
PTAS for ETSP
Polynomial-time approximation scheme for the
Euclidean Traveling Salesperson Problem

The Problem
Euclidean Traveling Salesperson Problem (ETSP)
Input: set of points P in R2

Output: a shortest TSP tour of P

The Problem
Euclidean Traveling Salesperson Problem (ETSP)
Input: set of points P in R2

Output: a shortest TSP tour of P

Today: A polynomial-time approximation scheme (PTAS) for the ETSP
Gives for any fixed ε > 0 a polynomial-time (1 + ε)-algorithm

Motivation
TSP: classic NP-hard optimization problem

https://xkcd.com/399/

Motivation
TSP: classic NP-hard optimization problem

Polynomial time approximation algorithms for TSP
• for general TSP: not possible

https://xkcd.com/399/

Motivation
TSP: classic NP-hard optimization problem

Polynomial time approximation algorithms for TSP
• for general TSP: not possible
• for metric TSP: not possible with approximation factor < 123/122 ≈ 1.008,
Christofides: 1.5-approximation, first improved in 2020: 1.5− 10−36

https://xkcd.com/399/

Motivation
TSP: classic NP-hard optimization problem

Polynomial time approximation algorithms for TSP
• for general TSP: not possible
• for metric TSP: not possible with approximation factor < 123/122 ≈ 1.008,
Christofides: 1.5-approximation, first improved in 2020: 1.5− 10−36

• for ETSP: PTASs by Sanjeev Arora [1998] and Joe Mitchell [1999]
→ Gödel prize in 2010
today: Arora’s algorithm

https://xkcd.com/399/

Overview

1. Intuition

2. Subproblems

3. Algorithm

4. Running time

5. Quality of approximation

Intuition - Approach

Dynamic programming on quadtrees

Intuition - Approach

Dynamic programming on quadtrees

Portals on the boundaries

Evenly placed and on each corner

Intuition - Approach

Dynamic programming on quadtrees

Portals on the boundaries

Evenly placed and on each corner

Move between squares only through portals

Intuition - Approach

Dynamic programming on quadtrees

Portals on the boundaries

Evenly placed and on each corner

Move between squares only through portals

What defines a subproblem?

Subproblems

Square S

Subproblems

Square S

Them+ 2 portals on each edge of S

Subproblems

Square S

Them+ 2 portals on each edge of S
Which portals are used

Subproblems

Square S

Them+ 2 portals on each edge of S
Which portals are used

OrderM in which portals are used

1

3

5

4

2

6

Subproblems

Square S

Them+ 2 portals on each edge of S
Which portals are used

OrderM in which portals are used

1

3

5

4

2

6

Subproblem denoted (S,M)

Solution: length of the shortest partial tour
abiding byM

Subproblems

Square S

Them+ 2 portals on each edge of S
Which portals are used

OrderM in which portals are used

1

3

5

4

2

6
Restrictions:
The solution takes each portal at most twice (patching lemma→ later)

Per side of S at most k portals can be used

Subproblem denoted (S,M)

Solution: length of the shortest partial tour
abiding byM

Overview

1. Intuition

2. Subproblems

3. Algorithm

4. Running time

5. Quality of approximation

A Good Quadtree

Problems with constructing a quadtree on P directly?

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded

Solution

1. Snap points to a grid

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded

Solution

1. Snap points to a grid

2. When short tour edges intersect long quadtree edges:
next portal may be far away

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded

Solution

1. Snap points to a grid
2. Randomize the position of the initial square

2. When short tour edges intersect long quadtree edges:
next portal may be far away

A Good Quadtree - Grid

Restrictions on the problem
• P is contained in [1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

A Good Quadtree - Grid

Restrictions on the problem
• P is contained in [1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

Grid of cells of width 1
nτ where τ =

⌈
32
ε

⌉
1
nτ

1
nτ

A Good Quadtree - Grid

Restrictions on the problem
• P is contained in [1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

Grid of cells of width 1
nτ where τ =

⌈
32
ε

⌉
LetQ be P with snapped to nearest gridpoints

Each point was moved at most
√

2
2nτ

1
nτ

1
nτ

√
2

nτ

A Good Quadtree - Grid

Restrictions on the problem
• P is contained in [1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

Grid of cells of width 1
nτ where τ =

⌈
32
ε

⌉
LetQ be P with snapped to nearest gridpoints

Each point was moved at most
√

2
2nτ

Solution forQ can be converted to solution for P

1
nτ

1
nτ

√
2

nτ

Additional cost: ≤ 2n ·
√

2
2nτ ≤

√
2
τ ≤

4ε
32 ≤

ε
2 ·

1
4 ≤

ε
2 ||πopt||

y

z

xorig

x

yorig
zorig

A Good Quadtree - Grid

Restrictions on the problem
• P is contained in [1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

Grid of cells of width 1
nτ where τ =

⌈
32
ε

⌉
LetQ be P with snapped to nearest gridpoints

Each point was moved at most
√

2
2nτ

Solution forQ can be converted to solution for P

1
nτ

1
nτ

√
2

nτ

Additional cost: ≤ 2n ·
√

2
2nτ ≤

√
2
τ ≤

4ε
32 ≤

ε
2 ·

1
4 ≤

ε
2 ||πopt||

y

z

xorig

x

yorig
zorig

A Good Quadtree - Grid

Restrictions on the problem
• P is contained in [1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

Grid of cells of width 1
nτ where τ =

⌈
32
ε

⌉
LetQ be P with snapped to nearest gridpoints

Each point was moved at most
√

2
2nτ

Solution forQ can be converted to solution for P

1
nτ

1
nτ

√
2

nτ

Additional cost: ≤ 2n ·
√

2
2nτ ≤

√
2
τ ≤

4ε
32 ≤

ε
2 ·

1
4 ≤

ε
2 ||πopt||

y

z

xorig

x

yorig
zorig

A Good Quadtree - Grid

Restrictions on the problem
• P is contained in [1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

Grid of cells of width 1
nτ where τ =

⌈
32
ε

⌉
LetQ be P with snapped to nearest gridpoints

Each point was moved at most
√

2
2nτ

Solution forQ can be converted to solution for P

1
nτ

1
nτ

√
2

nτ

Additional cost: ≤ 2n ·
√

2
2nτ ≤

√
2
τ ≤

4ε
32 ≤

ε
2 ·

1
4 ≤

ε
2 ||πopt||

y

z

xorig

x

Diameter of P is at least 1
4
, so an optimal solution must be at least as large

yorig
zorig

A Good Quadtree - Height

Φ(Q) =
maxp,q∈Q ||p−q||
minp,q∈Q ||p−q|| =

√
2/2

1/(nτ) = nτ
√

2
2

Recall: Q contained in [1
2 , 1]2 and on grid of width 1

nτ

spread:

A Good Quadtree - Height

LetQ a set of n points in the unit square such that its diameter is at least 1
2 . Let

T the quadtree ofQ constructed over the unit square. The depth of T is
bounded byO(log Φ(Q)), can be constructed inO(n log Φ(Q)) time, and is of
total sizeO(n log Φ(Q)).

Φ(Q) =
maxp,q∈Q ||p−q||
minp,q∈Q ||p−q|| =

√
2/2

1/(nτ) = nτ
√

2
2

Recall: Q contained in [1
2 , 1]2 and on grid of width 1

nτ

spread:

A Good Quadtree - Height

LetQ a set of n points in the unit square such that its diameter is at least 1
2 . Let

T the quadtree ofQ constructed over the unit square. The depth of T is
bounded byO(log Φ(Q)), can be constructed inO(n log Φ(Q)) time, and is of
total sizeO(n log Φ(Q)).

Φ(Q) =
maxp,q∈Q ||p−q||
minp,q∈Q ||p−q|| =

√
2/2

1/(nτ) = nτ
√

2
2

Recall: Q contained in [1
2 , 1]2 and on grid of width 1

nτ

Diameter ofQ is at least 1
4 , so we may need one extra level

spread:

A Good Quadtree - Height

LetQ a set of n points in the unit square such that its diameter is at least 1
2 . Let

T the quadtree ofQ constructed over the unit square. The depth of T is
bounded byO(log Φ(Q)), can be constructed inO(n log Φ(Q)) time, and is of
total sizeO(n log Φ(Q)).

Φ(Q) =
maxp,q∈Q ||p−q||
minp,q∈Q ||p−q|| =

√
2/2

1/(nτ) = nτ
√

2
2

HeightH = O
(

log nτ
√

2
2

)
= O

(
log n

ε

)
= O(log n)

Recall: Q contained in [1
2 , 1]2 and on grid of width 1

nτ

Diameter ofQ is at least 1
4 , so we may need one extra level

Similarly running time and storage ofO(n log n) follow

spread:

Algorithm

Construct quadtree T overQ with heightH
Let k = 90

ε = O(1
ε), m ≥ 20H

ε = O(ε−1 log n)

Initialization(Q):

Recursive(S,M):

1. if |QS | = O(1
ε) then return BruteForce(S,M)

2. minlength ←∞
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

6. minlength ← min(minlength, cost)
7. return minlength

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent 1

23

4

5

61

32

6

4

5

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent 1

23

4

5

61

32

6

4

5

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

1

23

4

5

61

23

4

5

6

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

ParentConnect(C, S,M): total misalignment
between parent and child portals

Algorithm

Recursive(S,M):

1. if |QS | = O(1
ε) then return BruteForce(S,M)

2. minlength ←∞
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

6. minlength ← min(minlength, cost)
7. return minlength

Use memoization to make it a DP algorithm

Construct quadtree T overQ with heightH
Let k = 90

ε = O(1
ε), m ≥ 20H

ε = O(ε−1 log n)

Initialization(Q):

Overview

1. Intuition

2. Subproblems

3. Algorithm

4. Running time

5. Quality of approximation

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has 4m+ 4 portals on its boundary, each of which is used at most twice
At most k portals are used on each side of S

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has 4m+ 4 portals on its boundary, each of which is used at most twice
At most k portals are used on each side of S
Let i ≤ 8k the total number of portals used
There are i! orderings of these portals

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has 4m+ 4 portals on its boundary, each of which is used at most twice
At most k portals are used on each side of S
Let i ≤ 8k the total number of portals used
There are i! orderings of these portals
Bound T the number of subproblems with S as square

T =
8k∑
i=0

(
8m+ 8

i

)
i! ≤ 8k

(
8m+ 8

8k

)
(8k)!

= 8k
(8m+ 8)!

(8k)!(8m+ 8− 8k)!
(8k)! = 8k

(8m+ 8)!

(8m+ 8− 8k)!

≤ 8k(8m+ 8)8k = (ε−1 log n)O(1/ε)

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has 4m+ 4 portals on its boundary, each of which is used at most twice
At most k portals are used on each side of S
Let i ≤ 8k the total number of portals used
There are i! orderings of these portals
Bound T the number of subproblems with S as square

T =
8k∑
i=0

(
8m+ 8

i

)
i! ≤ 8k

(
8m+ 8

8k

)
(8k)!

= 8k
(8m+ 8)!

(8k)!(8m+ 8− 8k)!
(8k)! = 8k

(8m+ 8)!

(8m+ 8− 8k)!

≤ 8k(8m+ 8)8k = (ε−1 log n)O(1/ε)

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has 4m+ 4 portals on its boundary, each of which is used at most twice
At most k portals are used on each side of S
Let i ≤ 8k the total number of portals used
There are i! orderings of these portals
Bound T the number of subproblems with S as square

T =
8k∑
i=0

(
8m+ 8

i

)
i! ≤ 8k

(
8m+ 8

8k

)
(8k)!

= 8k
(8m+ 8)!

(8k)!(8m+ 8− 8k)!
(8k)! = 8k

(8m+ 8)!

(8m+ 8− 8k)!

≤ 8k(8m+ 8)8k = (ε−1 log n)O(1/ε)

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has 4m+ 4 portals on its boundary, each of which is used at most twice
At most k portals are used on each side of S
Let i ≤ 8k the total number of portals used
There are i! orderings of these portals
Bound T the number of subproblems with S as square

T =
8k∑
i=0

(
8m+ 8

i

)
i! ≤ 8k

(
8m+ 8

8k

)
(8k)!

= 8k
(8m+ 8)!

(8k)!(8m+ 8− 8k)!
(8k)! = 8k

(8m+ 8)!

(8m+ 8− 8k)!

≤ 8k(8m+ 8)8k = (ε−1 log n)O(1/ε)

k = O
(

1

ε

)
m = O

(
log n

ε

)
Recall

Running Time

Recall: quadtree hadO(n log n) nodes and one square per node
Claim: brute force on a square withO

(
1
ε

)
points (base case) can

be done in T = (ε−1 log n)O(1/ε) time

Running Time

Recall: quadtree hadO(n log n) nodes and one square per node

Algorithm considers all combinations of subproblems for the squares of the
children for each node

The number of subproblems per child is at most T
The number of combinations for four children is T 4

Claim: brute force on a square withO
(

1
ε

)
points (base case) can

be done in T = (ε−1 log n)O(1/ε) time

Computing validity and ParentConnect: upper bounded byO(T) time

Running Time

Recall: quadtree hadO(n log n) nodes and one square per node

Algorithm considers all combinations of subproblems for the squares of the
children for each node

The number of subproblems per child is at most T
The number of combinations for four children is T 4

Claim: brute force on a square withO
(

1
ε

)
points (base case) can

be done in T = (ε−1 log n)O(1/ε) time

O(n log n+ (n log n)T 5) = O((n log n)T 5) = n(ε−1 log n)O(1/ε)

Computing validity and ParentConnect: upper bounded byO(T) time

Total running time:

Overview

1. Intuition

2. Subproblems

3. Algorithm

4. Running time

5. Quality of approximation

Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals

Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals
uses: patching lemma (+ shifting)

Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals
uses: patching lemma (+ shifting)

uses: shifting

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

s

π

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

s

p1

p2

p3

p4 q4

q3

q2

q1

π

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

s

p1

p2

p3

p4 q4

q3

q2

q1

Idea: construct an Eulerian tour including π
that crosses s at most twice

π

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

LetEπ be the set of edges each representing a connected component of π \ s

s

π

p1

p2

p3

p4 q4

q3
q2

q1

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

LetEπ be the set of edges each representing a connected component of π \ s

s

π

Let si = (pi, pi+1) and s′i = (qi, qi+1)

p1

p2

p3

p4 q4

q3
q2

q1

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

LetEπ be the set of edges each representing a connected component of π \ s
Let si = (pi, pi+1) and s′i = (qi, qi+1)

Construct graphG = (V,E) with V =
⋃k
i=1{pi, qi}

p1

p2

p3

p4 q4

q3
q2

q1

s

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

LetEπ be the set of edges each representing a connected component of π \ s
Let si = (pi, pi+1) and s′i = (qi, qi+1)

Construct graphG = (V,E) with V =
⋃k
i=1{pi, qi}

p1

p2

p3

p4 q4

q3
q2

q1

E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}

and also add (pk, qk) if k is even

s

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

LetEπ be the set of edges each representing a connected component of π \ s

p1

p2

p3

p4 q4

q3
q2

q1

sG is connected and its vertices have even degree

E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}(∪{(pk, qk)})

Hence it admits an Eulerian tour π′

π′ visits all of π outside of s asEπ ⊆ E
π′ crosses s at most twice: at (p1, q1) and (pk, qk)

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

p1

p2

p3

p4 q4

q3
q2

q1

s

E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}(∪{(pk, qk)})

||π′|| is the length of all edges inE

Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

p1

p2

p3

p4 q4

q3
q2

q1

s

E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}(∪{(pk, qk)})

≤ 2||s|| ≤ 2||s||
||π′|| is the length of all edges inE

0

||π′|| ≤ ||π||+ 2||s|||+ 2||s|| = ||π||+ 4||s||

0||π||

Patching Lemma: Consequences
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

Patching Lemma: Consequences
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

Using portals only twice

Patching Lemma: Consequences
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

Using portals only twice
apply lemma to portals← segments of length 0

Patching Lemma: Consequences
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

Using portals only twice
apply lemma to portals← segments of length 0

Using only k portals of a square
bottom-up (i.e. starting with small cells): When> k intersections, patch!
intuition: patching on low levels: relatively cheap, and also helps higher levels

+ fewer (exponentially decreasing) intersections at higher levels: shifting

Shifted Grids
recall: shifted partition of real line
Let ∆ > 0 and b ∈ [0,∆] uniformly distributed. We shift the gridG∆ by b

0 ∆ 2∆ 3∆

Lemma: For x, y ∈ R holds P [hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|

∆ , 1
)hb,∆(x) = bx−b∆ c

x y
b− ∆ b b + ∆ b + 2∆

x+ ∆

Shifted Grids
recall: shifted partition of real line
Let ∆ > 0 and b ∈ [0,∆] uniformly distributed. We shift the gridG∆ by b

0 ∆ 2∆ 3∆

Lemma: For x, y ∈ R holds P [hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|

∆ , 1
)hb,∆(x) = bx−b∆ c

x y
b− ∆ b b + ∆ b + 2∆

x+ ∆

. . . generalizes to grids and quadtrees . . .

Shifted Grids
recall: shifted partition of real line
Let ∆ > 0 and b ∈ [0,∆] uniformly distributed. We shift the gridG∆ by b

0 ∆ 2∆ 3∆

Lemma: For x, y ∈ R holds P [hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|

∆ , 1
)hb,∆(x) = bx−b∆ c

x y
b− ∆ b b + ∆ b + 2∆

x+ ∆

. . . generalizes to grids and quadtrees . . .

Lemma: Let s be a segment in the plane, The probability that s intersects the
shifted grid of side length ∆ is at most

√
2‖s‖/∆.

Shifted Grids
recall: shifted partition of real line
Let ∆ > 0 and b ∈ [0,∆] uniformly distributed. We shift the gridG∆ by b

0 ∆ 2∆ 3∆

Lemma: For x, y ∈ R holds P [hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|

∆ , 1
)hb,∆(x) = bx−b∆ c

x y
b− ∆ b b + ∆ b + 2∆

x+ ∆

. . . generalizes to grids and quadtrees . . .

Lemma: Let s be a segment in the plane, The probability that s intersects the
shifted grid of side length ∆ is at most

√
2‖s‖/∆.

Furthermore the expected number of intersection of s with vertical and
horizonal lines ofG∆ is in the range

[
‖s‖/∆,

√
2‖s‖/∆

]

Shifted Grids: Consequences

patching lemma + shifted grids→ k portals per cell suffice
(see patching lemma)

Shifted Grids: Consequences

patching lemma + shifted grids→ k portals per cell suffice
(see patching lemma)

expected snapping error≤ 2H
m+1‖πopt‖

Shifted Grids: Consequences

patching lemma + shifted grids→ k portals per cell suffice
(see patching lemma)

expected snapping error≤ 2H
m+1‖πopt‖

error for one intersection with an edge e of a cell≤ 2 ‖e‖
2(m+1) = ‖e‖/(m+ 1)

Shifted Grids: Consequences

patching lemma + shifted grids→ k portals per cell suffice
(see patching lemma)

expected snapping error≤ 2H
m+1‖πopt‖

error for one intersection with an edge e of a cell≤ 2 ‖e‖
2(m+1) = ‖e‖/(m+ 1)

expected error for all intersections with a grid with side length ∆:

≤
√

2‖πopt‖
∆

∆
m+1 ≤ 2‖πopt‖/(m+ 1)

Shifted Grids: Consequences

patching lemma + shifted grids→ k portals per cell suffice
(see patching lemma)

expected snapping error≤ 2H
m+1‖πopt‖

error for one intersection with an edge e of a cell≤ 2 ‖e‖
2(m+1) = ‖e‖/(m+ 1)

expected error for all intersections with a grid with side length ∆:

≤
√

2‖πopt‖
∆

∆
m+1 ≤ 2‖πopt‖/(m+ 1)

add overH levels of quadtree

Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals
uses: patching lemma (+ shifting)

uses: shifting

Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals

1 + ε
2

1 + 8
k−2

1 + 2H
m+1

Recall: k = 90
ε andm ≥ 20H

ε

uses: patching lemma (+ shifting)

uses: shifting

Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals

1 + ε
2

1 + 8
k−2

1 + 2H
m+1

Recall: k = 90
ε andm ≥ 20H

ε(
1 +

ε

2

)(
1 +

8

k − 2

)(
1 +

2H

m+ 1

)
||πOPT|| ≤

(
1 +

ε

2

)(
1 +

ε

10

)2

||πOPT||

≤ (1 + ε)||πOPT||

uses: patching lemma (+ shifting)

uses: shifting

Summary

dynamic programming on quadtrees

correctness: patching lemma + shifting + snap to grid

shifted quadtree with points snapped to grid

running time: not too many subproblems, since subsquares
only connect at few portals

Summary

dynamic programming on quadtrees

correctness: patching lemma + shifting + snap to grid

For a set P of n points in R2 and ε > 0, we can compute a tour π over P with
expected length (1 + ε)||πOPT|| in time (ε−1 log n)O(1/ε)

shifted quadtree with points snapped to grid

running time: not too many subproblems, since subsquares
only connect at few portals

