) W_{i-1} & \\
& \leq \prod_{k=1}^{i}\left(1+\frac{c}{\sqrt{n_{k}}}\right) W_{0} & & \text { (Apply the previous step } i \text { times) } \\
& \leq W_{0} \prod_{k=1}^{i} e^{\frac{c}{\sqrt{n_{k}}}} & & \left(1+x \leq e^{x} \text { for all } x \geq 0\right) \\
& =W_{0} e^{\sum_{k=1}^{i} \frac{c}{\sqrt{n-k+1}}} & \text { (Definition } \left.n_{k}\right)
\end{array}
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$
W_{n} \leq W_{0} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} \quad \text { (From previous Slide) }
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$
\begin{aligned}
W_{n} & \leq W_{0} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} \quad \text { (From previous Slide) } \\
& \leq\binom{ n}{2} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{k}}}
\end{aligned}
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$
\begin{aligned}
W_{n} & \leq W_{0} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} & & \text { (From previous Slide) } \\
& \leq\binom{ n}{2} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{k}}} & & \\
& \leq n^{2} e^{4 c \sqrt{n}} & & \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 1+\int_{x=1}^{n} \frac{1}{\sqrt{x}} d x \leq 4 \sqrt{n}\right)
\end{aligned}
$$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$
\begin{aligned}
W_{n} & \leq W_{0} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} & & \text { (From previous Slide) } \\
& \leq\binom{ n}{2} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{k}}} & & \\
& \leq n^{2} e^{4 c \sqrt{n}} & & \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 1+\int_{x=1}^{n} \frac{1}{\sqrt{x}} d x \leq 4 \sqrt{n}\right)
\end{aligned}
$$

For all $\ell \in L, w(\ell)=2^{\#_{<}(\ell)} \leq W_{n} \leq n^{2} e^{4 c \sqrt{n}}$

Proof

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$
\begin{aligned}
W_{n} & \leq W_{0} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} & & \text { (From previous Slide) } \\
& \leq\binom{ n}{2} e^{\sum_{k=1}^{n} \frac{c}{\sqrt{k}}} & & \\
& \leq n^{2} e^{4 c \sqrt{n}} & & \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 1+\int_{x=1}^{n} \frac{1}{\sqrt{x}} d x \leq 4 \sqrt{n}\right)
\end{aligned}
$$

For all $\ell \in L, w(\ell)=2^{\#_{\star}(\ell)} \leq W_{n} \leq n^{2} e^{4 c \sqrt{n}}$
Hence $\#_{>}(\ell)=O(\sqrt{n})$

Higher Dimensions

Theorem. For every set of n points in d-space there is a spanning tree \mathcal{T}, such that any hyperplane crosses \mathcal{T} at most $O\left(n^{1-1 / d}\right)$ times (without proof)

Higher Dimensions

Theorem. For every set of n points in d-space there is a spanning tree \mathcal{T}, such that any hyperplane crosses \mathcal{T} at most $O\left(n^{1-1 / d}\right)$ times (without proof)

For $d=2$, we obtain $O(\sqrt{n})$

Higher Dimensions

Theorem. For every set of n points in d-space there is a spanning tree \mathcal{T}, such that any hyperplane crosses \mathcal{T} at most $O\left(n^{1-1 / d}\right)$ times (without proof)

For $d=2$, we obtain $O(\sqrt{n})$
For $d=3$ consider $n^{1 / 3} \times n^{1 / 3} \times n^{1 / 3}$ cube

Higher Dimensions

Theorem. For every set of n points in d-space there is a spanning tree \mathcal{T}, such that any hyperplane crosses \mathcal{T} at most $O\left(n^{1-1 / d}\right)$ times (without proof)

For $d=2$, we obtain $O(\sqrt{n})$
For $d=3$ consider $n^{1 / 3} \times n^{1 / 3} \times n^{1 / 3}$ cube
Same argument holds for upper and lower bound

Higher Dimensions

Theorem. For every set of n points in d-space there is a spanning tree \mathcal{T}, such that any hyperplane crosses \mathcal{T} at most $O\left(n^{1-1 / d}\right)$ times (without proof)

For $d=2$, we obtain $O(\sqrt{n})$

For $d=3$ consider $n^{1 / 3} \times n^{1 / 3} \times n^{1 / 3}$ cube
Same argument holds for upper and lower bound

Higher Dimensions

Theorem. For every set of n points in d-space there is a spanning tree \mathcal{T}, such that any hyperplane crosses \mathcal{T} at most $O\left(n^{1-1 / d}\right)$ times (without proof)

For $d=2$, we obtain $O(\sqrt{n})$
For $d=3$ consider $n^{1 / 3} \times n^{1 / 3} \times n^{1 / 3}$ cube
Same argument holds for upper and lower bound

| \bullet | - | - | \bullet | - | - | \bullet | - | - | - | - | - |
| :---: |
| \bullet |
| \bullet |
| \bullet |
| - | \bullet | - | \bullet | \bullet |

back to perfect matchings, discrepancy, and ε-samples

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

By triangle inequality, stabbing number can only decrease

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

By triangle inequality, stabbing number can only decrease
$n-1$ line segments in total

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

By triangle inequality, stabbing number can only decrease
$n-1$ line segments in total

If n even, remove all even edges to obtain perfect matching \mathcal{M}

Perfect Matching with Low Stabbing Number

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$
Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle
Skip any previously visited points

By triangle inequality, stabbing number can only decrease
$n-1$ line segments in total

If n even, remove all even edges to obtain perfect matching \mathcal{M}

Discrepancy and ε-sample

What we have now: For $\mathcal{R}=$ set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t.

$$
\#_{r}=O(\sqrt{n})
$$

Discrepancy and ε-sample

What we have now: For $\mathcal{R}=$ set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t.

$$
\#_{r}=O(\sqrt{n})
$$

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)=O\left(n^{1 / 4} \sqrt{\delta \log n}\right)$

Discrepancy and ε-sample

What we have now: For $\mathcal{R}=$ set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t.

$$
\#_{r}=O(\sqrt{n})
$$

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)=O\left(n^{1 / 4} \sqrt{\delta \log n}\right)$
blue points P_{1} are an ε_{1}-sample with $\varepsilon_{1}=O\left(\sqrt{\log n} / n^{3 / 4}\right)$

Discrepancy and ε-sample

What we have now: For $\mathcal{R}=$ set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t.

$$
\#_{r}=O(\sqrt{n})
$$

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)=O\left(n^{1 / 4} \sqrt{\delta \log n}\right)$
blue points P_{1} are an ε_{1}-sample with $\varepsilon_{1}=O\left(\sqrt{\log n} / n^{3 / 4}\right)$
... we get ε-sample of size $O\left(\frac{\delta}{\varepsilon} \log \frac{\delta}{\varepsilon}\right)^{4 / 3}$.

Discrepancy and ε-sample

What we have now: For $\mathcal{R}=$ set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t.

$$
\#_{r}=O(\sqrt{n})
$$

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)=O\left(n^{1 / 4} \sqrt{\delta \log n}\right)$
blue points P_{1} are an ε_{1}-sample with $\varepsilon_{1}=O\left(\sqrt{\log n} / n^{3 / 4}\right)$
... we get ε-sample of size $O\left(\frac{\delta}{\varepsilon} \log \frac{\delta}{\varepsilon}\right)^{4 / 3}$.

The same algorithm works for other ranges \mathcal{R} :
Theorem. Given a range space (X, \mathcal{R}) with shattering dimension δ and dual shattering dimension δ^{*}, a set $P \subset X$ of n points, and $\varepsilon>0$, one can compute, in polynomial time (assuming δ and δ^{*} are constant), an ε-sample for P of size

$$
O\left(\left(\frac{\delta}{\varepsilon} \log \frac{\delta}{\varepsilon}\right)^{2-2 /\left(\delta^{*}+1\right)}\right)
$$

Discrepancy and ε-sample

What we have now: For $\mathcal{R}=$ set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t.

$$
\#_{r}=O(\sqrt{n})
$$

We can compute χ with $|\chi(r)|=O\left(\sqrt{\delta \#_{r} \log n}\right)=O\left(n^{1 / 4} \sqrt{\delta \log n}\right)$
blue points P_{1} are an ε_{1}-sample with $\varepsilon_{1}=O\left(\sqrt{\log n} / n^{3 / 4}\right)$
... we get ε-sample of size $O\left(\frac{\delta}{\varepsilon} \log \frac{\delta}{\varepsilon}\right)^{4 / 3}$.

The same algorithm works for other ranges \mathcal{R} :
Theorem. Given a range space (X, \mathcal{R}) with shattering dimension δ and dual shattering dimension δ^{*}, a set $P \subset X$ of n points, and $\varepsilon>0$, one can compute, in polynomial time (assuming δ and δ^{*} are constant), an ε-sample for P of size

$$
O\left(\left(\frac{\delta}{\varepsilon} \log \frac{\delta}{\varepsilon}\right)^{2-2 /\left(\delta^{*}+1\right)}\right) . \quad \begin{aligned}
& \text { This is smaller than our } \\
& \text { previous } O\left(1 / \varepsilon^{2}\right)!
\end{aligned}
$$

Summary

We have seen
discrepancy (and there would be so much more too be said about discrepancy)
ε-samples via discrepancy (and we didn't even discuss how to use this for deterministic construction and/or ε-nets)
low-discrepancy colorings via perfect matchings (with low crossing number)
spanning trees with low crossing number (and therefore perfect matchings)
second application of reweighing

This was the last lecture about sampling.

