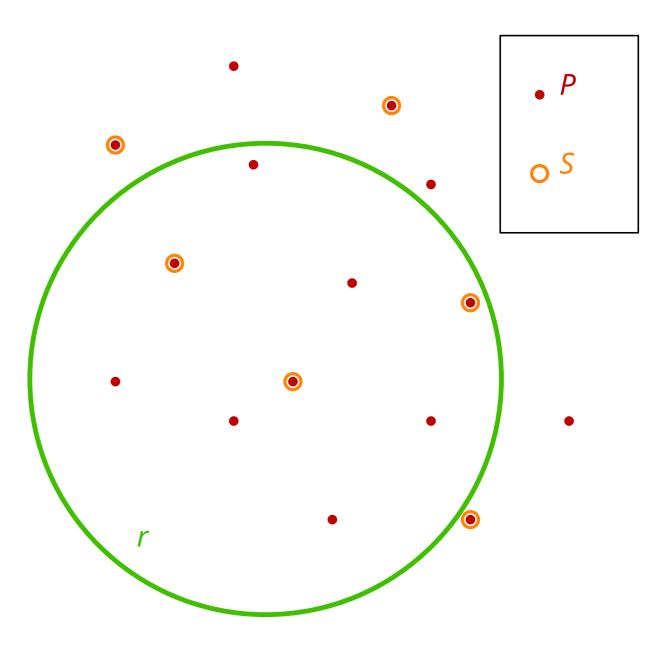
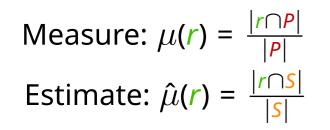
Combinatorial Discrepancy

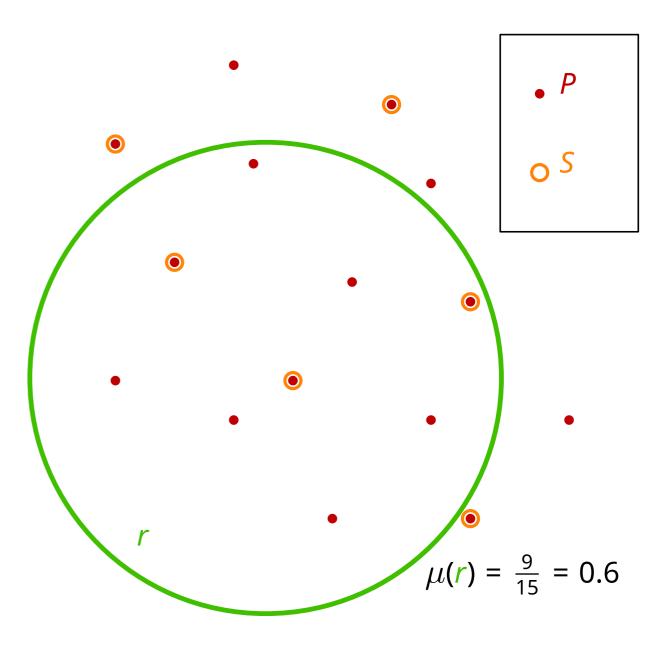
sampling using discrepancy

computing spanning trees with low stabbing number via reweighting

Measure: $\mu(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{P}|}{|\mathbf{P}|}$ Estimate: $\hat{\mu}(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{S}|}{|\mathbf{S}|}$

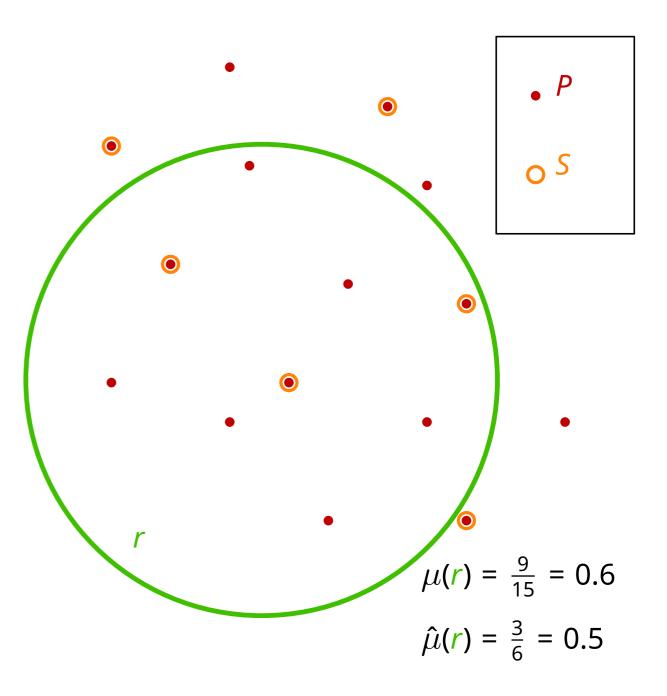






Measure:
$$\mu(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{P}|}{|\mathbf{P}|}$$

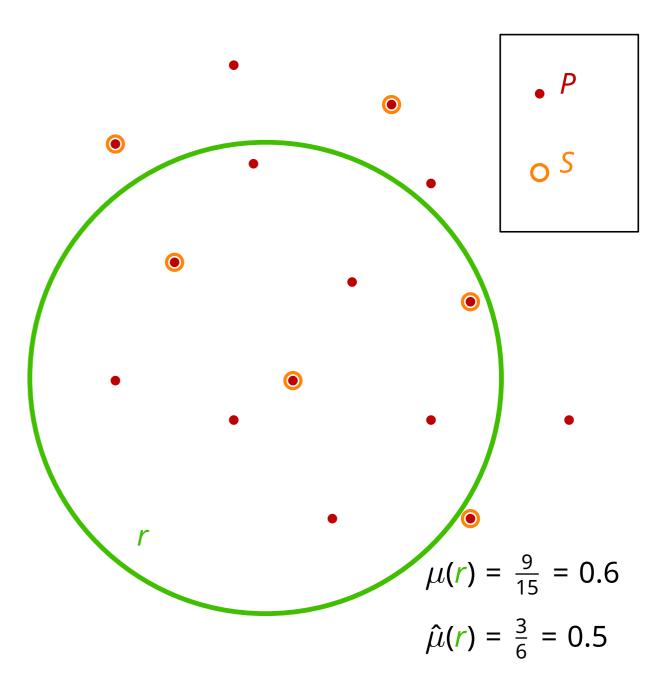
Estimate: $\hat{\mu}(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{S}|}{|\mathbf{S}|}$



Measure: $\mu(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{P}|}{|\mathbf{P}|}$ Estimate: $\hat{\mu}(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{S}|}{|\mathbf{S}|}$

 ε -sample **S**:

for all $r \in \mathcal{R}$ and any $0 \le \varepsilon \le 1$ $|\mu(r) - \hat{\mu}(r)| \le \varepsilon$

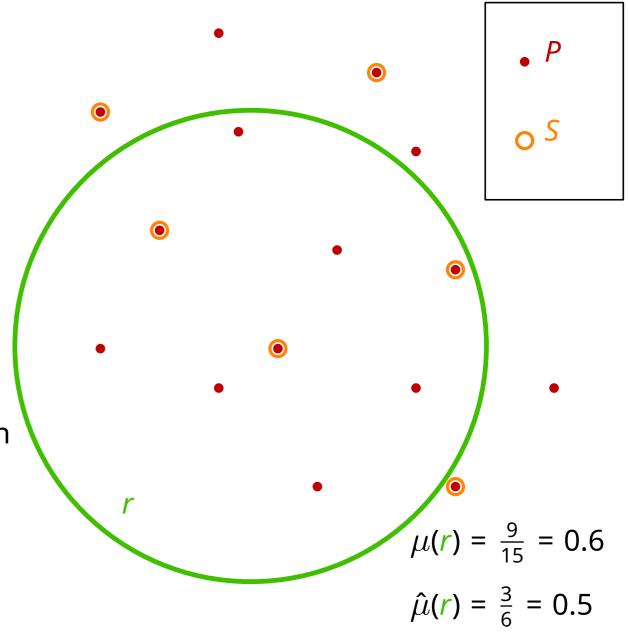


Measure: $\mu(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{P}|}{|\mathbf{P}|}$ Estimate: $\hat{\mu}(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{S}|}{|\mathbf{S}|}$

 ε -sample S:

for all $r \in \mathcal{R}$ and any $0 \le \varepsilon \le 1$ $|\mu(r) - \hat{\mu}(r)| \le \varepsilon$

 ε -sample theorem: For constant p > 0 and VC-dim. a random sample of size $O(1/\varepsilon^2)$ is an ε -sample with probability p.



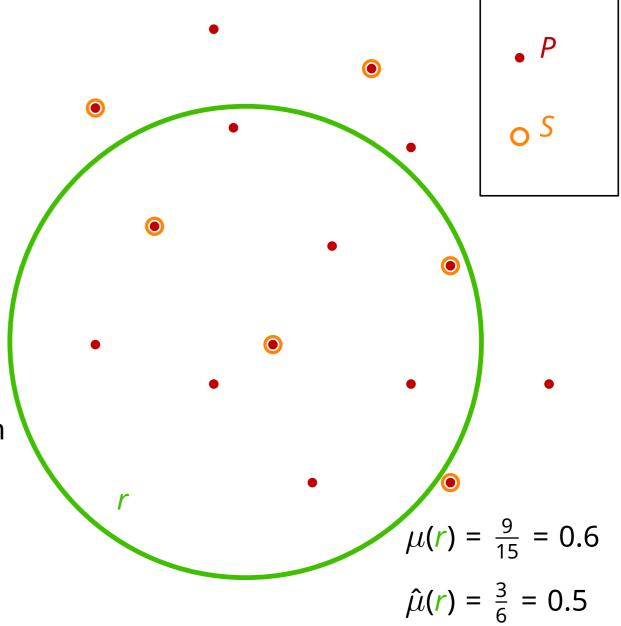
Measure: $\mu(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{P}|}{|\mathbf{P}|}$ Estimate: $\hat{\mu}(\mathbf{r}) = \frac{|\mathbf{r} \cap \mathbf{S}|}{|\mathbf{S}|}$

 ε -sample S:

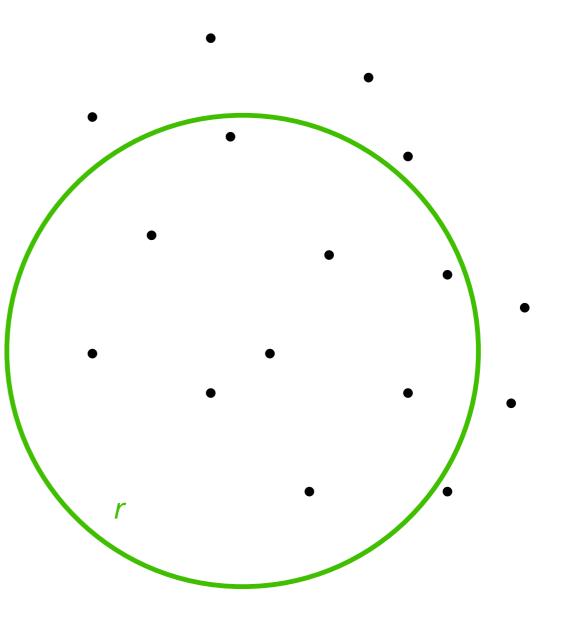
for all $r \in \mathcal{R}$ and any $0 \le \varepsilon \le 1$ $|\mu(r) - \hat{\mu}(r)| \le \varepsilon$

 ε -sample theorem: For constant p > 0 and VC-dim. a random sample of size $O(1/\varepsilon^2)$ is an ε -sample with probability p.

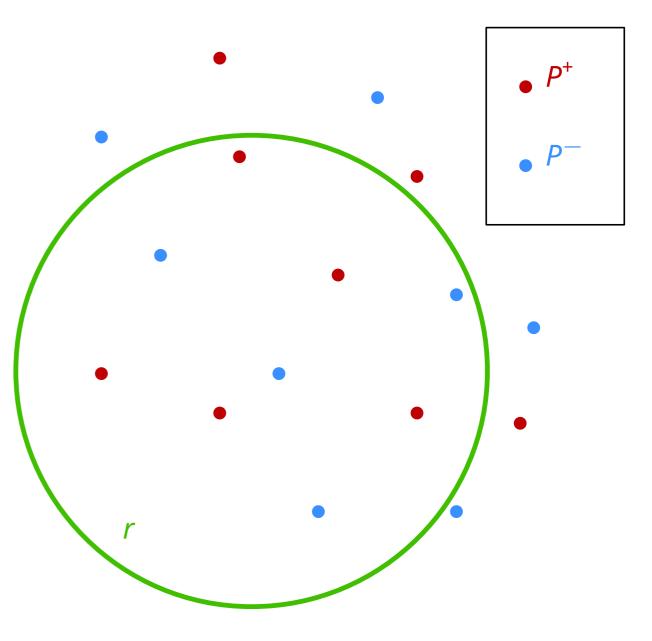
Smaller size? Deterministic construction? Via discrepancy!



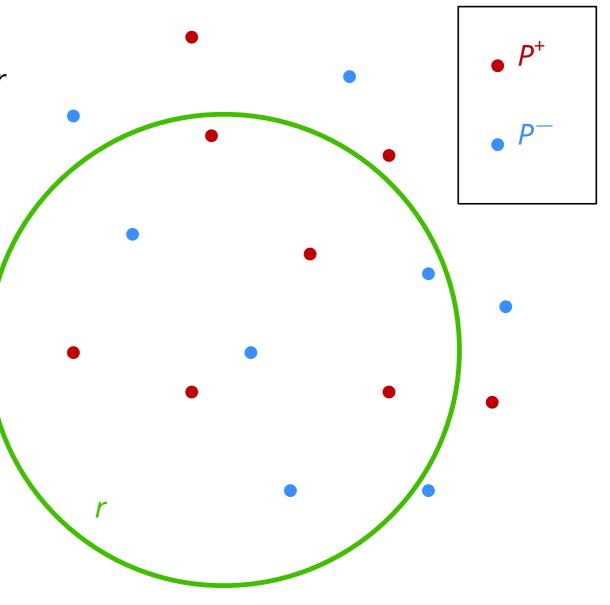
Color *P* in two colors: '1' (red) and '-1' (blue)



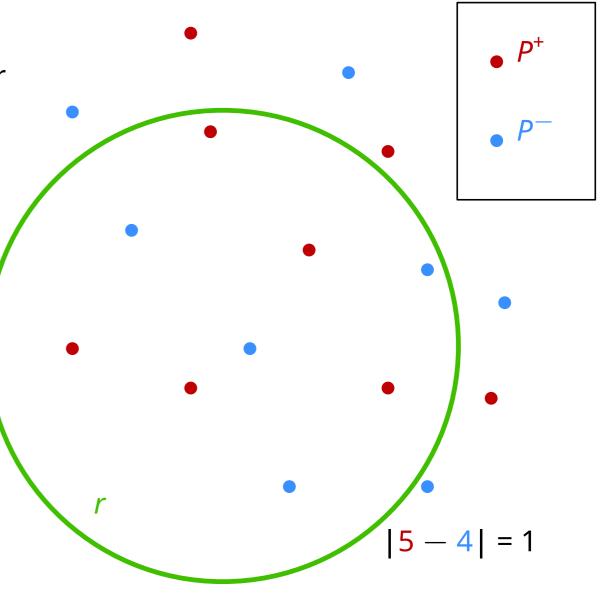
Color *P* in two colors: '1' (red) and '-1' (blue)



Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*



Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*



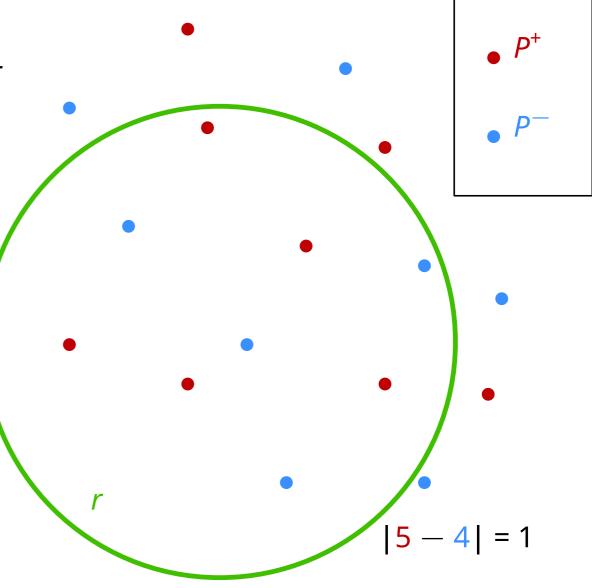
Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

A 2

B 3

C 4

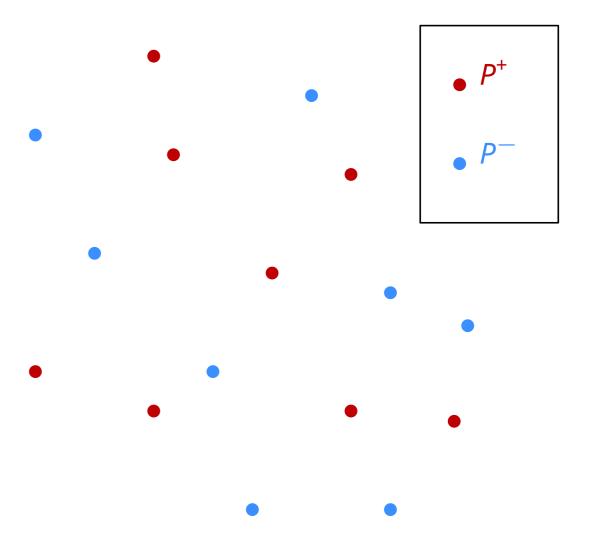


Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

B 3

<mark>C</mark> 4



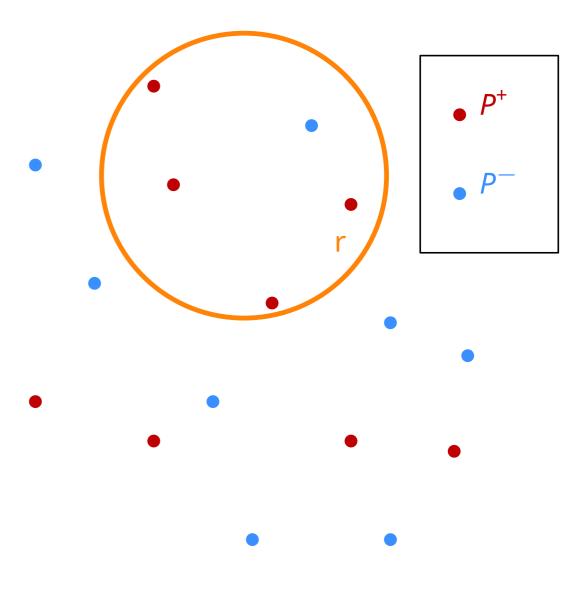
Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

<mark>A</mark> 2

<mark>B</mark> 3

<mark>C</mark> 4

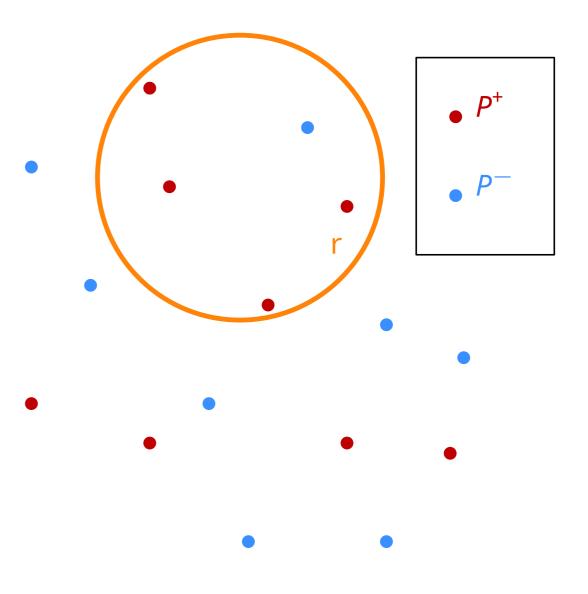


Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

Formally:

coloring $\chi: X \to \{-1, 1\}$



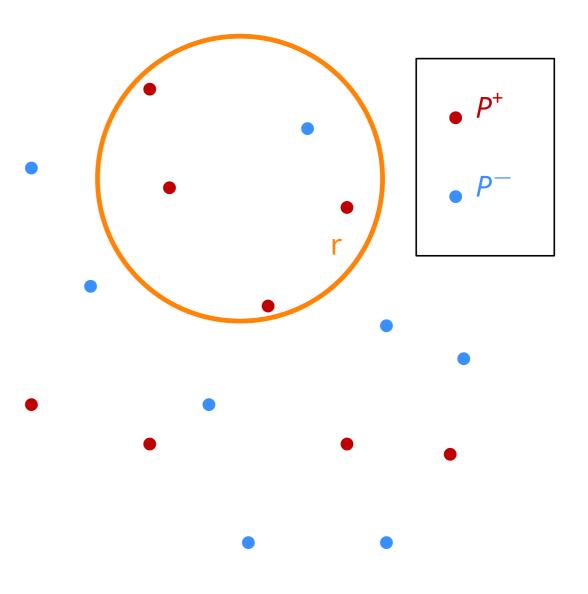
Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

Formally:

coloring $\chi: X \to \{-1, 1\}$

 $\chi(r) = \sum_{p \in r} \chi(p)$



Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

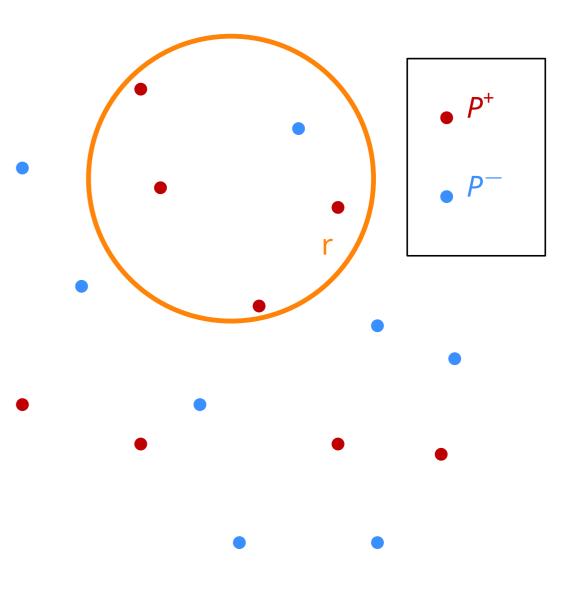
Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

Formally:

coloring $\chi: X \to \{-1, 1\}$

 $\chi(r) = \sum_{p \in r} \chi(p)$

discrepancy of χ : disc(χ) = max_{$r \in \mathcal{R}$} $|\chi(r)|$



Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

Formally:

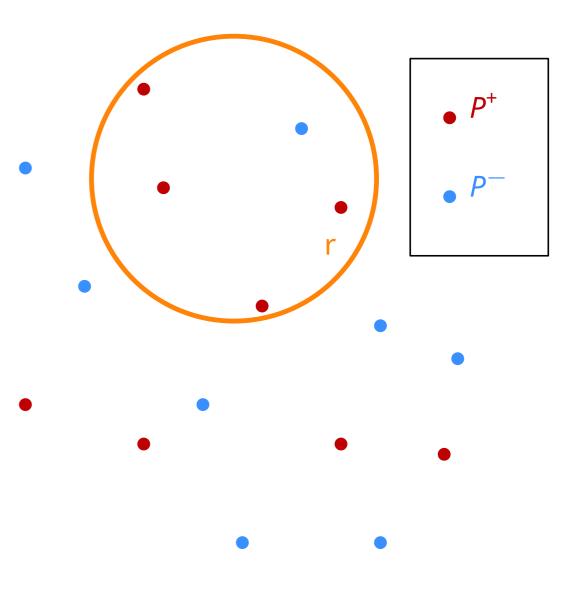
coloring $\chi: X \to \{-1, 1\}$

 $\chi(r) = \sum_{p \in r} \chi(p)$

discrepancy of χ : disc(χ) = max_{$r \in \mathcal{R}$} $|\chi(r)|$

discrepancy of range space $S = (X, \mathcal{R})$:

disc(S) =
$$\min_{\chi: X \to \{-1,1\}} \text{disc}(\chi)$$



Color *P* in two colors: '1' (red) and '-1' (blue) s.t. $|\chi(r)| = |red - blue|$ is small for all ranges *r*

Quiz What is $\max_{r \in \mathcal{R}} |\chi(r)|$ in this example?

Formally:

coloring $\chi: X \to \{-1, 1\}$

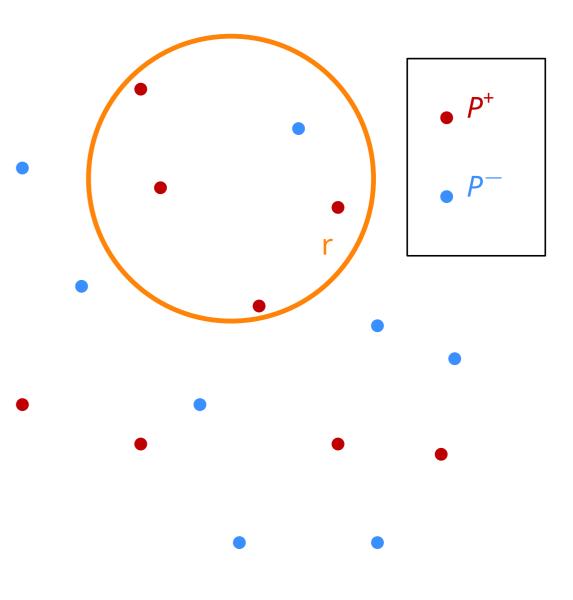
 $\chi(r) = \sum_{p \in r} \chi(p)$

discrepancy of χ : disc(χ) = max_{$r \in \mathcal{R}$} $|\chi(r)|$

discrepancy of range space $S = (X, \mathcal{R})$:

$$disc(S) = \min_{\chi: \ X \to \{-1,1\}} disc(\chi)$$

Our goal: Given S, compute χ with low discrepancy



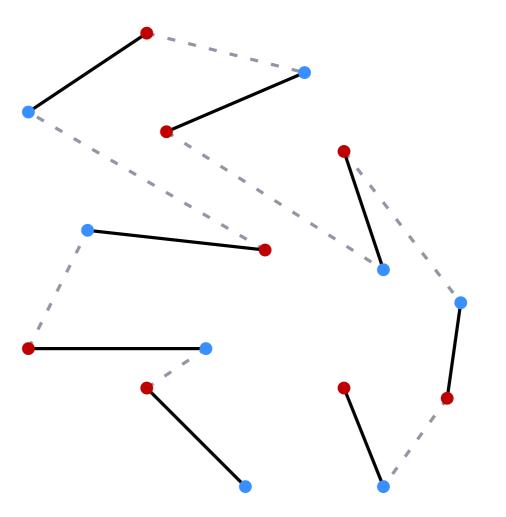
Our plan for today

From low discrepancy to ε -samples

Low-discrepancy colorings via perfect matchings & crossing numbers

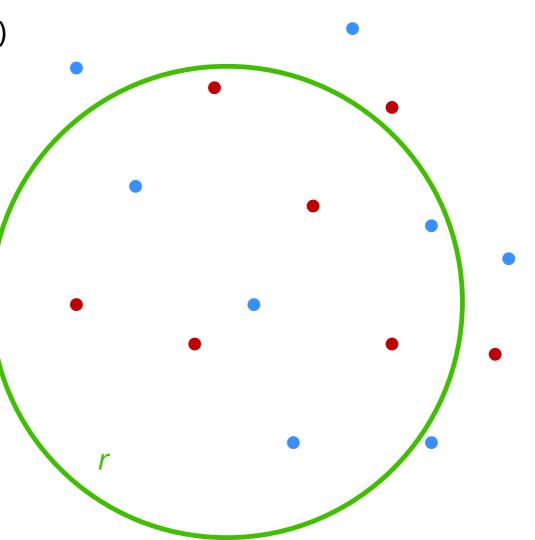
Constructing a spanning tree with low crossing number

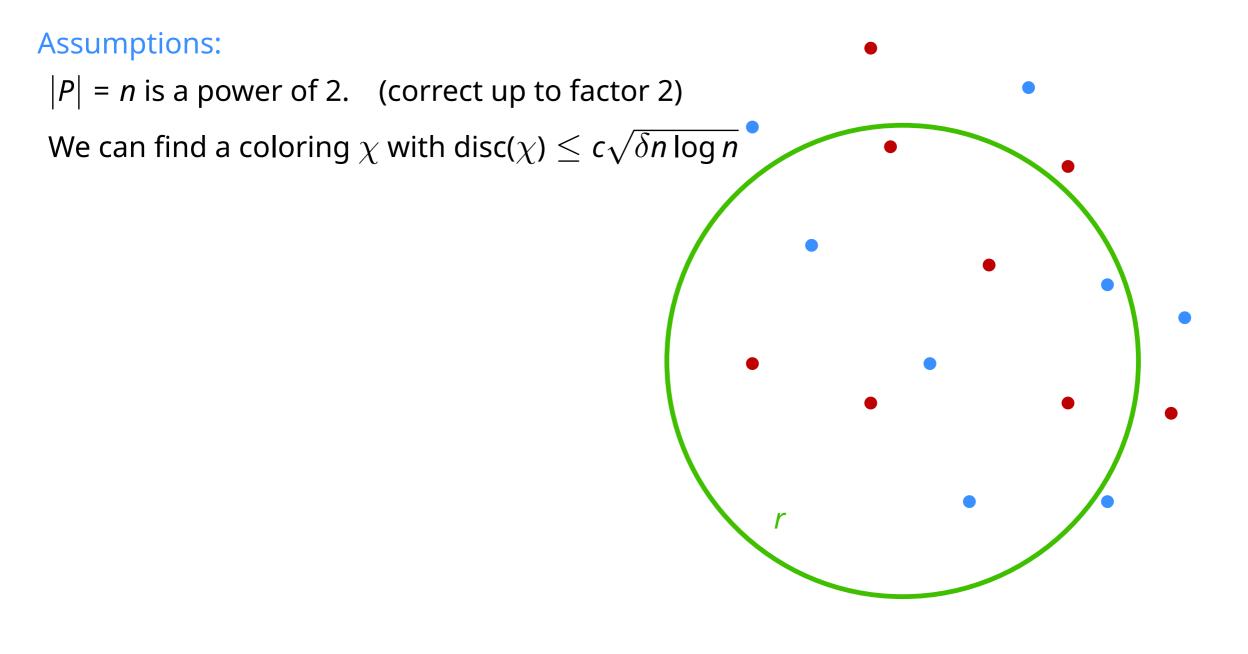
From spanning trees to perfect matchings

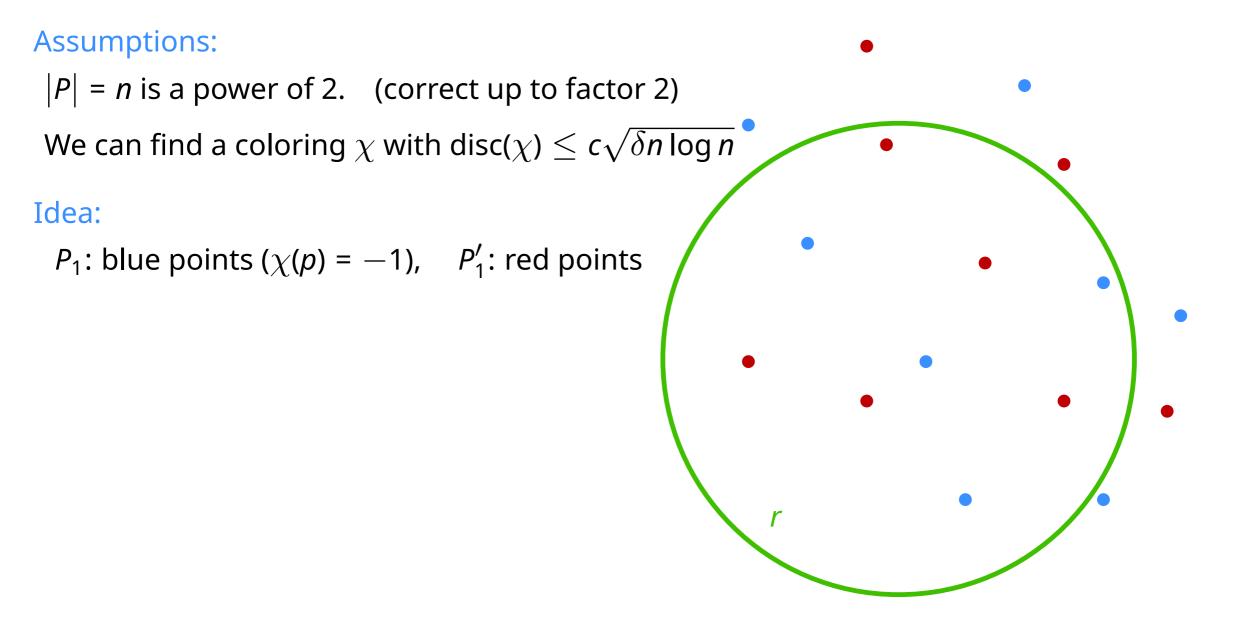


Assumptions:

|P| = n is a power of 2. (correct up to factor 2)







Assumptions: |P| = n is a power of 2. (correct up to factor 2) We can find a coloring χ with disc(χ) $\leq c\sqrt{\delta n \log n}$ Idea: P_1 : blue points ($\chi(p) = -1$), P'_1 : red points P_1 should be a good, but huge ε -sample

Assumptions:

|P| = n is a power of 2. (correct up to factor 2) We can find a coloring χ with disc(χ) $\leq c\sqrt{\delta n \log n}$ Idea: P_1 : blue points ($\chi(p) = -1$), P'_1 : red points P_1 should be a good, but huge ε -sample Iterate: Compute χ_1 for P_1 with disc(χ_1) $\leq c_{\sqrt{\delta(n/2)}\log(n/2)}$

Assumptions:

|P| = n is a power of 2. (correct up to factor 2) We can find a coloring χ with disc(χ) $\leq c\sqrt{\delta n \log n}$ Idea: P_1 : blue points ($\chi(p) = -1$), P'_1 : red points P_1 should be a good, but huge ε -sample Iterate: Compute χ_1 for P_1 with disc(χ_1) $\leq c \sqrt{\delta(n/2) \log(n/2)}$

 P_2 : blue points ($\chi_1(p) = -1$)

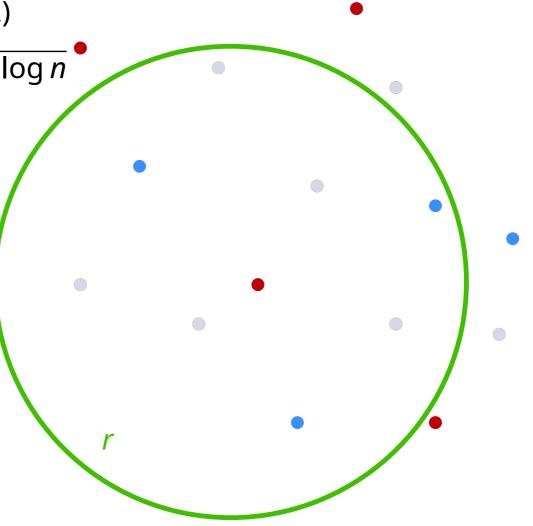
Assumptions:

|P| = n is a power of 2. (correct up to factor 2) We can find a coloring χ with disc(χ) $\leq c\sqrt{\delta n \log n}$ Idea: P_1 : blue points ($\chi(p) = -1$), P'_1 : red points P_1 should be a good, but huge ε -sample

Iterate:

Compute χ_1 for P_1 with disc(χ_1) $\leq c \sqrt{\delta(n/2) \log(n/2)}$

*P*₂: blue points ($\chi_1(p) = -1$) *P*₂ should be a good and smaller ε -sample



Assumptions:

|P| = n is a power of 2. (correct up to factor 2)

We can find a coloring χ with disc(χ) $\leq c\sqrt{\delta n \log n}$

Idea:

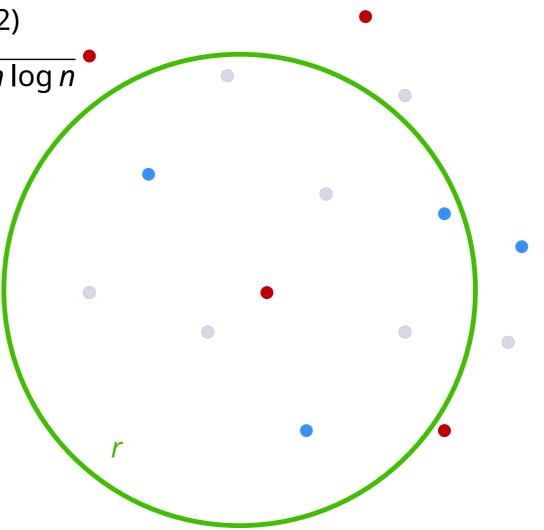
- P_1 : blue points ($\chi(p) = -1$), P'_1 : red points
- P_1 should be a good, but huge ε -sample

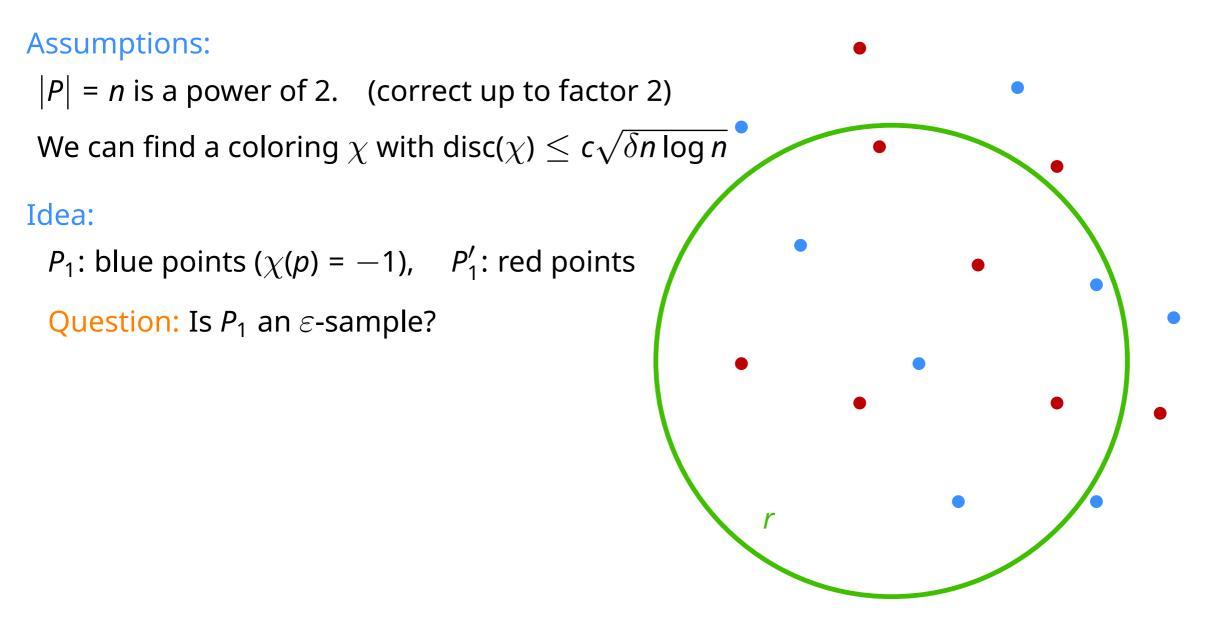
Iterate:

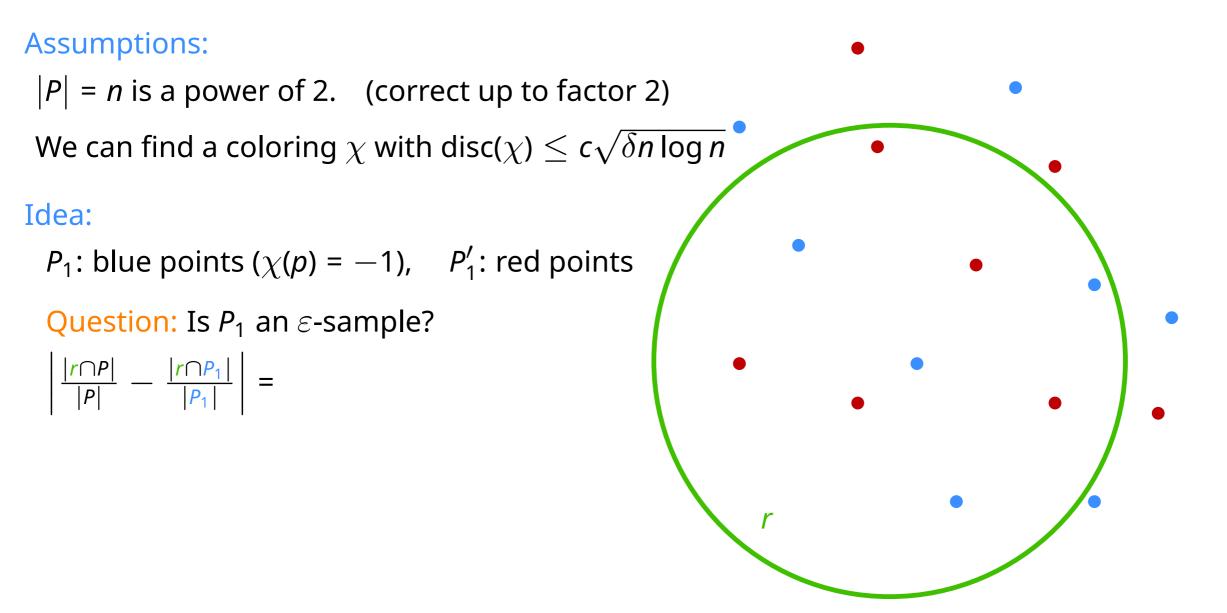
Compute χ_1 for P_1 with disc(χ_1) $\leq c \sqrt{\delta(n/2) \log(n/2)}$

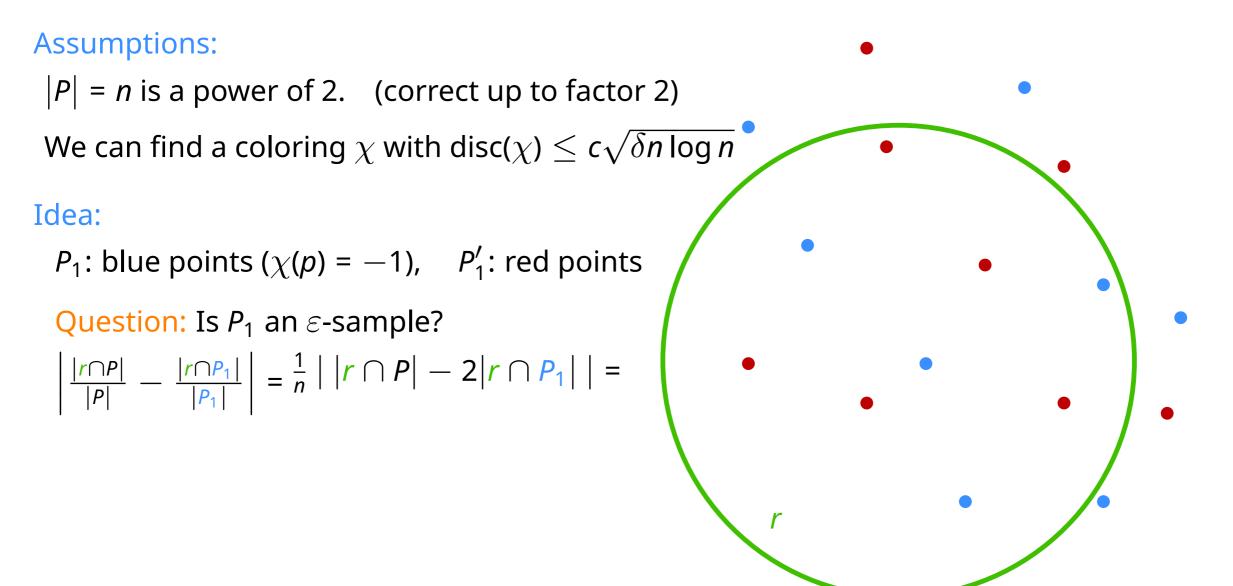
 P_2 : blue points ($\chi_1(p) = -1$) P_2 should be a good and smaller ε-sample

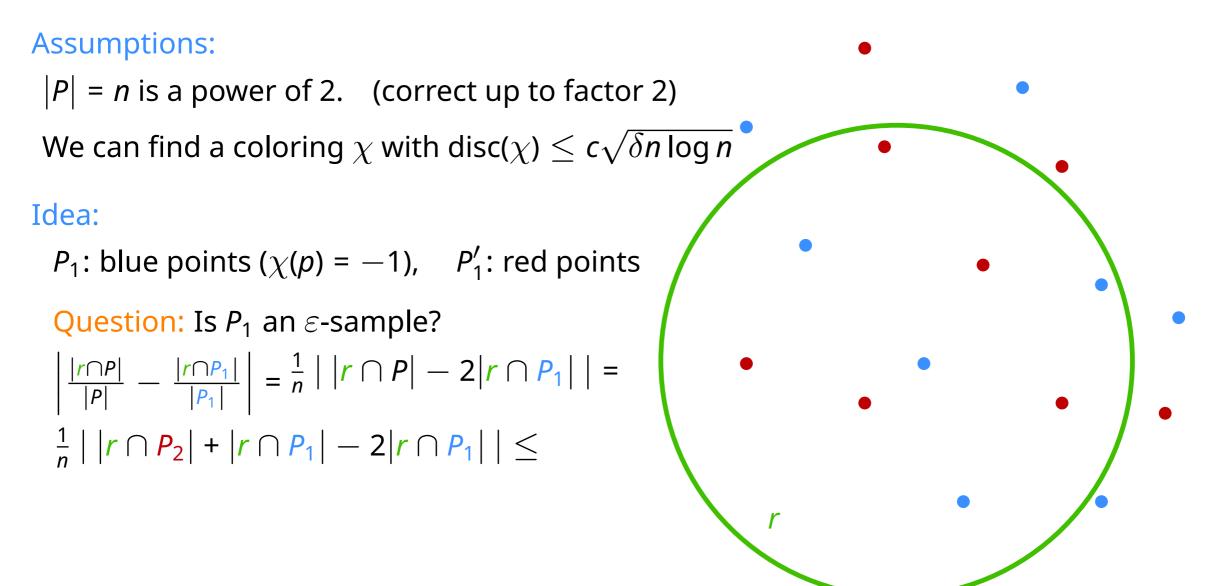
*P*₃, *P*₄, ... How long can we iterate?

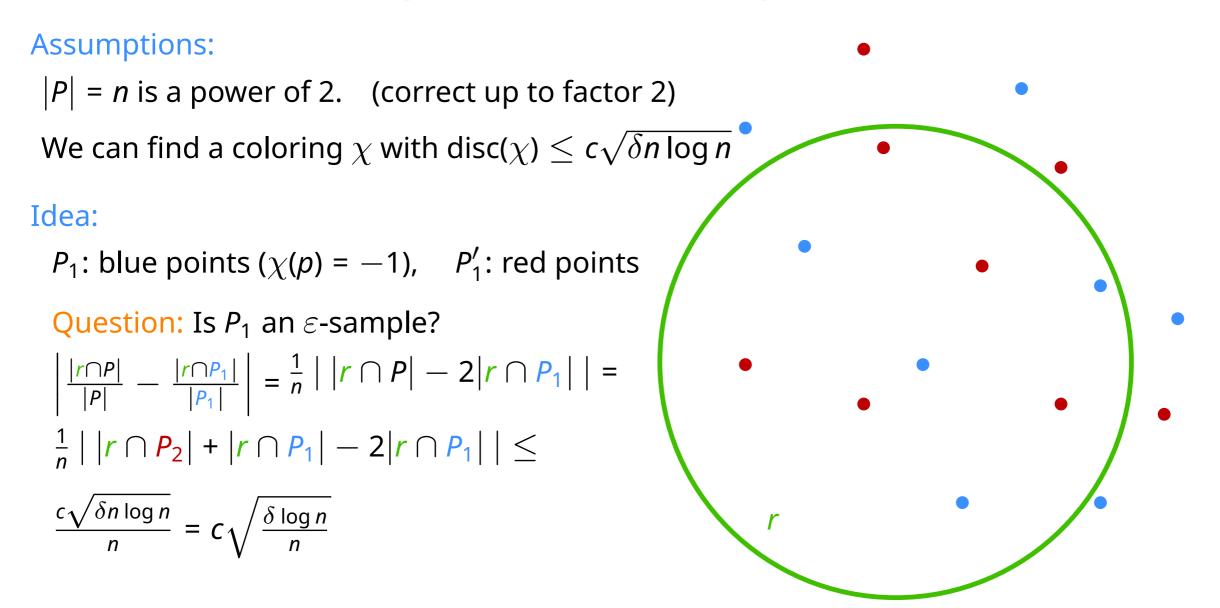


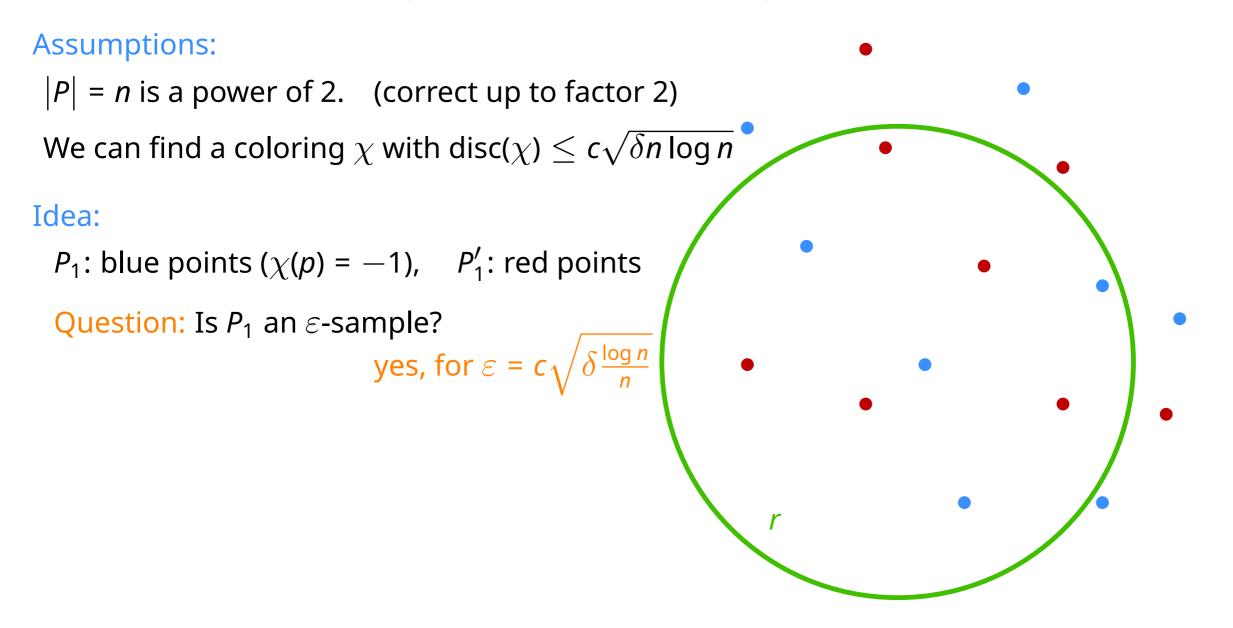


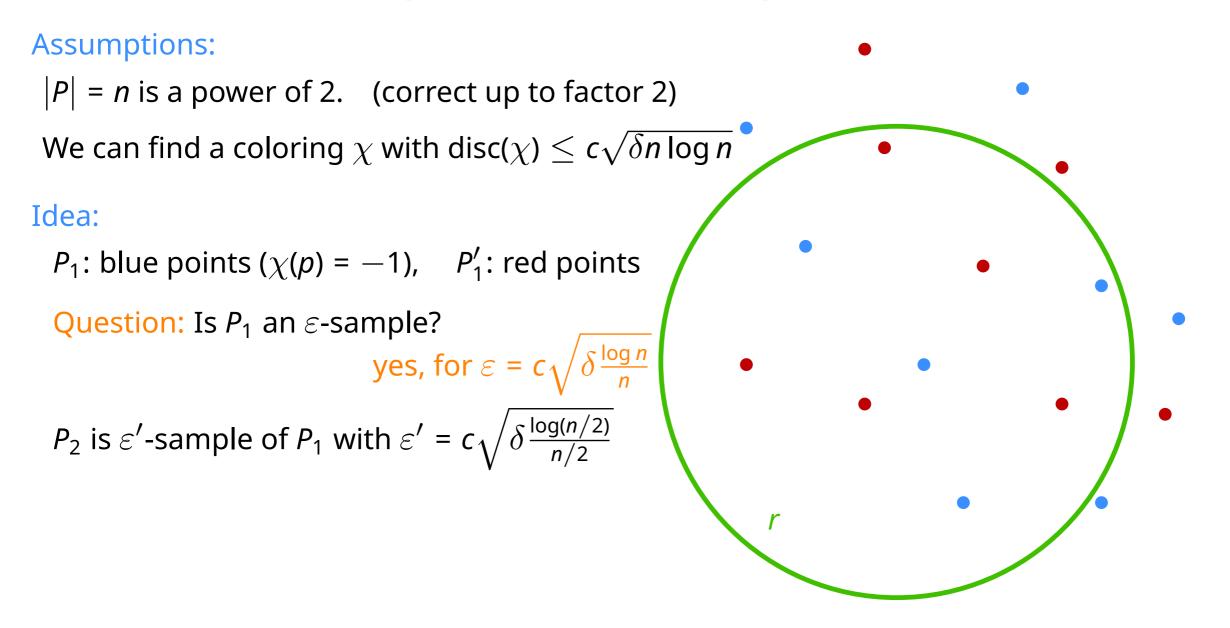








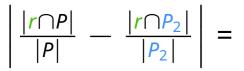




Quiz

If P_1 is an ε_1 -sample of P, and P_2 is an ε_2 -sample of P_1 , then P_2 is an ...-sample of P.

- A $\varepsilon_1 + \varepsilon_2$
- $\mathsf{B} \quad \varepsilon_1 \cdot \varepsilon_2$
- **C** max($\varepsilon_1, \varepsilon_2$)



Quiz

If P_1 is an ε_1 -sample of P, and P_2 is an ε_2 -sample of P_1 , then P_2 is an ...-sample of P.

A $\varepsilon_1 + \varepsilon_2$

- $\mathsf{B} \quad \varepsilon_1 \cdot \varepsilon_2$
- **C** max($\varepsilon_1, \varepsilon_2$)

$\frac{|r \cap P|}{|P|} - \frac{|r \cap P_2|}{|P_2|} =$

Quiz

If P_1 is an ε_1 -sample of P, and P_2 is an ε_2 -sample of P_1 , then P_2 is an ...-sample of P.

A $\varepsilon_1 + \varepsilon_2$

- $\mathsf{B} \quad \varepsilon_1 \cdot \varepsilon_2$
- **C** max($\varepsilon_1, \varepsilon_2$)

$$\frac{|r \cap P|}{|P|} - \frac{|r \cap P_2|}{|P_2|} = \left| \frac{|r \cap P|}{|P|} - \frac{|r \cap P_1|}{|P_1|} + \frac{|r \cap P_1|}{|P_1|} - \frac{|r \cap P_2|}{|P_2|} \right| \le$$

Quiz

If P_1 is an ε_1 -sample of P, and P_2 is an ε_2 -sample of P_1 , then P_2 is an ...-sample of P.

A $\varepsilon_1 + \varepsilon_2$

- $\mathsf{B} \quad \varepsilon_1 \cdot \varepsilon_2$
- **C** max($\varepsilon_1, \varepsilon_2$)

$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap P_2|}{|P_2|} \right| = \left| \frac{|r \cap P|}{|P|} - \frac{|r \cap P_1|}{|P_1|} + \frac{|r \cap P_1|}{|P_1|} - \frac{|r \cap P_2|}{|P_2|} \right| \le$$

$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap P_1|}{|P_1|} \right| + \left| \frac{|r \cap P_1|}{|P_1|} - \frac{|r \cap P_2|}{|P_2|} \right| \le \varepsilon_1 + \varepsilon_2$$

Given ε , how often can we iterate to get ε -sample?

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c \sqrt{\delta \frac{\log n}{n}}$

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c \sqrt{\delta \frac{\log n}{n}}$

 P_2 has size $n_2 := n/2^2$ and is ε_2 -sample with $\varepsilon_2 = c\sqrt{\delta \frac{\log n}{n}} + c\sqrt{\delta \frac{\log(n/2)}{(n/2)}}$

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c\sqrt{\delta \frac{\log n}{n}}$ P_2 has size $n_2 := n/2^2$ and is ε_2 -sample with $\varepsilon_2 = c\sqrt{\delta \frac{\log n}{n}} + c\sqrt{\delta \frac{\log(n/2)}{(n/2)}}$...

$$P_k$$
 has size $n_k := n/2^k$ and is ε_k -sample with $\varepsilon_k = c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log(n/2^i)}{(n/2^i)}}$

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c \sqrt{\delta \frac{\log n}{n}}$

$$P_2$$
 has size $n_2 := n/2^2$ and is ε_2 -sample with $\varepsilon_2 = c\sqrt{\delta \frac{\log n}{n}} + c\sqrt{\delta \frac{\log(n/2)}{(n/2)}}$

$$P_k$$
 has size $n_k := n/2^k$ and is ε_k -sample with $\varepsilon_k = c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log(n/2^i)}{(n/2^i)}} \leq \varepsilon$ for which k ?

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c \sqrt{\delta \frac{\log n}{n}}$

$$P_2$$
 has size $n_2 := n/2^2$ and is ε_2 -sample with $\varepsilon_2 = c\sqrt{\delta \frac{\log n}{n}} + c\sqrt{\delta \frac{\log(n/2)}{(n/2)}}$

$$P_k$$
 has size $n_k := n/2^k$ and is ε_k -sample with $\varepsilon_k = c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log(n/2^i)}{(n/2^i)}} \le \varepsilon$ for which k ?
Like geometric series, last term dominates: $\varepsilon_k \le c_1 \sqrt{\delta \frac{\log(n/2^{k-1})}{(n/2^{k-1})}} = c_1 \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c \sqrt{\delta \frac{\log n}{n}}$

$$P_2$$
 has size $n_2 := n/2^2$ and is ε_2 -sample with $\varepsilon_2 = c\sqrt{\delta \frac{\log n}{n}} + c\sqrt{\delta \frac{\log(n/2)}{(n/2)}}$...

$$P_k$$
 has size $n_k := n/2^k$ and is ε_k -sample with $\varepsilon_k = c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log(n/2^i)}{(n/2^i)}} \le \varepsilon$ for which k ?
Like geometric series, last term dominates: $\varepsilon_k \le c_1 \sqrt{\delta \frac{\log(n/2^{k-1})}{(n/2^{k-1})}} = c_1 \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$

Holds for $\frac{n_{k-1}}{\log n_{k-1}} \geq \frac{c_1^2 \delta}{\varepsilon^2}$

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c \sqrt{\delta \frac{\log n}{n}}$

$$P_2$$
 has size $n_2 := n/2^2$ and is ε_2 -sample with $\varepsilon_2 = c\sqrt{\delta \frac{\log n}{n}} + c\sqrt{\delta \frac{\log(n/2)}{(n/2)}}$

$$P_k$$
 has size $n_k := n/2^k$ and is ε_k -sample with $\varepsilon_k = c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log(n/2^i)}{(n/2^i)}} \leq \varepsilon$ for which k ?

Like geometric series, last term dominates: $\varepsilon_k \leq c_1 \sqrt{\delta \frac{\log(n/2^{k-1})}{(n/2^{k-1})}} = c_1 \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$

Holds for $\frac{n_{k-1}}{\log n_{k-1}} \ge \frac{c_1^2 \delta}{\varepsilon^2}$ Holds for $n_{k-1} \ge 2 \frac{c_1^2 \delta}{\varepsilon^2} \ln \frac{c_1^2 \delta}{\varepsilon^2}$

Given ε , how often can we iterate to get ε -sample?

 P_1 has size $n_1 := n/2$ and is ε_1 -sample with $\varepsilon_1 = c \sqrt{\delta \frac{\log n}{n}}$

$$P_2$$
 has size $n_2 := n/2^2$ and is ε_2 -sample with $\varepsilon_2 = c\sqrt{\delta \frac{\log n}{n}} + c\sqrt{\delta \frac{\log(n/2)}{(n/2)}}$

$$P_k$$
 has size $n_k := n/2^k$ and is ε_k -sample with $\varepsilon_k = c \sum_{i=0}^{k-1} \sqrt{\delta \frac{\log(n/2^i)}{(n/2^i)}} \leq \varepsilon$ for which k ?

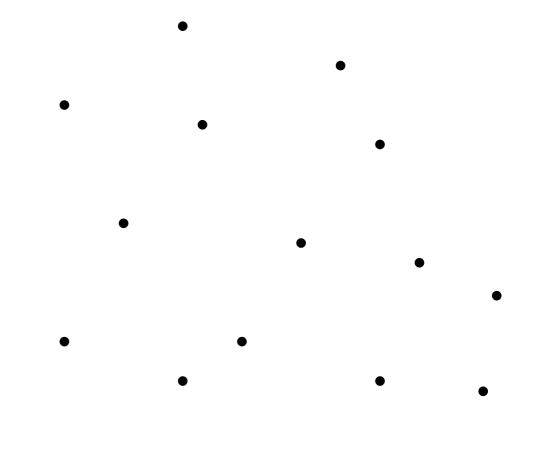
Like geometric series, last term dominates: $\varepsilon_k \leq c_1 \sqrt{\delta \frac{\log(n/2^{k-1})}{(n/2^{k-1})}} = c_1 \sqrt{\delta \frac{\log n_{k-1}}{n_{k-1}}}$

Holds for $\frac{n_{k-1}}{\log n_{k-1}} \ge \frac{c_1^2 \delta}{\varepsilon^2}$ Holds for $n_{k-1} \ge 2 \frac{c_1^2 \delta}{\varepsilon^2} \ln \frac{c_1^2 \delta}{\varepsilon^2}$

Gives ε -sample of size $O(\frac{\delta}{\varepsilon^2} \log \frac{\delta}{\varepsilon^2})$ if assumption holds: We can find a coloring χ with disc(χ) $\leq c\sqrt{\delta n \log n}$

Low-discrepancy colorings via perfect matchings & crossing numbers

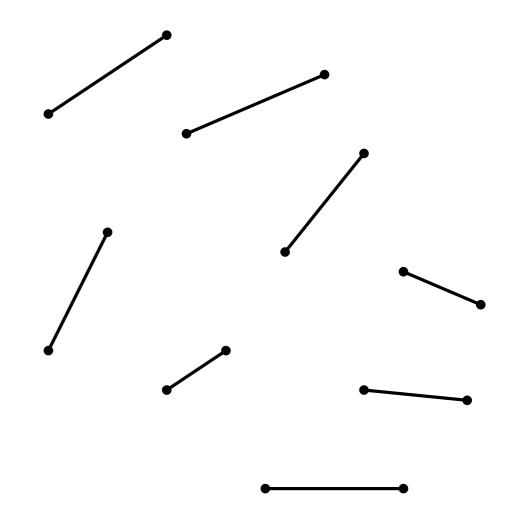
Assumption: |P| = n is even



• •

Assumption: |P| = n is even

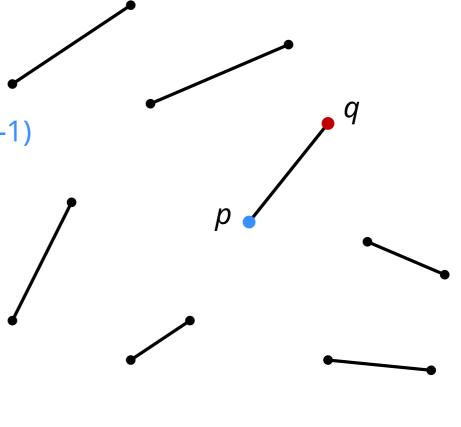
Π: perfect matching on *P*: pairing of points



Assumption: |P| = n is even

Π: perfect matching on *P*: pairing of points

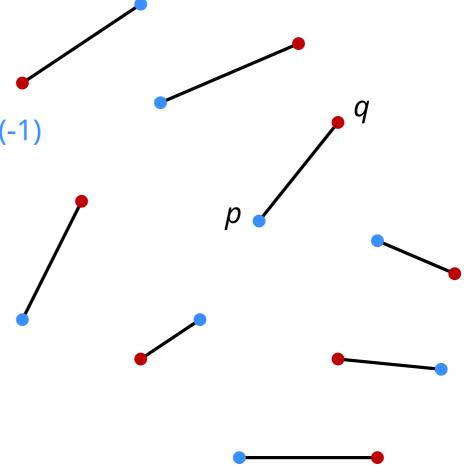
for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)



Assumption: |P| = n is even

Π: perfect matching on *P*: pairing of points

for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

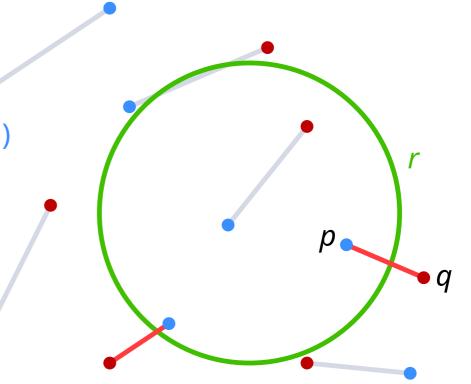


Assumption: |P| = n is even

Π: perfect matching on *P*: pairing of points

for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

```
|\chi(r)|: only pairs (p, q) \in \Pi with p \in r and q \notin r
(or q \in r and p \notin r) matter
```



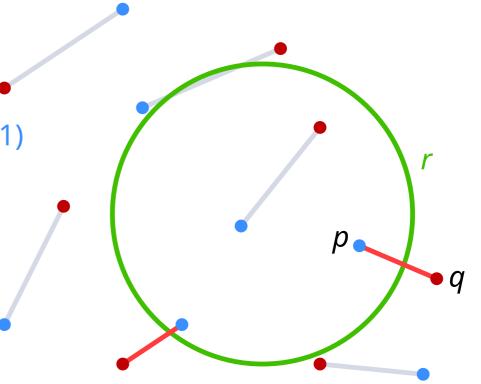
Assumption: |P| = n is even

Π: perfect matching on *P*: pairing of points

for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

```
|\chi(r)|: only pairs (p, q) \in \Pi with p \in r and q \notin r
(or q \in r and p \notin r) matter
```

crossing number #_r: number of such pairs



Assumption: |P| = n is even

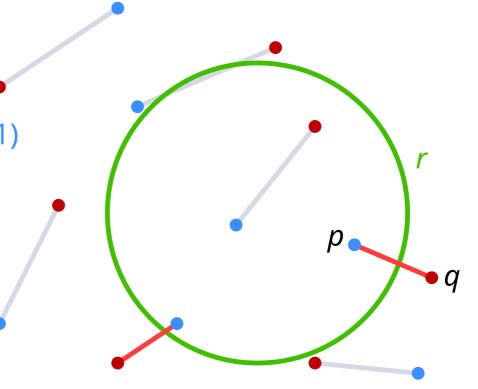
Π: perfect matching on *P*: pairing of points

for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

 $|\chi(r)|$: only pairs (p, q) $\in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter

crossing number #_r: number of such pairs

 $m := |\mathcal{R}|, \Delta_r := \sqrt{2\#_r \ln(4m)}$



Assumption: |P| = n is even

Π: perfect matching on *P*: pairing of points

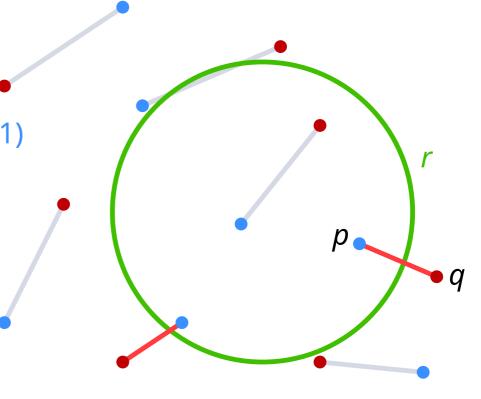
for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

 $|\chi(r)|$: only pairs (p, q) $\in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter

crossing number #_r: number of such pairs

 $m := |\mathcal{R}|, \Delta_r := \sqrt{2\#_r \ln(4m)}$

Using the Chernoff bound (without proof): $P[|\chi(r)| > \Delta_r] < \frac{1}{2m}$



Assumption: |P| = n is even

Π: perfect matching on *P*: pairing of points

for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

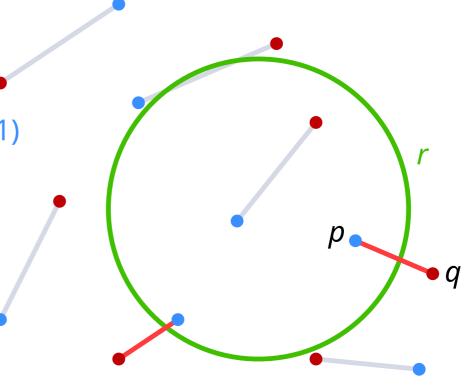
 $|\chi(r)|$: only pairs (p, q) $\in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter

crossing number #_r: number of such pairs

 $m := |\mathcal{R}|, \Delta_r := \sqrt{2\#_r \ln(4m)}$

Using the Chernoff bound (without proof): $P[|\chi(r)| > \Delta_r] < \frac{1}{2m}$

sum over all $r: \operatorname{disc}(\chi) \leq \max_{r \in \mathcal{R}} \Delta_r$ with prob. $\geq 1/2$



Assumption: |P| = n is even

Π: perfect matching on *P*: pairing of points

for $(p, q) \in \Pi$: at random color 1 red (1) and 1 blue (-1)

 $|\chi(r)|$: only pairs (p, q) $\in \Pi$ with $p \in r$ and $q \notin r$ (or $q \in r$ and $p \notin r$) matter

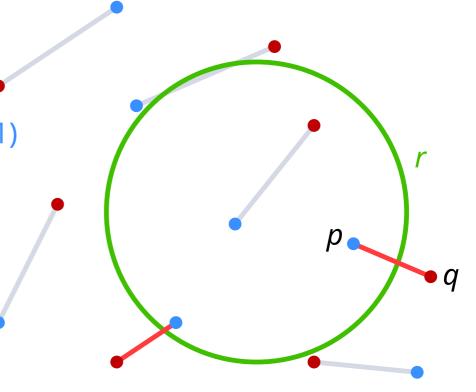
crossing number #_r: number of such pairs

 $m := |\mathcal{R}|, \Delta_r := \sqrt{2\#_r \ln(4m)}$

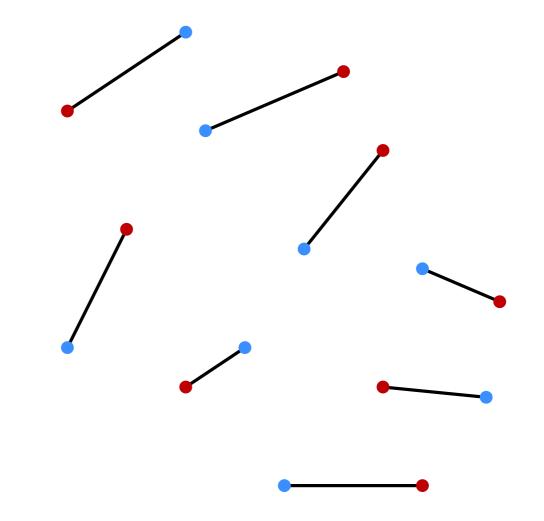
Using the Chernoff bound (without proof): $P[|\chi(r)| > \Delta_r] < \frac{1}{2m}$

sum over all *r*: disc(χ) $\leq \max_{r \in \mathcal{R}} \Delta_r$ with prob. $\geq 1/2$

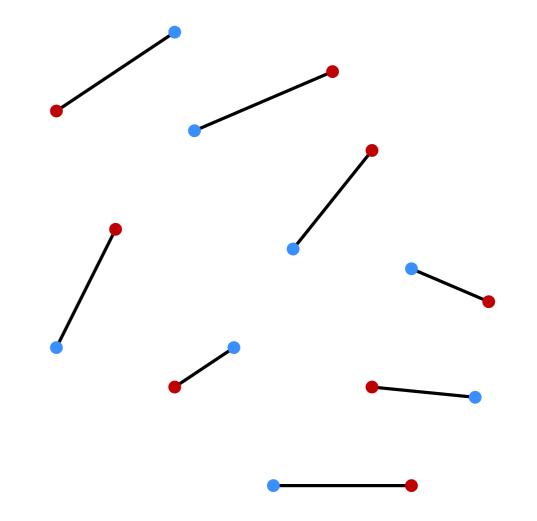
 $\Delta_r = O(\sqrt{\delta n \log n})$ for shattering dim. δ since $\#_r \le n/2$



We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n})$

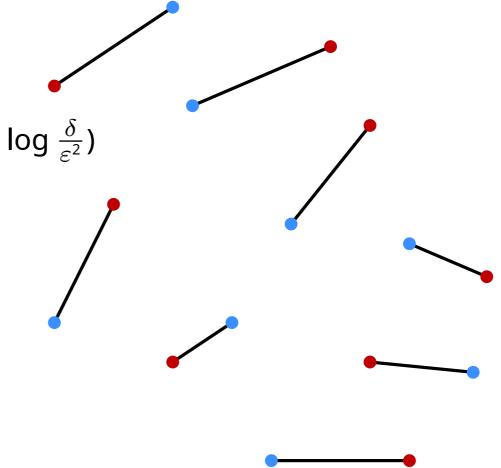


We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n})$ Since $\#_r \le n/2$, $|\chi(r)| = O(\sqrt{dn \log n})$



We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n})$ Since $\#_r \le n/2$, $|\chi(r)| = O(\sqrt{dn \log n})$

From this we can construct ε -sample of size $O(\frac{\delta}{\varepsilon^2} \log \frac{\delta}{\varepsilon^2})$



We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n})$ Since $\#_r \le n/2$, $|\chi(r)| = O(\sqrt{dn \log n})$

From this we can construct ε -sample of size $O(\frac{\delta}{\varepsilon^2} \log \frac{\delta}{\varepsilon^2})$

How to improve:

Construct perfect matching, such that $\#_r = O(n^{1-\lambda})$ for some suitable $\lambda > 0$

We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n})$

Since $\#_r \leq n/2$, $|\chi(r)| = O(\sqrt{dn \log n})$

From this we can construct ε -sample of size $O(\frac{\delta}{\varepsilon^2} \log \frac{\delta}{\varepsilon^2})$

How to improve:

Construct perfect matching, such that $\#_r = O(n^{1-\lambda})$ for some suitable $\lambda > 0$

As example, we will consider \mathcal{R} = set of halfspaces

We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n})$

Since $\#_r \leq n/2$, $|\chi(r)| = O(\sqrt{dn \log n})$

From this we can construct ε -sample of size $O(\frac{\delta}{\varepsilon^2} \log \frac{\delta}{\varepsilon^2})$

How to improve:

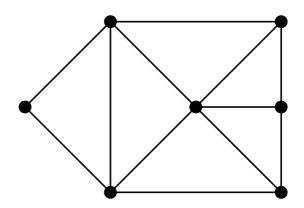
Construct perfect matching, such that $\#_r = O(n^{1-\lambda})$ for some suitable $\lambda > 0$

As example, we will consider \mathcal{R} = set of halfspaces

 $\max_{r \in \mathcal{R}} \#_r$ = maximum number of edges crossed by any line ℓ

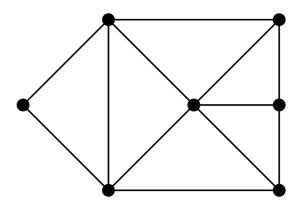
Computing spanning trees with low crossing number

Connected graph G = (V, E)



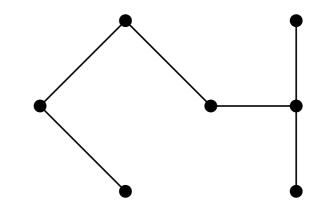
Connected graph G = (V, E)

Spanning tree T = (V, F) of G is a tree with $F \subseteq E$



Connected graph G = (V, E)

Spanning tree T = (V, F) of G is a tree with $F \subseteq E$



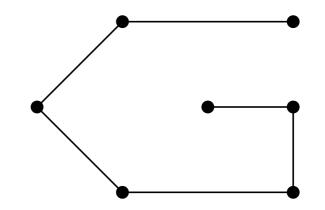
Connected graph G = (V, E)

Spanning tree T = (V, F) of G is a tree with $F \subseteq E$



Connected graph G = (V, E)

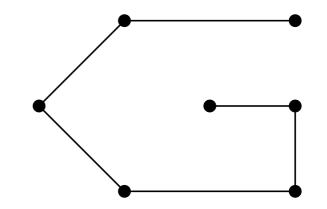
Spanning tree T = (V, F) of G is a tree with $F \subseteq E$ Note that |F| = |V| - 1



Connected graph G = (V, E)

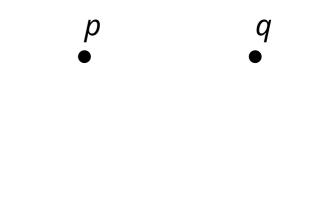
Spanning tree T = (V, F) of G is a tree with $F \subseteq E$ Note that |F| = |V| - 1

Given edge weights $c : E \to \mathbb{R}_{\geq 0}$ What is the minimum weight spanning tree?



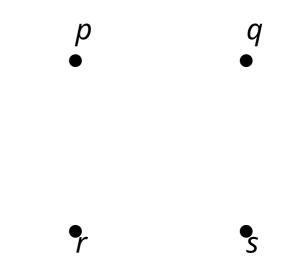
Set $P \subseteq \mathbb{R}^2$ of *n* points

Set $P \subseteq \mathbb{R}^2$ of *n* points



Set $P \subseteq \mathbb{R}^2$ of *n* points

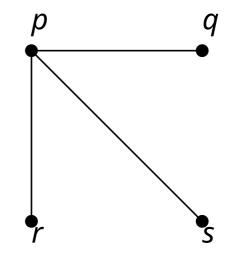
Spanning tree \mathcal{T} are n-1 line segments that span P



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

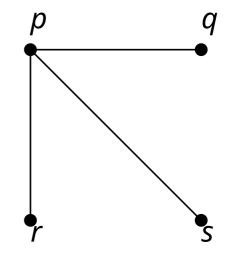
 $\mathcal{T} = \{pq, pr, ps\}$



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp



Set $P \subseteq \mathbb{R}^2$ of *n* points

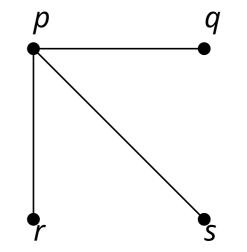
Spanning tree \mathcal{T} are n-1 line segments that span P

 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp

Quiz Number of distinct spanning trees?

B 12

C 16



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

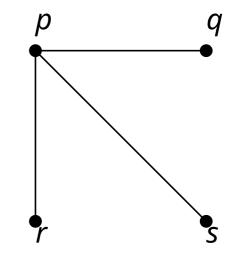
 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp

Quiz Number of distinct spanning trees?

A 8

B 12

C 16



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

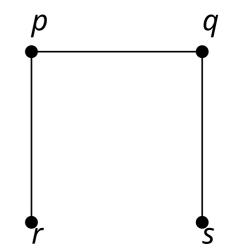
 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp

Quiz Number of distinct spanning trees?

A 8

B 12

C 16



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

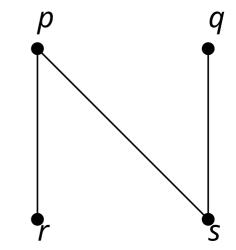
 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp

Quiz Number of distinct spanning trees?

A 8

B 12

C 16



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

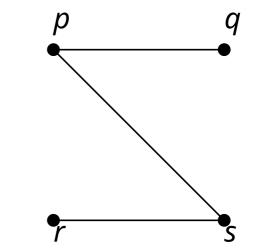
 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp

Quiz Number of distinct spanning trees?

A 8

B 12

C 16



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

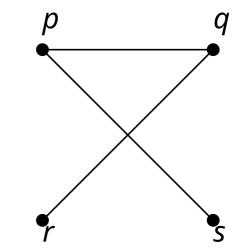
 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp

Quiz Number of distinct spanning trees?

A 8

B 12

C 16



Set $P \subseteq \mathbb{R}^2$ of *n* points

Spanning tree \mathcal{T} are n-1 line segments that span P

 $\mathcal{T} = \{pq, pr, ps\}$ Note that pq = qp

Quiz Number of distinct spanning trees?

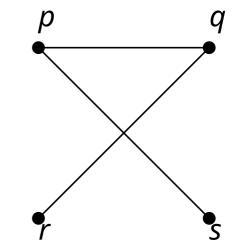
A 8

B 12

C 16

16: from 5 rotatable variations

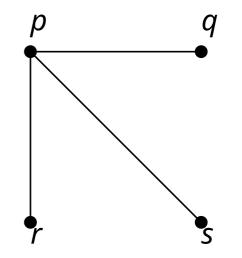
Cayley's Formula: n^{n-2} trees



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

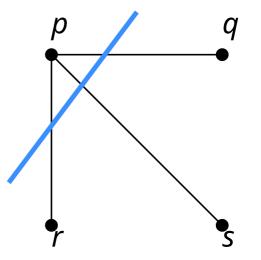
Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

 $\mathcal{T} = \{pq, pr, ps\}$



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

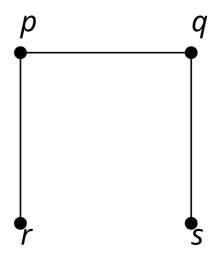
 $\mathcal{T} = \{pq, pr, ps\}$ Stabbing number is 3



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

 $\mathcal{T} = \{pq, pr, ps\}$ Stabbing number is 3

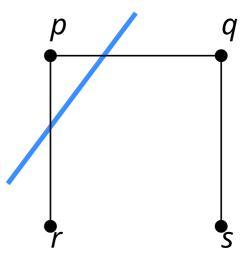
 $\mathcal{T} = \{pq, pr, qs\}$



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

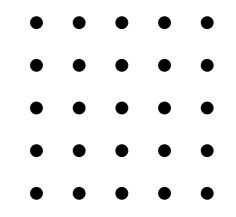
 $\mathcal{T} = \{pq, pr, ps\}$ Stabbing number is 3

 $\mathcal{T} = \{pq, pr, qs\}$ Stabbing number is 2



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

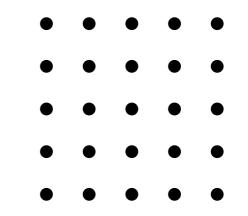
Given *n* points on $\sqrt{n} \times \sqrt{n}$ grid



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

Given *n* points on $\sqrt{n} \times \sqrt{n}$ grid

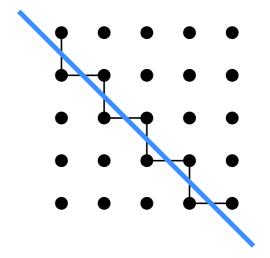
Max stabbing number using only the grid for \mathcal{T} ?



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

Given *n* points on $\sqrt{n} \times \sqrt{n}$ grid

Max stabbing number using only the grid for \mathcal{T} ? 2 · (\sqrt{n} – 1)

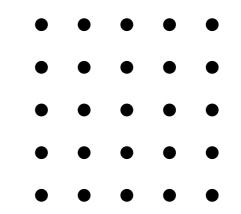


Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

Given *n* points on $\sqrt{n} \times \sqrt{n}$ grid

Max stabbing number using only the grid for \mathcal{T} ? 2 · (\sqrt{n} – 1)

Lower bound (Ω)?



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

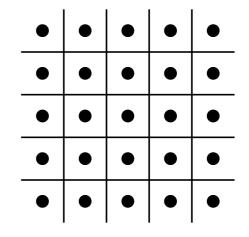
Given *n* points on $\sqrt{n} \times \sqrt{n}$ grid

Max stabbing number using only the grid for \mathcal{T} ? 2 · (\sqrt{n} – 1)

Lower bound (Ω)? Draw 2 \cdot (\sqrt{n} – 1) lines

Each line segment crosses at least one line

For at least one line $\frac{n-1}{2\cdot(\sqrt{n}-1)} = \Omega(\sqrt{n})$ line segment crossings (pigeonhole principle)



Stabbing number of ${\mathcal T}$ is the maximum number of times any line in the plane intersects ${\mathcal T}$

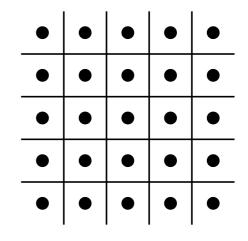
Given *n* points on $\sqrt{n} \times \sqrt{n}$ grid

Max stabbing number using only the grid for \mathcal{T} ? 2 · (\sqrt{n} – 1)

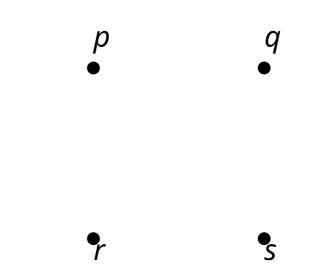
Lower bound (Ω)? Draw 2 \cdot (\sqrt{n} – 1) lines

Each line segment crosses at least one line

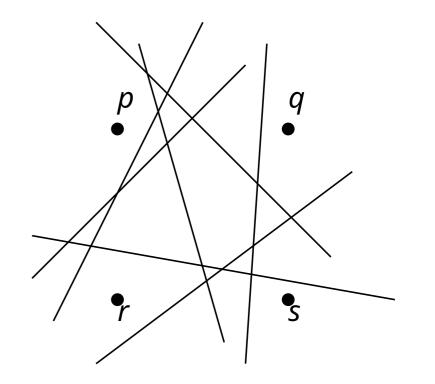
For at least one line $\frac{n-1}{2\cdot(\sqrt{n}-1)} = \Omega(\sqrt{n})$ line segment crossings (pigeonhole principle) **Theorem.** We can always find \mathcal{T} with stabbing number $O(\sqrt{n})$ in polynomial time (1992 Welzl)



Consider all separating lines \hat{L} of P

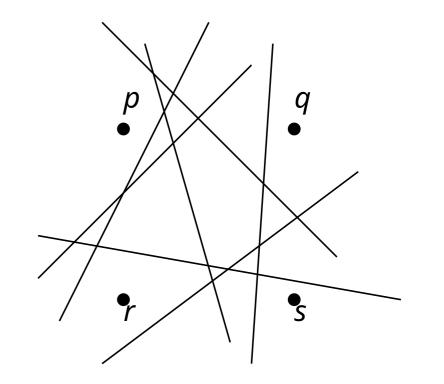


Consider all separating lines \hat{L} of *P*



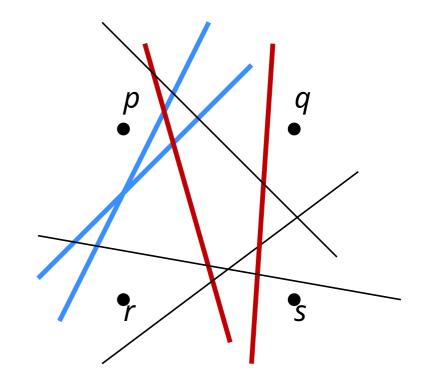
Consider all separating lines \hat{L} of P

Let two lines $\ell, \ell' \in \hat{L}$ be equivalent if ℓ and ℓ' separate the same sets of points



Consider all separating lines \hat{L} of P

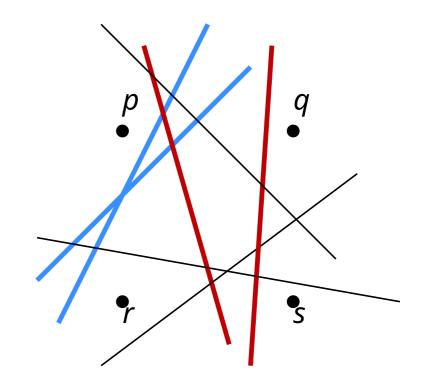
Let two lines $\ell, \ell' \in \hat{L}$ be equivalent if ℓ and ℓ' separate the same sets of points



Consider all separating lines \hat{L} of P

Let two lines $\ell, \ell' \in \hat{L}$ be equivalent if ℓ and ℓ' separate the same sets of points

Pick one for each equivalent class of \hat{L} Let this be set *L*

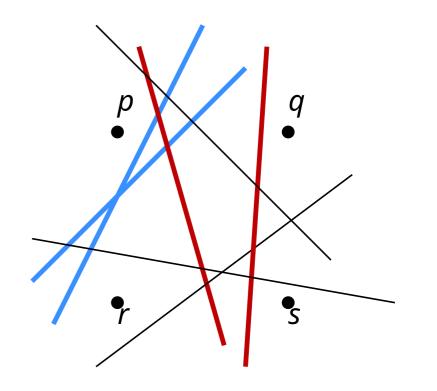


Consider all separating lines \hat{L} of P

Let two lines $\ell, \ell' \in \hat{L}$ be equivalent if ℓ and ℓ' separate the same sets of points

Pick one for each equivalent class of \hat{L} Let this be set *L*

What is at most the size of *L*?

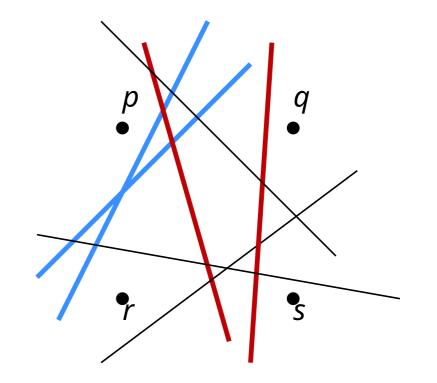


Consider all separating lines \hat{L} of P

Let two lines $\ell, \ell' \in \hat{L}$ be equivalent if ℓ and ℓ' separate the same sets of points

Pick one for each equivalent class of \hat{L} Let this be set *L*

What is at most the size of *L*?



 $|L| \leq 4\binom{n}{2}$, rotate every line until it goes through two points

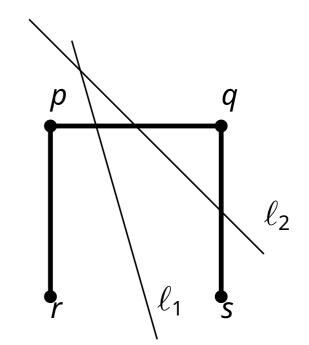
The two points are the same for at most 4 lines ((above, above), (above, below), ...).

Let $\#_{st}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}

Let $\#_{st}(\ell)$ be the number of intersections of $\ell \in L$ with \mathcal{T}

Let $w(\ell) = 2^{\#_{\approx}(\ell)}$

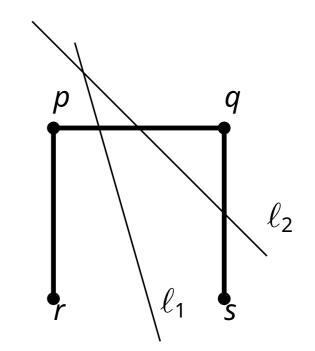
 $w(\ell_1) = 2, w(\ell_2) = 4$



Let $w(\ell) = 2^{\#_{\approx}(\ell)}$

 $w(\ell_1)=2, w(\ell_2)=4$

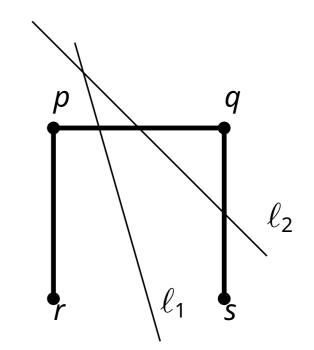
For pq ($p, q \in P$) let $w(pq) = \sum_{\ell \in L \land \neg (\ell \cap pq = \emptyset)} w(\ell)$



Let $w(\ell) = 2^{\#_{\approx}(\ell)}$

 $w(\ell_1) = 2, w(\ell_2) = 4$

For pq ($p, q \in P$) let $w(pq) = \sum_{\ell \in L \land \neg(\ell \cap pq = \emptyset)} w(\ell)$ If $L = \{\ell_1, \ell_2\}$ then w(pr) = 0, w(pq) = 6, w(qs) = 2



Let $\#_{st}(\ell)$ be the number of intersections of $\ell \in L$ with $\mathcal T$

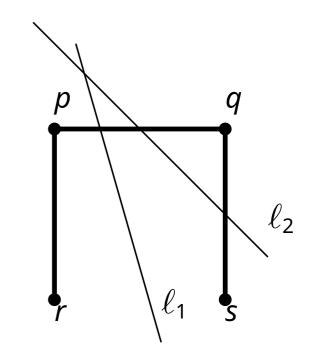
Let $w(\ell) = 2^{\#_{\approx}(\ell)}$

 $w(\ell_1)=2, w(\ell_2)=4$

For pq ($p, q \in P$) let $w(pq) = \sum_{\ell \in L \land \neg(\ell \cap pq = \emptyset)} w(\ell)$ If $L = \{\ell_1, \ell_2\}$ then w(pr) = 0, w(pq) = 6, w(qs) = 2

While |P| > 1

- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



Let $\#_{st}(\ell)$ be the number of intersections of $\ell \in L$ with $\mathcal T$

Let $w(\ell) = 2^{\#_{\approx}(\ell)}$

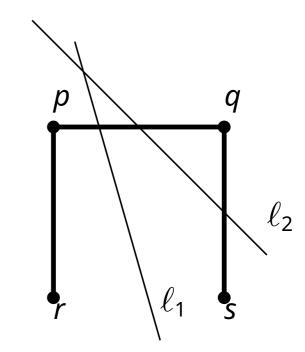
 $w(\ell_1) = 2, w(\ell_2) = 4$

For pq ($p, q \in P$) let $w(pq) = \sum_{\ell \in L \land \neg(\ell \cap pq = \emptyset)} w(\ell)$ If $L = \{\ell_1, \ell_2\}$ then w(pr) = 0, w(pq) = 6, w(qs) = 2

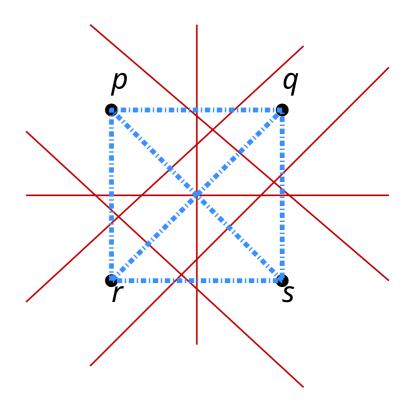
While |P| > 1

- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*

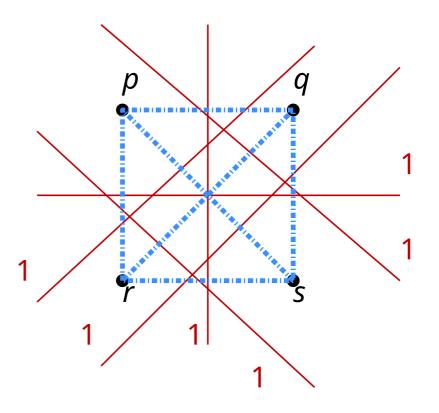
The running time is polynomial in *n*



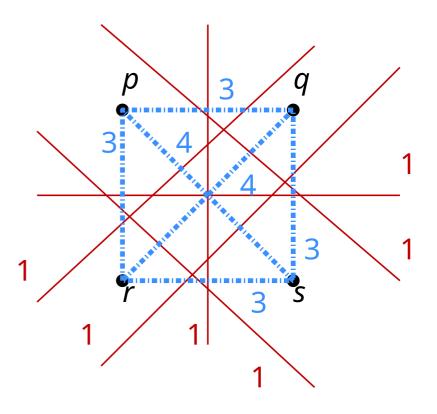
- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



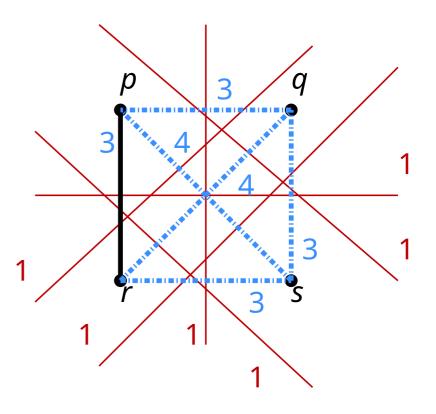
- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



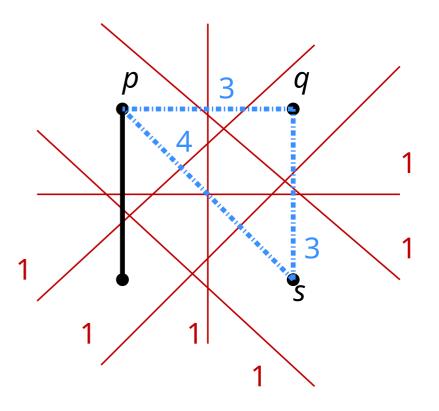
- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



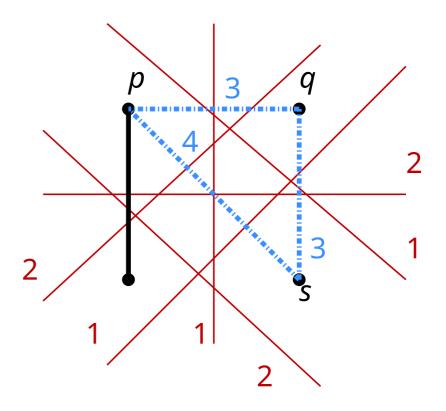
- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



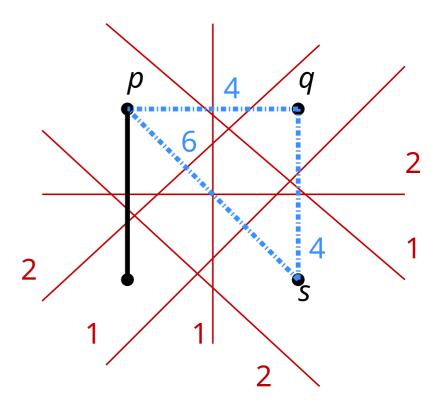
- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



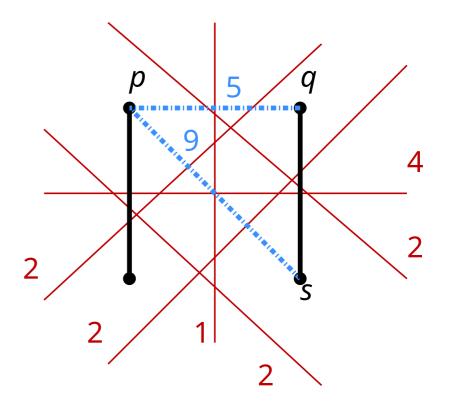
- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*



- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}
- 4. Remove *a* from *P*

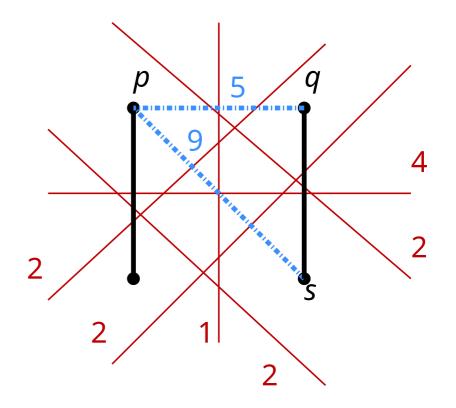


While |P| > 1

- 1. Calculate the weights of *L*
- 2. Calculate the weights of $S = \{ab \mid a, b \in P\}$
- 3. Pick $ab \in S$ with minimal weight in \mathcal{T}

4. Remove *a* from *P*

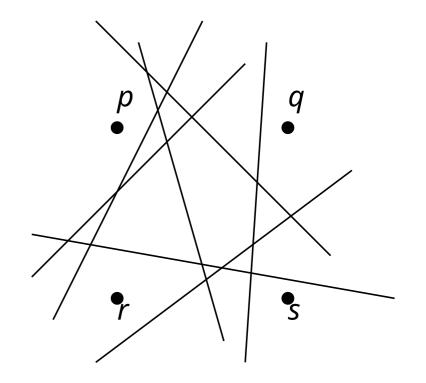
Removing *s* leads to stabbing number 2 Removing *q* leads to stabbing number 3 Asymptotically it does not matter



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane $d_{sc}(p,q)$ is the crossing distance for $p,q \in P$ Number of lines of *L* that pq crosses

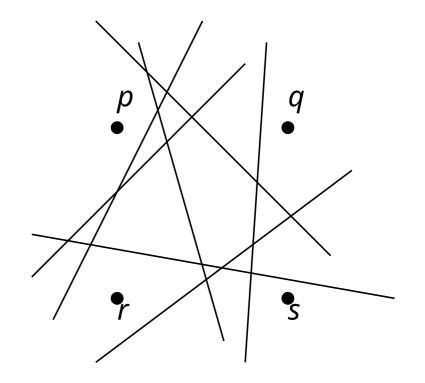
Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane $d_{sc}(p,q)$ is the crossing distance for $p,q \in P$ Number of lines of *L* that pq crosses

 $d_{\approx}(p,q)?$



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane $d_{s<}(p,q)$ is the crossing distance for $p,q \in P$ Number of lines of *L* that pq crosses

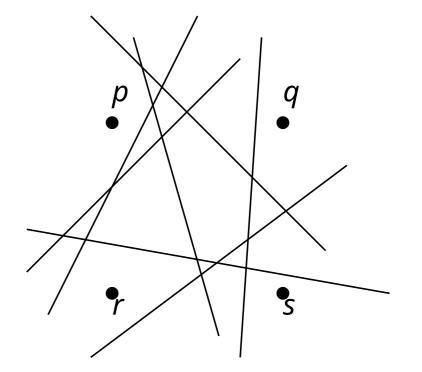
 $d_{\approx}(p,q)=5$



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane $d_{s<}(p,q)$ is the crossing distance for $p,q \in P$ Number of lines of *L* that pq crosses

 $d_{\approx}(p,q)=5$

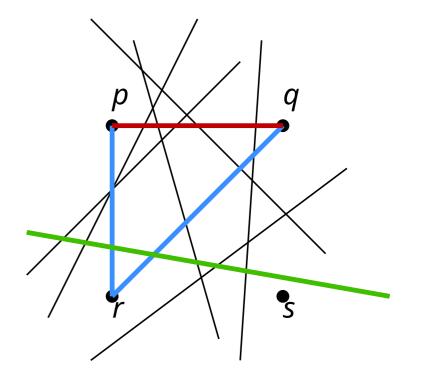
The triangle inequality holds $d_{(p,q)} \leq d_{(p,r)} + d_{(r,q)}$



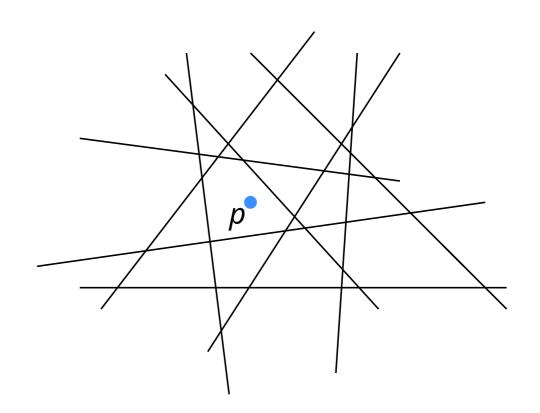
Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane $d_{\approx}(p,q)$ is the crossing distance for $p,q \in P$ Number of lines of *L* that pq crosses

 $d_{\approx}(p,q)=5$

The triangle inequality holds $d_{\approx(p,q)} \leq d_{\approx(p,r)} + d_{\approx(r,q)}$

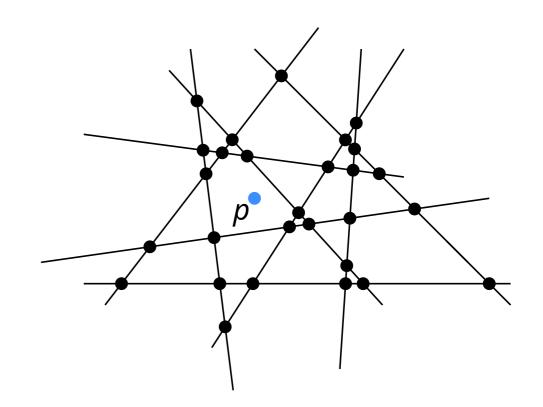


Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

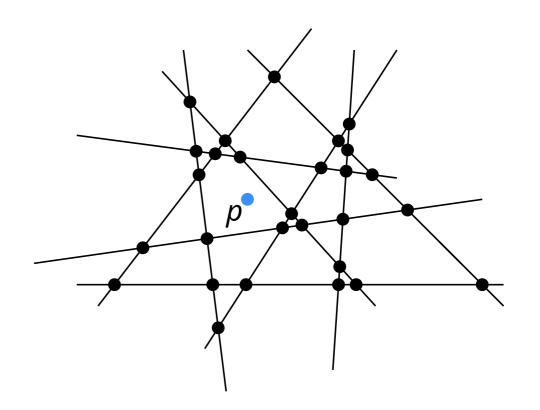
Consider the arrangement A(L)



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

Consider the arrangement A(L)

Let $b_{\approx}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\approx}(p, q) \leq r$

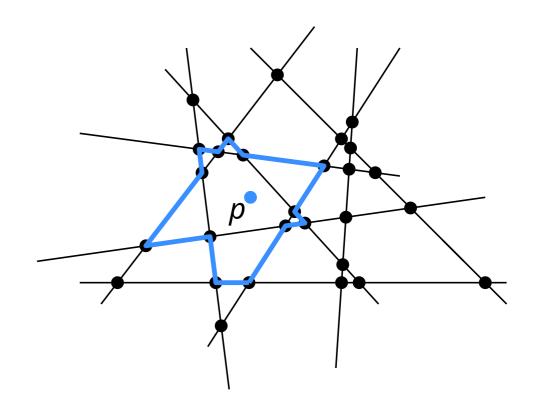


Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

Consider the arrangement A(L)

Let $b_{\approx}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\approx}(p, q) \leq r$

Example $b_{\approx}(p, 3)$



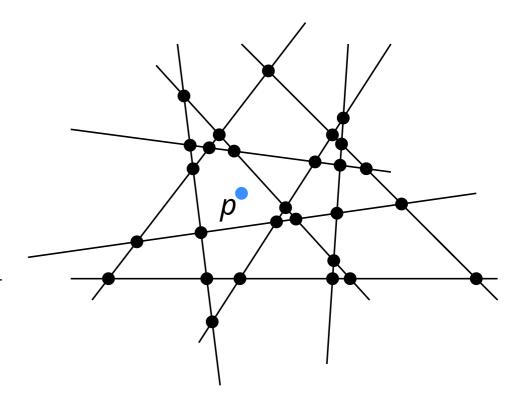
Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

Consider the arrangement A(L)

Let $b_{\approx}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\approx}(p, q) \leq r$

Example $b_{\approx}(p, 3)$

Lemma. For any $r \leq \frac{|l|}{2}$ we have that $|b_{\approx}(p,r)| \geq \frac{r^2}{8}$



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

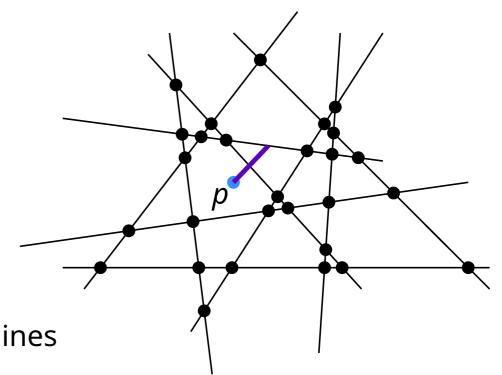
Consider the arrangement A(L)

Let $b_{\approx}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\approx}(p, q) \leq r$

Example $b_{\approx}(p, 3)$

Lemma. For any $r \leq \frac{|l|}{2}$ we have that $|b_{\approx}(p,r)| \geq \frac{r^2}{8}$

We can shoot a ray from *p* that intersects at least $\frac{r}{2}$ lines



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

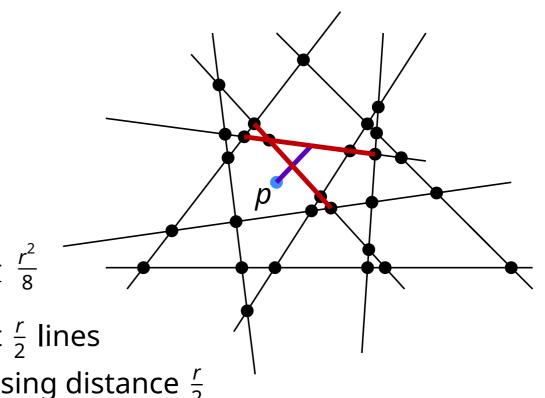
Consider the arrangement A(L)

Let $b_{\approx}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\approx}(p, q) \leq r$

Example $b_{\approx}(p, 3)$

Lemma. For any $r \leq \frac{|l|}{2}$ we have that $|b_{\approx}(p, r)| \geq \frac{r^2}{8}$

We can shoot a ray from *p* that intersects at least $\frac{r}{2}$ lines For the first $\frac{r}{2}$ lines, mark all $q \in \mathcal{A}(L)$ within crossing distance $\frac{r}{2}$



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

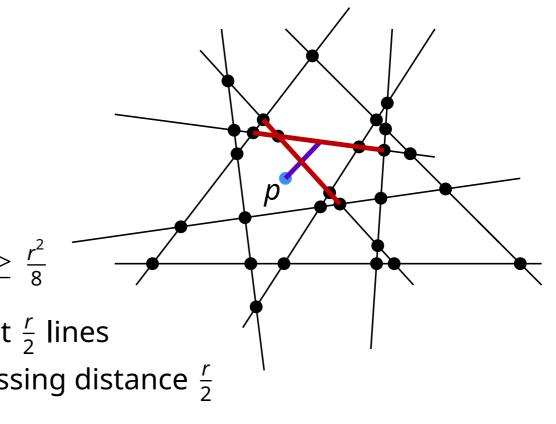
Consider the arrangement A(L)

Let $b_{\approx}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\approx}(p, q) \leq r$

Example $b_{\approx}(p, 3)$

Lemma. For any $r \leq \frac{|L|}{2}$ we have that $|b_{\approx}(p,r)| \geq \frac{r^2}{8}$

We can shoot a ray from p that intersects at least $\frac{r}{2}$ lines For the first $\frac{r}{2}$ lines, mark all $q \in \mathcal{A}(L)$ within crossing distance $\frac{r}{2}$ By the triangle inequality $d_{\approx}(p,q) \leq \frac{r}{2} + \frac{r}{2} = r$



Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane

Consider the arrangement A(L)

Let $b_{\approx}(p, r)$ denote all intersections $q \in \mathcal{A}(L)$ for which $d_{\approx}(p, q) \leq r$

Example $b_{\approx}(p, 3)$

Lemma. For any $r \leq \frac{|L|}{2}$ we have that $|b_{\approx}(p, r)| \geq \frac{r^2}{8}$

We can shoot a ray from p that intersects at least $\frac{r}{2}$ lines For the first $\frac{r}{2}$ lines, mark all $q \in A(L)$ within crossing distance $\frac{r}{2}$ By the triangle inequality $d_{\approx}(p,q) \leq \frac{r}{2} + \frac{r}{2} = r$

At least $\frac{r}{2}$ are marked per line and each can be marked at most twice $|b_{s<}(p,r)| \ge \frac{r}{2} \cdot \frac{r}{2} \cdot \frac{1}{2} = \frac{r^2}{8}$

Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane with total weight *W*

Lemma. You can always find pq with $p, q \in P$ for which $w(pq) \leq \frac{cW}{\sqrt{n}}$

Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane with total weight *W*

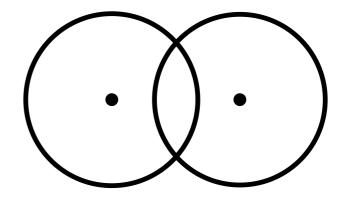
Lemma. You can always find pq with $p, q \in P$ for which $w(pq) \leq \frac{cW}{\sqrt{n}}$

Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines

Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane with total weight *W*

Lemma. You can always find pq with $p, q \in P$ for which $w(pq) \leq \frac{cW}{\sqrt{n}}$

Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines Consider $X(r) = \bigcup_{p \in P} b_{\approx}(p, r)$

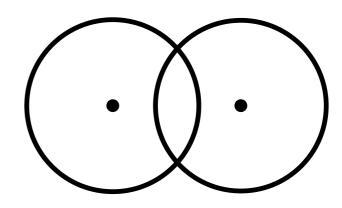


Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane with total weight *W*

Lemma. You can always find pq with $p, q \in P$ for which $w(pq) \leq \frac{cW}{\sqrt{n}}$

Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines Consider $X(r) = \bigcup_{p \in P} b_{\approx}(p, r)$

If balls disjoint then by previous Lemma $|X(r)| \ge n \cdot \frac{r^2}{8}$

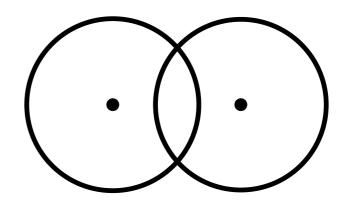


Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane with total weight *W*

Lemma. You can always find pq with $p, q \in P$ for which $w(pq) \leq \frac{cW}{\sqrt{n}}$

Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines Consider $X(r) = \bigcup_{p \in P} b_{\approx}(p, r)$

If balls disjoint then by previous Lemma $|X(r)| \ge n \cdot \frac{r^2}{8}$ Two lines can only intersect once $|\mathcal{A}(L)| \le {W \choose 2}$

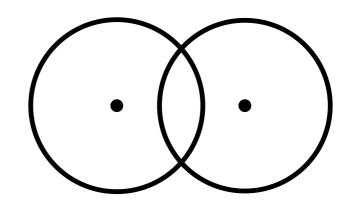


Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane with total weight *W*

Lemma. You can always find pq with $p, q \in P$ for which $w(pq) \leq \frac{cW}{\sqrt{n}}$

Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines Consider $X(r) = \bigcup_{p \in P} b_{\approx}(p, r)$

If balls disjoint then by previous Lemma $|X(r)| \ge n \cdot \frac{r^2}{8}$ Two lines can only intersect once $|\mathcal{A}(L)| \le {\binom{W}{2}}$ Two balls are not disjoint when $\frac{nr^2}{8} > {\binom{W}{2}} \Rightarrow r > \frac{2W}{\sqrt{n}}$

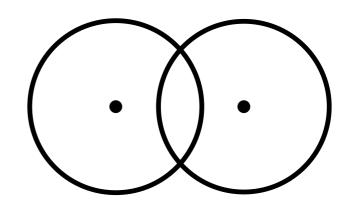


Given $P \subseteq \mathbb{R}^2$ and lines *L* in the plane with total weight *W*

Lemma. You can always find pq with $p, q \in P$ for which $w(pq) \leq \frac{cW}{\sqrt{n}}$

Weights are integers, for all $\ell \in L$ replace it by $w(\ell)$ non-parallel lines Consider $X(r) = \bigcup_{p \in P} b_{\approx}(p, r)$

If balls disjoint then by previous Lemma $|X(r)| \ge n \cdot \frac{r^2}{8}$ Two lines can only intersect once $|\mathcal{A}(\mathcal{L})| \le {W \choose 2}$ Two balls are not disjoint when $\frac{nr^2}{8} > {W \choose 2} \Rightarrow r > \frac{2W}{\sqrt{n}}$ Then exists $t \in \mathcal{A}(\mathcal{L})$ and two points $p, q \in P$ for which $d_{\approx}(p,q) \le d_{\approx}(p,t) + d_{\approx}(t,q) \le 2r \le \frac{4W}{\sqrt{n}} + 3$



Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$W_i \leq W_{i-1} + \frac{cW_{i-1}}{\sqrt{n_i}}$$
 (From previous Lemma)

$$\mathcal{N}_{i} \leq \mathcal{W}_{i-1} + rac{c\mathcal{W}_{i-1}}{\sqrt{n_{i}}}$$
 (From previous Lemma)
= $(1 + rac{c}{\sqrt{n_{i}}})\mathcal{W}_{i-1}$

$$W_{i} \leq W_{i-1} + \frac{cW_{i-1}}{\sqrt{n_{i}}}$$
 (From previous Lemma)
$$= (1 + \frac{c}{\sqrt{n_{i}}})W_{i-1}$$
$$\leq \prod_{k=1}^{i} (1 + \frac{c}{\sqrt{n_{k}}})W_{0}$$
 (Apply the previous step *i* times)

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times W_i is total weight of *L* after *i*th iteration, $W_0 = |L| \le {n \choose 2}$ $n_i = n - i + 1$ is size |P| in beginning of *i*th iteration

$$W_{i} \leq W_{i-1} + \frac{cW_{i-1}}{\sqrt{n_{i}}} \quad \text{(From previous Lemma)}$$

$$= (1 + \frac{c}{\sqrt{n_{i}}})W_{i-1}$$

$$\leq \prod_{k=1}^{i} (1 + \frac{c}{\sqrt{n_{k}}})W_{0} \quad \text{(Apply the previous step } i \text{ times)}$$

$$\leq W_{0} \prod_{k=1}^{i} e^{\frac{c}{\sqrt{n_{k}}}} \quad (1 + x \leq e^{x} \text{ for all } x \geq 0)$$

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times W_i is total weight of *L* after *i*th iteration, $W_0 = |L| \le {n \choose 2}$ $n_i = n - i + 1$ is size |P| in beginning of *i*th iteration

$$W_{i} \leq W_{i-1} + \frac{cW_{i-1}}{\sqrt{n_{i}}} \quad (\text{From previous Lemma})$$

$$= (1 + \frac{c}{\sqrt{n_{i}}})W_{i-1}$$

$$\leq \prod_{k=1}^{i} (1 + \frac{c}{\sqrt{n_{k}}})W_{0} \quad (\text{Apply the previous step } i \text{ times})$$

$$\leq W_{0} \prod_{k=1}^{i} e^{\frac{c}{\sqrt{n_{k}}}} \quad (1 + x \leq e^{x} \text{ for all } x \geq 0)$$

$$= W_{0} e^{\sum_{k=1}^{i} \frac{c}{\sqrt{n-k+1}}} \quad (\text{Definition } n_{k})$$

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$W_n \leq W_0 e^{\sum_{k=1}^n \frac{c}{\sqrt{n-k+1}}}$$
 (From previous Slide)

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

$$W_n \le W_0 e^{\sum_{k=1}^n \frac{c}{\sqrt{n-k+1}}}$$
 (From previous Slide)
 $\le {\binom{n}{2}} e^{\sum_{k=1}^n \frac{c}{\sqrt{k}}}$

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

 $W_{n} \leq W_{0}e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} \quad \text{(From previous Slide)}$ $\leq {\binom{n}{2}}e^{\sum_{k=1}^{n} \frac{c}{\sqrt{k}}}$ $\leq n^{2}e^{4c\sqrt{n}} \quad (\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 1 + \int_{x=1}^{n} \frac{1}{\sqrt{x}}dx \leq 4\sqrt{n})$

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

 $W_{n} \leq W_{0}e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} \quad \text{(From previous Slide)}$ $\leq {\binom{n}{2}}e^{\sum_{k=1}^{n} \frac{c}{\sqrt{k}}}$ $\leq n^{2}e^{4c\sqrt{n}} \quad (\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 1 + \int_{x=1}^{n} \frac{1}{\sqrt{x}}dx \leq 4\sqrt{n})$

For all $\ell \in L$, $w(\ell) = 2^{\#_{\approx}(\ell)} \leq W_n \leq n^2 e^{4c\sqrt{n}}$

Theorem. Any line in the plane crosses \mathcal{T} at most $O(\sqrt{n})$ times

 $W_{n} \leq W_{0}e^{\sum_{k=1}^{n} \frac{c}{\sqrt{n-k+1}}} \quad \text{(From previous Slide)}$ $\leq \binom{n}{2}e^{\sum_{k=1}^{n} \frac{c}{\sqrt{k}}}$ $\leq n^{2}e^{4c\sqrt{n}} \quad (\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 1 + \int_{x=1}^{n} \frac{1}{\sqrt{x}}dx \leq 4\sqrt{n})$

For all $\ell \in L$, $w(\ell) = 2^{\#_{\approx}(\ell)} \leq W_n \leq n^2 e^{4c\sqrt{n}}$ Hence $\#_{\approx}(\ell) = O(\sqrt{n})$

Theorem. For every set of *n* points in *d*-space there is a spanning tree \mathcal{T} , such that any hyperplane crosses \mathcal{T} at most $O(n^{1-1/d})$ times (without proof)

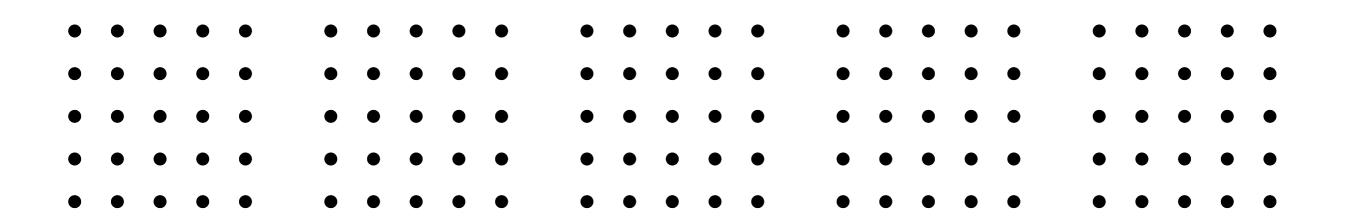
Theorem. For every set of *n* points in *d*-space there is a spanning tree \mathcal{T} , such that any hyperplane crosses \mathcal{T} at most $O(n^{1-1/d})$ times (without proof)

For d = 2, we obtain $O(\sqrt{n})$

Theorem. For every set of *n* points in *d*-space there is a spanning tree \mathcal{T} , such that any hyperplane crosses \mathcal{T} at most $O(n^{1-1/d})$ times (without proof)

For d = 2, we obtain $O(\sqrt{n})$

For d = 3 consider $n^{1/3} \times n^{1/3} \times n^{1/3}$ cube

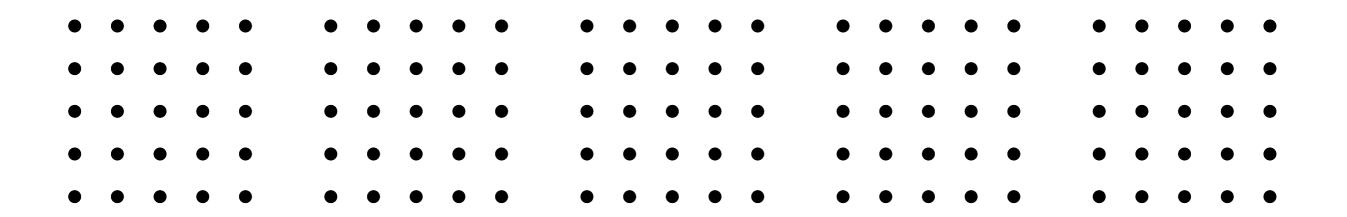


Theorem. For every set of *n* points in *d*-space there is a spanning tree \mathcal{T} , such that any hyperplane crosses \mathcal{T} at most $O(n^{1-1/d})$ times (without proof)

For d = 2, we obtain $O(\sqrt{n})$

For d = 3 consider $n^{1/3} \times n^{1/3} \times n^{1/3}$ cube

Same argument holds for upper and lower bound

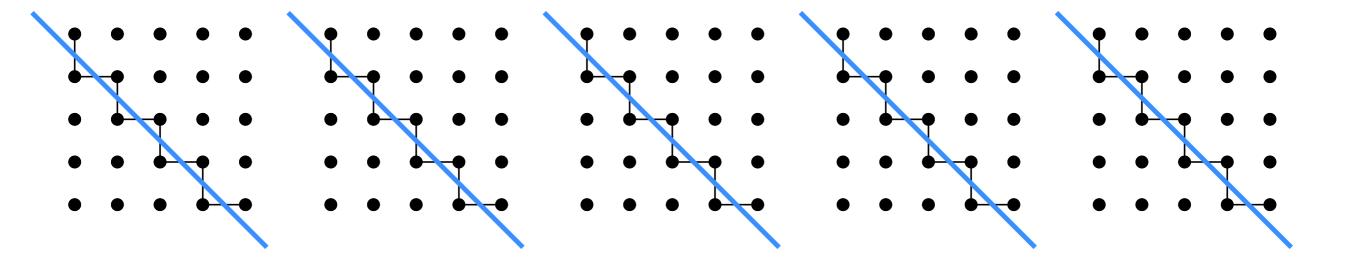


Theorem. For every set of *n* points in *d*-space there is a spanning tree \mathcal{T} , such that any hyperplane crosses \mathcal{T} at most $O(n^{1-1/d})$ times (without proof)

For d = 2, we obtain $O(\sqrt{n})$

For d = 3 consider $n^{1/3} \times n^{1/3} \times n^{1/3}$ cube

Same argument holds for upper and lower bound



Theorem. For every set of *n* points in *d*-space there is a spanning tree \mathcal{T} , such that any hyperplane crosses \mathcal{T} at most $O(n^{1-1/d})$ times (without proof)

For d = 2, we obtain $O(\sqrt{n})$

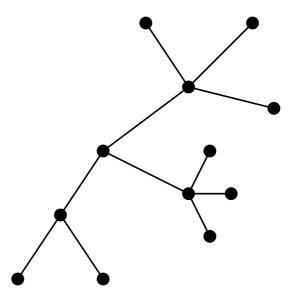
For d = 3 consider $n^{1/3} \times n^{1/3} \times n^{1/3}$ cube

Same argument holds for upper and lower bound

•	•	•	•	•		•	•	•	•	•		•	•	•	•	•				•						•	
•	•	•	•	•	-	•	•	•	•	•	_	•	•	•	•	•				•		-				•	
•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•				•		•				•	
•	•	•	•	•	•	•	•	•	•	•	_	•	•	•	•	•	 •	•	•	•	•	-	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	

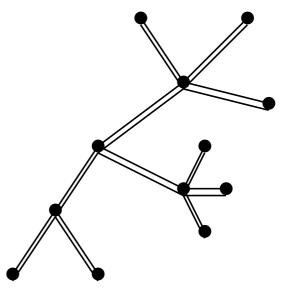
back to perfect matchings, discrepancy, and ε -samples

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$



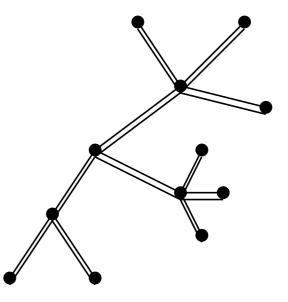
Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles



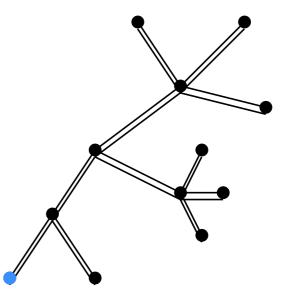
Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles



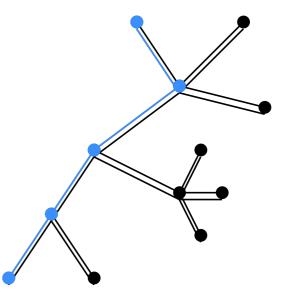
Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles



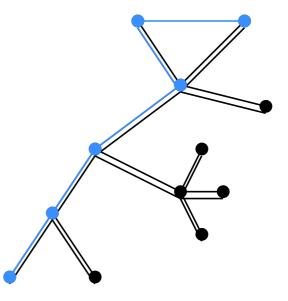
Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles



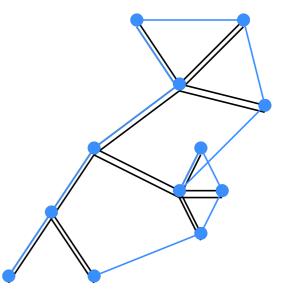
Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles



Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

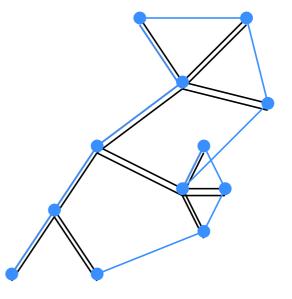
Double all line segments to obtain a Eulerian Graph Stabbing number doubles



Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points

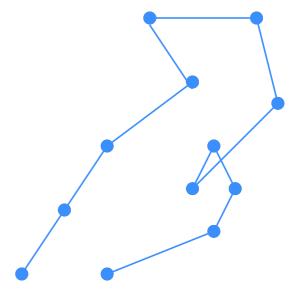


By triangle inequality, stabbing number can only decrease

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points



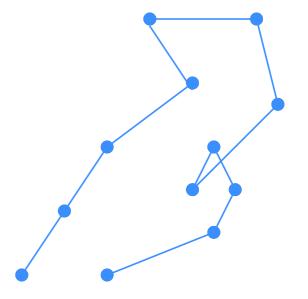
By triangle inequality, stabbing number can only decrease

n-1 line segments in total

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points



By triangle inequality, stabbing number can only decrease

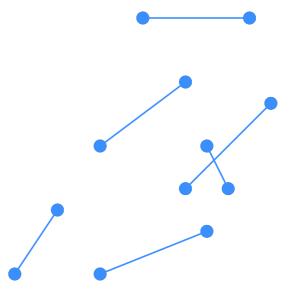
n-1 line segments in total

If *n* even, remove all even edges to obtain perfect matching \mathcal{M}

Assume we have \mathcal{T} with stabbing number $O(\sqrt{n})$

Double all line segments to obtain a Eulerian Graph Stabbing number doubles

Then walk along the cycle Skip any previously visited points



By triangle inequality, stabbing number can only decrease

n-1 line segments in total

If *n* even, remove all even edges to obtain perfect matching \mathcal{M}

What we have now: For \mathcal{R} = set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t. $\#_r = O(\sqrt{n})$

What we have now: For \mathcal{R} = set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t. # $_r = O(\sqrt{n})$

We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n}) = O(n^{1/4}\sqrt{\delta \log n})$

What we have now: For \mathcal{R} = set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t. # $_r = O(\sqrt{n})$

We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n}) = O(n^{1/4}\sqrt{\delta \log n})$

blue points P_1 are an ε_1 -sample with $\varepsilon_1 = O(\sqrt{\log n}/n^{3/4})$

What we have now: For \mathcal{R} = set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t. # $_r = O(\sqrt{n})$

We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n}) = O(n^{1/4}\sqrt{\delta \log n})$

blue points P_1 are an ε_1 -sample with $\varepsilon_1 = O(\sqrt{\log n}/n^{3/4})$... we get ε -sample of size $O\left(\frac{\delta}{\varepsilon}\log\frac{\delta}{\varepsilon}\right)^{4/3}$.

What we have now: For \mathcal{R} = set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t. $\#_r = O(\sqrt{n})$

We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n}) = O(n^{1/4}\sqrt{\delta \log n})$

blue points P_1 are an ε_1 -sample with $\varepsilon_1 = O(\sqrt{\log n}/n^{3/4})$... we get ε -sample of size $O\left(\frac{\delta}{\varepsilon}\log\frac{\delta}{\varepsilon}\right)^{4/3}$.

The same algorithm works for other ranges \mathcal{R} :

Theorem. Given a range space (X, \mathcal{R}) with shattering dimension δ and dual shattering dimension δ^* , a set $P \subset X$ of *n* points, and $\varepsilon > 0$, one can compute, in polynomial time (assuming δ and δ^* are constant), an ε -sample for *P* of size

$$O\left(\left(\frac{\delta}{\varepsilon}\log\frac{\delta}{\varepsilon}\right)^{2-2/(\delta^*+1)}\right)$$

What we have now: For \mathcal{R} = set of halfspaces, we get for $r \in \mathcal{R}$ a perfect matching s.t. $\#_r = O(\sqrt{n})$

We can compute χ with $|\chi(r)| = O(\sqrt{\delta \#_r \log n}) = O(n^{1/4}\sqrt{\delta \log n})$

blue points P_1 are an ε_1 -sample with $\varepsilon_1 = O(\sqrt{\log n}/n^{3/4})$... we get ε -sample of size $O\left(\frac{\delta}{\varepsilon}\log\frac{\delta}{\varepsilon}\right)^{4/3}$.

The same algorithm works for other ranges \mathcal{R} :

Theorem. Given a range space (X, \mathcal{R}) with shattering dimension δ and dual shattering dimension δ^* , a set $P \subset X$ of *n* points, and $\varepsilon > 0$, one can compute, in polynomial time (assuming δ and δ^* are constant), an ε -sample for *P* of size

$$O\left(\left(\frac{\delta}{\varepsilon}\log\frac{\delta}{\varepsilon}\right)^{2-2/(\delta^*+1)}\right) \cdot \frac{\text{This is smaller than our previous }O(1/\varepsilon^2)!}{\varepsilon^2}$$

Summary

We have seen

discrepancy (and there would be so much more too be said about discrepancy)

 ε -samples via discrepancy (and we didn't even discuss how to use this for deterministic construction and/or ε -nets)

low-discrepancy colorings via perfect matchings (with low crossing number)

spanning trees with low crossing number (and therefore perfect matchings)

second application of reweighing

This was the last lecture about sampling.