PTAS for ETSP

Polynomial-time approximation scheme for the Euclidean Traveling Salesperson Problem

The Problem

Euclidean Traveling Salesperson Problem (ETSP)

Input: set of points P in \mathbb{R}^{2}

Output: a shortest TSP tour of P

The Problem

Euclidean Traveling Salesperson Problem (ETSP)

Input: set of points P in \mathbb{R}^{2}

Output: a shortest TSP tour of P

Today: A polynomial-time approximation scheme (PTAS) for the ETSP Gives for any fixed $\varepsilon>0$ a polynomial-time $(1+\varepsilon)$-algorithm

Motivation

TSP: classic NP-hard optimization problem

Motivation

TSP: classic NP-hard optimization problem

Polynomial time approximation algorithms for TSP

- for general TSP: not possible

Motivation

TSP: classic NP-hard optimization problem

Polynomial time approximation algorithms for TSP

- for general TSP: not possible
- for metric TSP: not possible with approximation factor $<123 / 122 \approx 1.008$, Christofides: 1.5-approximation, first improved in 2020: $1.5-10^{-36}$

Motivation

TSP: classic NP-hard optimization problem

Polynomial time approximation algorithms for TSP

- for general TSP: not possible
- for metric TSP: not possible with approximation factor $<123 / 122 \approx 1.008$, Christofides: 1.5-approximation, first improved in 2020: $1.5-10^{-36}$
- for ETSP: PTASs by Sanjeev Arora [1998] and Joe Mitchell [1999]
\rightarrow Gödel prize in 2010 today: Arora's algorithm

Overview

1. Intuition
2. Subproblems
3. Algorithm
4. Running time
5. Quality of approximation

Intuition - Approach

Dynamic programming on quadtrees

Intuition - Approach

Dynamic programming on quadtrees
Portals on the boundaries
Evenly placed and on each corner

Intuition - Approach

Dynamic programming on quadtrees
Portals on the boundaries
Evenly placed and on each corner
Move between squares only through portals

Intuition - Approach

Dynamic programming on quadtrees
Portals on the boundaries
Evenly placed and on each corner
Move between squares only through portals What defines a subproblem?

Subproblems

Square S

Subproblems

Square S

The $m+2$ portals on each edge of S

Subproblems

Square S
The $m+2$ portals on each edge of S
Which portals are used

Subproblems

Square S
The $m+2$ portals on each edge of S
Which portals are used
Order M in which portals are used

Subproblems

Square S

The $m+2$ portals on each edge of S
Which portals are used
Order M in which portals are used
Subproblem denoted (S, M)
Solution: length of the shortest partial tour abiding by M

Subproblems

Square S

The $m+2$ portals on each edge of S
Which portals are used
Order M in which portals are used
Subproblem denoted (S, M)
Solution: length of the shortest partial tour abiding by M

Restrictions:
The solution takes each portal at most twice (patching lemma \rightarrow later)
Per side of S at most k portals can be used

Overview

1. Intuition

2. Subproblems
3. Algorithm
4. Running time
5. Quality of approximation

A Good Quadtree

Problems with constructing a quadtree on P directly?

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded

Solution

1. Snap points to a grid

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded
2. When short tour edges intersect long quadtree edges:
next portal may be far away
Solution
3. Snap points to a grid

A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded
2. When short tour edges intersect long quadtree edges: next portal may be far away

Solution

1. Snap points to a grid
2. Randomize the position of the initial square

A Good Quadtree - Grid

Restrictions on the problem

- P is contained in $\left[\frac{1}{2}, 1\right]^{2}$ and has diameter at least $\frac{1}{4}$
- $\frac{1}{n}<\varepsilon<1$ the approximation factor where $n=|P|$

A Good Quadtree - Grid

Restrictions on the problem

- P is contained in $\left[\frac{1}{2}, 1\right]^{2}$ and has diameter at least $\frac{1}{4}$
- $\frac{1}{n}<\varepsilon<1$ the approximation factor where $n=|P|$

Grid of cells of width $\frac{1}{n \tau}$ where $\tau=\left\lceil\frac{32}{\varepsilon}\right\rceil$

A Good Quadtree - Grid

Restrictions on the problem

- P is contained in $\left[\frac{1}{2}, 1\right]^{2}$ and has diameter at least $\frac{1}{4}$
- $\frac{1}{n}<\varepsilon<1$ the approximation factor where $n=|P|$

Grid of cells of width $\frac{1}{n \tau}$ where $\tau=\left\lceil\frac{32}{\varepsilon}\right\rceil$
Let Q be P with snapped to nearest gridpoints
Each point was moved at most $\frac{\sqrt{2}}{2 n \tau}$

A Good Quadtree - Grid

Restrictions on the problem

- P is contained in $\left[\frac{1}{2}, 1\right]^{2}$ and has diameter at least $\frac{1}{4}$
- $\frac{1}{n}<\varepsilon<1$ the approximation factor where $n=|P|$

Grid of cells of width $\frac{1}{n \tau}$ where $\tau=\left\lceil\frac{32}{\varepsilon}\right\rceil$
Let Q be P with snapped to nearest gridpoints
Each point was moved at most $\frac{\sqrt{2}}{2 n \tau}$
Solution for Q can be converted to solution for P
Additional cost: $\leq 2 n \cdot \frac{\sqrt{2}}{2 n \tau}$

A Good Quadtree - Grid

Restrictions on the problem

- P is contained in $\left[\frac{1}{2}, 1\right]^{2}$ and has diameter at least $\frac{1}{4}$
- $\frac{1}{n}<\varepsilon<1$ the approximation factor where $n=|P|$

Grid of cells of width $\frac{1}{n \tau}$ where $\tau=\left\lceil\frac{32}{\varepsilon}\right\rceil$
Let Q be P with snapped to nearest gridpoints
Each point was moved at most $\frac{\sqrt{2}}{2 n \tau}$
Solution for Q can be converted to solution for P
Additional cost: $\leq 2 n \cdot \frac{\sqrt{2}}{2 n \tau} \leq \frac{\sqrt{2}}{\tau}$

A Good Quadtree - Grid

Restrictions on the problem

- P is contained in $\left[\frac{1}{2}, 1\right]^{2}$ and has diameter at least $\frac{1}{4}$
- $\frac{1}{n}<\varepsilon<1$ the approximation factor where $n=|P|$

Grid of cells of width $\frac{1}{n \tau}$ where $\tau=\left\lceil\frac{32}{\varepsilon}\right\rceil$
Let Q be P with snapped to nearest gridpoints
Each point was moved at most $\frac{\sqrt{2}}{2 n \tau}$
Solution for Q can be converted to solution for P
Additional cost: $\leq 2 n \cdot \frac{\sqrt{2}}{2 n \tau} \leq \frac{\sqrt{2}}{\tau} \leq \frac{4 \varepsilon}{32} \leq \frac{\varepsilon}{2} \cdot \frac{1}{4}$

A Good Quadtree - Grid

Restrictions on the problem

- P is contained in $\left[\frac{1}{2}, 1\right]^{2}$ and has diameter at least $\frac{1}{4}$
- $\frac{1}{n}<\varepsilon<1$ the approximation factor where $n=|P|$

Grid of cells of width $\frac{1}{n \tau}$ where $\tau=\left\lceil\frac{32}{\varepsilon}\right\rceil$
Let Q be P with snapped to nearest gridpoints
Each point was moved at most $\frac{\sqrt{2}}{2 n \tau}$

Solution for Q can be converted to solution for P
Additional cost: $\leq 2 n \cdot \frac{\sqrt{2}}{2 n \tau} \leq \frac{\sqrt{2}}{\tau} \leq \frac{4 \varepsilon}{32} \leq \frac{\varepsilon}{2} \cdot \frac{1}{4} \leq \frac{\varepsilon}{2}\left\|\pi_{\mathrm{opt}}\right\|$

Diameter of P is at least $\frac{1}{4}$, so an optimal solution must be at least as large

A Good Quadtree - Height

Recall: Q contained in $\left[\frac{1}{2}, 1\right]^{2}$ and on grid of width $\frac{1}{n \tau}$
spread: $\Phi(Q)=\frac{\max _{p, q \in Q}\|p-q\|}{\min _{p, q \in Q}\|p-q\|}=\frac{\sqrt{2} / 2}{1 /(n \tau)}=\frac{n \tau \sqrt{2}}{2}$

A Good Quadtree - Height

Recall: Q contained in $\left[\frac{1}{2}, 1\right]^{2}$ and on grid of width $\frac{1}{n \tau}$
spread: $\Phi(Q)=\frac{\max _{p, q \in Q}\|p-q\|}{\min _{p, q \in Q}\|p-q\|}=\frac{\sqrt{2} / 2}{1 /(n \tau)}=\frac{n \tau \sqrt{2}}{2}$
Let Q a set of n points in the unit square such that its diameter is at least $\frac{1}{2}$. Let \mathcal{T} the quadtree of Q constructed over the unit square. The depth of \mathcal{T} is bounded by $\mathcal{O}(\log \Phi(Q))$, can be constructed in $\mathcal{O}(n \log \Phi(Q))$ time, and is of total size $\mathcal{O}(n \log \Phi(Q))$.

A Good Quadtree - Height

Recall: Q contained in $\left[\frac{1}{2}, 1\right]^{2}$ and on grid of width $\frac{1}{n \tau}$
spread: $\Phi(Q)=\frac{\max _{p, q \in Q}\|p-q\|}{\min _{p, q \in Q}\|p-q\|}=\frac{\sqrt{2} / 2}{1 /(n \tau)}=\frac{n \tau \sqrt{2}}{2}$
Let Q a set of n points in the unit square such that its diameter is at least $\frac{1}{2}$. Let \mathcal{T} the quadtree of Q constructed over the unit square. The depth of \mathcal{T} is bounded by $\mathcal{O}(\log \Phi(Q))$, can be constructed in $\mathcal{O}(n \log \Phi(Q))$ time, and is of total size $\mathcal{O}(n \log \Phi(Q))$.

Diameter of Q is at least $\frac{1}{4}$, so we may need one extra level

A Good Quadtree - Height

Recall: Q contained in $\left[\frac{1}{2}, 1\right]^{2}$ and on grid of width $\frac{1}{n \tau}$
spread: $\Phi(Q)=\frac{\max _{p, q \in Q}\|p-q\|}{\min _{p, q \in Q}\|p-q\|}=\frac{\sqrt{2} / 2}{1 /(n \tau)}=\frac{n \tau \sqrt{2}}{2}$
Let Q a set of n points in the unit square such that its diameter is at least $\frac{1}{2}$. Let \mathcal{T} the quadtree of Q constructed over the unit square. The depth of \mathcal{T} is bounded by $\mathcal{O}(\log \Phi(Q))$, can be constructed in $\mathcal{O}(n \log \Phi(Q))$ time, and is of total size $\mathcal{O}(n \log \Phi(Q))$.

Diameter of Q is at least $\frac{1}{4}$, so we may need one extra level
Height $H=\mathcal{O}\left(\log \frac{n \tau \sqrt{2}}{2}\right)=\mathcal{O}\left(\log \frac{n}{\varepsilon}\right)=\mathcal{O}(\log n)$
Similarly running time and storage of $\mathcal{O}(n \log n)$ follow

Algorithm

Initialization (Q) :

Construct quadtree \mathcal{T} over Q with height H
Let $k=\frac{90}{\varepsilon}=\mathcal{O}\left(\frac{1}{\varepsilon}\right), \quad m \geq \frac{20 H}{\varepsilon}=\mathcal{O}\left(\varepsilon^{-1} \log n\right)$
Recursive (S, M) :

1. if $\left|Q_{S}\right|=\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ then return BruteForce (S, M)
2. min $_{\text {length }} \leftarrow \infty$
3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
5. cost $\leftarrow \operatorname{ParentConnect}(C, S, M)+\sum_{i=1}^{4} \operatorname{Recursive}\left(C_{i}\right)$
6. $\min _{\text {length }} \leftarrow \min \left(\min _{\text {length }}\right.$, cost $)$
7. return min $_{\text {length }}$

Algorithm

Recursive (S, M) :
3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
5. cost $\leftarrow \operatorname{ParentConnect}(C, S, M)+\sum_{i=1}^{4} \operatorname{Recursive}\left(C_{i}\right)$
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.
Outside portals have same order as parent

Algorithm

Recursive (S, M) :

3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
5. cost \leftarrow ParentConnect $(C, S, M)+\sum_{i=1}^{4} \operatorname{Recursive}\left(C_{i}\right)$
C_{i} is an arbitrary subproblem for child i
C contains one subproblem for each child
Valid: even number of portals per child. Portals between children match and number of portals on outside match with parent portals.
Outside portals have same order as parent
ParentConnect (C, S, M) : total misalignment between parent and child portals

Algorithm

Initialization (Q) :

Construct quadtree \mathcal{T} over Q with height H
Let $k=\frac{90}{\varepsilon}=\mathcal{O}\left(\frac{1}{\varepsilon}\right), \quad m \geq \frac{20 H}{\varepsilon}=\mathcal{O}\left(\varepsilon^{-1} \log n\right)$
Recursive (S, M) :

1. if $\left|Q_{S}\right|=\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ then return BruteForce (S, M)
2. min $_{\text {length }} \leftarrow \infty$
3. for each combination $C=\left[C_{1}, C_{2}, C_{3}, C_{4}\right]$ of subproblems of children at S :
4. if C is valid then:
5. cost $\leftarrow \operatorname{ParentConnect}(C, S, M)+\sum_{i=1}^{4} \operatorname{Recursive}\left(C_{i}\right)$
6. $\min _{\text {length }} \leftarrow \min \left(\min _{\text {length }}\right.$, cost $)$
7. return min $_{\text {length }}$

Use memoization to make it a DP algorithm

Overview

1. Intuition
2. Subproblems
3. Algorithm
4. Running time
5. Quality of approximation

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has $4 m+4$ portals on its boundary, each of which is used at most twice At most k portals are used on each side of S

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has $4 m+4$ portals on its boundary, each of which is used at most twice At most k portals are used on each side of S
Let $i \leq 8 k$ the total number of portals used
There are i ! orderings of these portals

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has $4 m+4$ portals on its boundary, each of which is used at most twice At most k portals are used on each side of S
Let $i \leq 8 k$ the total number of portals used
There are i ! orderings of these portals
Bound T the number of subproblems with S as square

$$
T=\sum_{i=0}^{8 k}\binom{8 m+8}{i} i!
$$

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has $4 m+4$ portals on its boundary, each of which is used at most twice At most k portals are used on each side of S
Let $i \leq 8 k$ the total number of portals used
There are i ! orderings of these portals
Bound T the number of subproblems with S as square

$$
T=\sum_{i=0}^{8 k}\binom{8 m+8}{i} i!\leq 8 k\binom{8 m+8}{8 k}(8 k)!
$$

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has $4 m+4$ portals on its boundary, each of which is used at most twice At most k portals are used on each side of S
Let $i \leq 8 k$ the total number of portals used
There are i ! orderings of these portals
Bound T the number of subproblems with S as square

$$
\begin{aligned}
T & =\sum_{i=0}^{8 k}\binom{8 m+8}{i} i!\leq 8 k\binom{8 m+8}{8 k}(8 k)! \\
& =8 k \frac{(8 m+8)!}{(8 k)!(8 m+8-8 k)!}(8 k)!=8 k \frac{(8 m+8)!}{(8 m+8-8 k)!} \\
& \leq 8 k(8 m+8)^{8 k}
\end{aligned}
$$

Running Time - Number of Subproblems per Square

Consider a square S and its portals
It has $4 m+4$ portals on its boundary, each of which is used at most twice At most k portals are used on each side of S
Let $i \leq 8 k$ the total number of portals used
There are i ! orderings of these portals
Bound T the number of subproblems with S as square

$$
\begin{aligned}
T & =\sum_{i=0}^{8 k}\binom{8 m+8}{i} i!\leq 8 k\binom{8 m+8}{8 k}(8 k)! \\
& =8 k \frac{(8 m+8)!}{(8 k)!(8 m+8-8 k)!}(8 k)!=8 k \frac{(8 m+8)!}{(8 m+8-8 k)!} \\
& \leq 8 k(8 m+8)^{8 k}=\left(\varepsilon^{-1} \log n\right)^{\mathcal{O}(1 / \varepsilon)}
\end{aligned}
$$

Running Time

Recall: quadtree had $\mathcal{O}(n \log n)$ nodes and one square per node Claim: brute force on a square with $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ points (base case) can be done in $T=\left(\varepsilon^{-1} \log n\right)^{\mathcal{O}(1 / \varepsilon)}$ time

Running Time

Recall: quadtree had $\mathcal{O}(n \log n)$ nodes and one square per node Claim: brute force on a square with $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ points (base case) can be done in $T=\left(\varepsilon^{-1} \log n\right)^{\mathcal{O}(1 / \varepsilon)}$ time

Algorithm considers all combinations of subproblems for the squares of the children for each node

The number of subproblems per child is at most T
The number of combinations for four children is T^{4}
Computing validity and ParentConnect: upper bounded by $\mathcal{O}(T)$ time

Running Time

Recall: quadtree had $\mathcal{O}(n \log n)$ nodes and one square per node Claim: brute force on a square with $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ points (base case) can be done in $T=\left(\varepsilon^{-1} \log n\right)^{\mathcal{O}(1 / \varepsilon)}$ time

Algorithm considers all combinations of subproblems for the squares of the children for each node

The number of subproblems per child is at most T
The number of combinations for four children is T^{4}
Computing validity and ParentConnect: upper bounded by $\mathcal{O}(T)$ time

Total running time:
$\mathcal{O}\left(n \log n+(n \log n) T^{5}\right)=\mathcal{O}\left((n \log n) T^{5}\right)=n\left(\varepsilon^{-1} \log n\right)^{\mathcal{O}(1 / \varepsilon)}$

Overview

1. Intuition
2. Subproblems
3. Algorithm
4. Running time
5. Quality of approximation

$\sqrt{2}$

$\sqrt{ }$

Quality of Approximation

Introduced error when:

- snapping to the grid
- bounding the number of intersections at k per side of each square
- requiring the use of portals

Quality of Approximation

Introduced error when:

- snapping to the grid
- bounding the number of intersections at k per side of each square uses: patching lemma (+ shifting)
- requiring the use of portals

Quality of Approximation

Introduced error when:

- snapping to the grid
- bounding the number of intersections at k per side of each square uses: patching lemma (+ shifting)
- requiring the use of portals

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$ Idea: construct an Eulerian tour including π that crosses s at most twice

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$ Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$ Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$ Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$ Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Let E_{π} be the set of edges each representing a connected component of $\pi \backslash s$

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$ Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Let E_{π} be the set of edges each representing a connected component of $\pi \backslash s$ Let $s_{i}=\left(p_{i}, p_{i+1}\right)$ and $s_{i}^{\prime}=\left(q_{i}, q_{i+1}\right)$

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$
Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Let E_{π} be the set of edges each representing a connected component of $\pi \backslash s$ Let $s_{i}=\left(p_{i}, p_{i+1}\right)$ and $s_{i}^{\prime}=\left(q_{i}, q_{i+1}\right)$
Construct graph $G=(V, E)$ with $V=\bigcup_{i=1}^{k}\left\{p_{i}, q_{i}\right\}$

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$
Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Let E_{π} be the set of edges each representing a connected component of $\pi \backslash s$ Let $s_{i}=\left(p_{i}, p_{i+1}\right)$ and $s_{i}^{\prime}=\left(q_{i}, q_{i+1}\right)$
Construct graph $G=(V, E)$ with $V=\bigcup_{i=1}^{k}\left\{p_{i}, q_{i}\right\}$
$E=\bigcup_{i=1}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\} \cup E_{\pi} \cup \bigcup_{i=1(\mathrm{odd})}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\} \cup\left\{\left(p_{1}, q_{1}\right)\right\}$ and also add $\left(p_{k}, q_{k}\right)$ if k is even

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$
Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

Let E_{π} be the set of edges each representing a connected component of $\pi \backslash s$ $E=\bigcup_{i=1}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\} \cup E_{\pi} \cup \bigcup_{i=1(\text { odd })}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\} \cup\left\{\left(p_{1}, q_{1}\right)\right\}\left(\cup\left\{\left(p_{k}, q_{k}\right)\right\}\right)$
G is connected and its vertices have even degree Hence it admits an Eulerian tour π^{\prime}
π^{\prime} visits all of π outside of s as $E_{\pi} \subseteq E$ π^{\prime} crosses s at most twice: at $\left(p_{1}, q_{1}\right)$ and $\left(p_{k}, q_{k}\right)$

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$ Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree
$E=\bigcup_{i=1}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\} \cup E_{\pi} \cup \bigcup_{i=1(\text { odd })}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\} \cup\left\{\left(p_{1}, q_{1}\right)\right\}\left(\cup\left\{\left(p_{k}, q_{k}\right)\right\}\right)$
$\left\|\pi^{\prime}\right\|$ is the length of all edges in E

Patching Lemma

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$
Theorem: a connected graph admits an Eulerian tour if and only if its vertices have even degree

$$
E=\underbrace{\bigcup_{i=1}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\}}_{\leq 2\|s\|} \cup \underbrace{E_{\pi}}_{\|\pi\|} \cup \underbrace{\bigcup_{i=1(\text { odd })}^{k-1}\left\{s_{i}, s_{i}^{\prime}\right\}}_{\leq 2\|s\|} \cup \underbrace{\left\{\left(p_{1}, q_{1}\right)\right\}}_{0}(\underbrace{\left.\cup\left\{\left(p_{k}, q_{k}\right)\right\}\right)}_{0}
$$

$\left\|\pi^{\prime}\right\|$ is the length of all edges in E

$$
\left\|\pi^{\prime}\right\| \leq\|\pi\|+2\|s\|\|+2\| s\|=\| \pi\|+4\| s \|
$$

Patching Lemma: Consequences

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$

Patching Lemma: Consequences

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$

Using portals only twice

Patching Lemma: Consequences

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$

Using portals only twice

apply lemma to portals \leftarrow segments of length 0

Patching Lemma: Consequences

Patching lemma: closed curve π crossing segment s at least $k \geq 3$ times can be replaced by closed curve π^{\prime} crossing s at most twice such that $\left\|\pi^{\prime}\right\| \leq\|\pi\|+4\|s\|$

Using portals only twice

apply lemma to portals \leftarrow segments of length 0

Using only k portals of a square

bottom-up (i.e. starting with small cells): When $>k$ intersections, patch! intuition: patching on low levels: relatively cheap, and also helps higher levels

+ fewer (exponentially decreasing) intersections at higher levels: shifting

Shifted Grids

recall: shifted partition of real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Lemma: For $x, y \in \mathbb{R}$ holds $\quad \mathbb{P}\left[h_{b, \Delta}(x) \neq h_{b, \Delta}(y)\right]=\min \left(\frac{|x-y|}{\Delta}, 1\right)$

Shifted Grids

recall: shifted partition of real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

$$
h_{b, \Delta}(x)=\left\lfloor\frac{x-b}{\Delta}\right\rfloor
$$

Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}\left[h_{b, \Delta}(x) \neq h_{b, \Delta}(y)\right]=\min \left(\frac{|x-y|}{\Delta}, 1\right)$
. . . generalizes to grids and quadtrees . . .

Shifted Grids

recall: shifted partition of real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}\left[h_{b, \Delta}(x) \neq h_{b, \Delta}(y)\right]=\min \left(\frac{|x-y|}{\Delta}, 1\right)$
. . . generalizes to grids and quadtrees . . .

Lemma: Let s be a segment in the plane, The probability that s intersects the shifted grid of side length Δ is at most $\sqrt{2}\|s\| / \Delta$.

Shifted Grids

recall: shifted partition of real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}\left[h_{b, \Delta}(x) \neq h_{b, \Delta}(y)\right]=\min \left(\frac{|x-y|}{\Delta}, 1\right)$

. . . generalizes to grids and quadtrees . . .

Lemma: Let s be a segment in the plane, The probability that s intersects the shifted grid of side length Δ is at most $\sqrt{2}\|s\| / \Delta$.

Furthermore the expected number of intersection of s with vertical and horizonal lines of G_{Δ} is in the range $[\|s\| / \Delta, \sqrt{2}\|s\| / \Delta]$

Shifted Grids: Consequences

patching lemma + shifted grids $\rightarrow k$ portals per cell suffice (see patching lemma)

Shifted Grids: Consequences

patching lemma + shifted grids $\rightarrow k$ portals per cell suffice (see patching lemma)
expected snapping error $\leq \frac{2 H}{m+1}\left\|\pi_{\text {opt }}\right\|$

Shifted Grids: Consequences

patching lemma + shifted grids $\rightarrow k$ portals per cell suffice (see patching lemma)
expected snapping error $\leq \frac{2 H}{m+1}\left\|\pi_{o p t}\right\|$
error for one intersection with an edge e of a cell $\leq 2 \frac{\|e\|}{2(m+1)}=\|e\| /(m+1)$

Shifted Grids: Consequences

patching lemma + shifted grids $\rightarrow k$ portals per cell suffice

 (see patching lemma)expected snapping error $\leq \frac{2 H}{m+1}\left\|\pi_{\text {opt }}\right\|$
error for one intersection with an edge e of a cell $\leq 2 \frac{\|e\|}{2(m+1)}=\|e\| /(m+1)$
expected error for all intersections with a grid with side length Δ :
$\leq \frac{\sqrt{2}\left\|\pi_{o p t}\right\|}{\Delta} \frac{\Delta}{m+1} \leq 2\left\|\pi_{o p t}\right\| /(m+1)$

Shifted Grids: Consequences

patching lemma + shifted grids $\rightarrow k$ portals per cell suffice (see patching lemma)
expected snapping error $\leq \frac{2 H}{m+1}\left\|\pi_{\text {opt }}\right\|$
error for one intersection with an edge e of a cell $\leq 2 \frac{\|e\|}{2(m+1)}=\|e\| /(m+1)$
expected error for all intersections with a grid with side length Δ :
$\leq \frac{\sqrt{2}\left\|\pi_{o p t}\right\|}{\Delta} \frac{\Delta}{m+1} \leq 2\left\|\pi_{o p t}\right\| /(m+1)$
add over H levels of quadtree

Quality of Approximation

Introduced error when:

- snapping to the grid
- bounding the number of intersections at k per side of each square uses: patching lemma (+ shifting)
- requiring the use of portals

Quality of Approximation

Introduced error when:

- snapping to the grid
- bounding the number of intersections at k per side of each square uses: patching lemma (+ shifting)
- requiring the use of portals uses: shifting
$1+\frac{8}{k-2}$ $1+\frac{2 H}{m+1}$

Recall: $k=\frac{90}{\varepsilon}$ and $m \geq \frac{20 H}{\varepsilon}$

Quality of Approximation

Introduced error when:

- snapping to the grid

$$
1+\frac{\varepsilon}{2}
$$

- bounding the number of intersections at k per side of each square uses: patching lemma (+ shifting)
- requiring the use of portals uses: shifting
Recall: $k=\frac{90}{\varepsilon}$ and $m \geq \frac{20 H}{\varepsilon}$

$$
\begin{aligned}
\left(1+\frac{\varepsilon}{2}\right)\left(1+\frac{8}{k-2}\right)\left(1+\frac{2 H}{m+1}\right)\left\|\pi_{\mathrm{OPT}}\right\| & \leq\left(1+\frac{\varepsilon}{2}\right)\left(1+\frac{\varepsilon}{10}\right)^{2}\left\|\pi_{\mathrm{OPT}}\right\| \\
& \leq(1+\varepsilon)\left\|\pi_{\mathrm{OPT}}\right\|
\end{aligned}
$$

Summary

shifted quadtree with points snapped to grid
dynamic programming on quadtrees
running time: not too many subproblems, since subsquares only connect at few portals
correctness: patching lemma + shifting + snap to grid

Summary

shifted quadtree with points snapped to grid
dynamic programming on quadtrees
running time: not too many subproblems, since subsquares only connect at few portals
correctness: patching lemma + shifting + snap to grid

For a set P of n points in \mathbb{R}^{2} and $\varepsilon>0$, we can compute a tour π over P with expected length $(1+\varepsilon)\left\|\pi_{\text {OPT }}\right\|$ in time $\left(\varepsilon^{-1} \log n\right)^{\mathcal{O}(1 / \varepsilon)}$

