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Today: A polynomial-time approximation scheme (PTAS) for the ETSP
Gives for any fixed ε > 0 a polynomial-time (1 + ε)-algorithm
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Motivation
TSP: classic NP-hard optimization problem

Polynomial time approximation algorithms for TSP
• for general TSP: not possible
• for metric TSP: not possible with approximation factor < 123/122 ≈ 1.008,
Christofides: 1.5-approximation, first improved in 2020: 1.5− 10−36

• for ETSP: PTASs by Sanjeev Arora [1998] and Joe Mitchell [1999]
→ Gödel prize in 2010
today: Arora’s algorithm

https://xkcd.com/399/
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Dynamic programming on quadtrees

Portals on the boundaries

Evenly placed and on each corner

Move between squares only through portals

What defines a subproblem?
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Subproblems

Square S

Them+ 2 portals on each edge of S
Which portals are used

OrderM in which portals are used

1

3

5

4

2

6
Restrictions:
The solution takes each portal at most twice (patching lemma→ later)

Per side of S at most k portals can be used

Subproblem denoted (S,M)

Solution: length of the shortest partial tour
abiding byM
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A Good Quadtree

Problems with constructing a quadtree on P directly?

1. Depth not bounded

Solution

1. Snap points to a grid
2. Randomize the position of the initial square

2. When short tour edges intersect long quadtree edges:
next portal may be far away
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Restrictions on the problem
• P is contained in [ 1

2 , 1]2 and has diameter at least 1
4

• 1
n < ε < 1 the approximation factor where n = |P |

Grid of cells of width 1
nτ where τ =

⌈
32
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LetQ be P with snapped to nearest gridpoints
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Solution forQ can be converted to solution for P

1
nτ

1
nτ

√
2

nτ

Additional cost: ≤ 2n ·
√

2
2nτ ≤

√
2
τ ≤

4ε
32 ≤

ε
2 ·

1
4 ≤

ε
2 ||πopt||

y

z

xorig

x

Diameter of P is at least 1
4
, so an optimal solution must be at least as large

yorig
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A Good Quadtree - Height

LetQ a set of n points in the unit square such that its diameter is at least 1
2 . Let

T the quadtree ofQ constructed over the unit square. The depth of T is
bounded byO(log Φ(Q)), can be constructed inO(n log Φ(Q)) time, and is of
total sizeO(n log Φ(Q)).

Φ(Q) =
maxp,q∈Q ||p−q||
minp,q∈Q ||p−q|| =

√
2/2

1/(nτ) = nτ
√

2
2

HeightH = O
(

log nτ
√

2
2

)
= O

(
log n

ε

)
= O(log n)

Recall: Q contained in [ 1
2 , 1]2 and on grid of width 1

nτ

Diameter ofQ is at least 1
4 , so we may need one extra level

Similarly running time and storage ofO(n log n) follow

spread:



Algorithm

Construct quadtree T overQ with heightH
Let k = 90

ε = O( 1
ε ), m ≥ 20H

ε = O(ε−1 log n)

Initialization(Q):

Recursive(S,M):

1. if |QS | = O( 1
ε ) then return BruteForce(S,M)

2. minlength ←∞
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

6. minlength ← min(minlength, cost)
7. return minlength
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Algorithm

Recursive(S,M):
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

Ci is an arbitrary subproblem for child i
C contains one subproblem for each child

Valid: even number of portals per child. Portals
between children match and number of portals on
outside match with parent portals.
Outside portals have same order as parent

ParentConnect(C, S,M): total misalignment
between parent and child portals



Algorithm

Recursive(S,M):

1. if |QS | = O( 1
ε ) then return BruteForce(S,M)

2. minlength ←∞
3. for each combination C = [C1, C2, C3, C4] of subproblems of children at S:
4. if C is valid then:
5. cost← ParentConnect(C, S,M) +

∑4
i=1 Recursive(Ci)

6. minlength ← min(minlength, cost)
7. return minlength

Use memoization to make it a DP algorithm

Construct quadtree T overQ with heightH
Let k = 90

ε = O( 1
ε ), m ≥ 20H

ε = O(ε−1 log n)

Initialization(Q):
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Consider a square S and its portals
It has 4m+ 4 portals on its boundary, each of which is used at most twice
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Running Time

Recall: quadtree hadO(n log n) nodes and one square per node

Algorithm considers all combinations of subproblems for the squares of the
children for each node

The number of subproblems per child is at most T
The number of combinations for four children is T 4

Claim: brute force on a square withO
(

1
ε

)
points (base case) can

be done in T = (ε−1 log n)O(1/ε) time

O(n log n+ (n log n)T 5) = O((n log n)T 5) = n(ε−1 log n)O(1/ε)

Computing validity and ParentConnect: upper bounded byO(T ) time

Total running time:
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Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals
uses: patching lemma (+ shifting)

uses: shifting
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Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

s

p1

p2

p3

p4 q4

q3

q2

q1

Idea: construct an Eulerian tour including π
that crosses s at most twice

π
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E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}

and also add (pk, qk) if k is even

s
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Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

LetEπ be the set of edges each representing a connected component of π \ s

p1

p2

p3

p4 q4

q3
q2

q1

sG is connected and its vertices have even degree

E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}(∪{(pk, qk)})

Hence it admits an Eulerian tour π′

π′ visits all of π outside of s asEπ ⊆ E
π′ crosses s at most twice: at (p1, q1) and (pk, qk)
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Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

p1

p2

p3

p4 q4

q3
q2

q1
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E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}(∪{(pk, qk)})

||π′|| is the length of all edges inE



Patching Lemma
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||
Theorem: a connected graph admits an Eulerian tour if and only if its vertices
have even degree

p1

p2

p3

p4 q4

q3
q2

q1

s

E =
⋃k−1
i=1 {si, s′i} ∪ Eπ ∪

⋃k−1
i=1(odd){si, s′i} ∪ {(p1, q1)}(∪{(pk, qk)})

≤ 2||s|| ≤ 2||s||
||π′|| is the length of all edges inE

0

||π′|| ≤ ||π||+ 2||s|||+ 2||s|| = ||π||+ 4||s||

0||π||
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Patching Lemma: Consequences
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

Using portals only twice
apply lemma to portals← segments of length 0



Patching Lemma: Consequences
Patching lemma: closed curve π crossing segment s at least k ≥ 3 times can be
replaced by closed curve π′ crossing s at most twice such that ||π′|| ≤ ||π||+ 4||s||

Using portals only twice
apply lemma to portals← segments of length 0

Using only k portals of a square
bottom-up (i.e. starting with small cells): When> k intersections, patch!
intuition: patching on low levels: relatively cheap, and also helps higher levels

+ fewer (exponentially decreasing) intersections at higher levels: shifting



Shifted Grids
recall: shifted partition of real line
Let ∆ > 0 and b ∈ [0,∆] uniformly distributed. We shift the gridG∆ by b

0 ∆ 2∆ 3∆

Lemma: For x, y ∈ R holds P [hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|

∆ , 1
)hb,∆(x) = bx−b∆ c

x y
b− ∆ b b + ∆ b + 2∆

x+ ∆
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. . . generalizes to grids and quadtrees . . .
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recall: shifted partition of real line
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0 ∆ 2∆ 3∆

Lemma: For x, y ∈ R holds P [hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|

∆ , 1
)hb,∆(x) = bx−b∆ c
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. . . generalizes to grids and quadtrees . . .

Lemma: Let s be a segment in the plane, The probability that s intersects the
shifted grid of side length ∆ is at most

√
2‖s‖/∆.



Shifted Grids
recall: shifted partition of real line
Let ∆ > 0 and b ∈ [0,∆] uniformly distributed. We shift the gridG∆ by b

0 ∆ 2∆ 3∆

Lemma: For x, y ∈ R holds P [hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|

∆ , 1
)hb,∆(x) = bx−b∆ c

x y
b− ∆ b b + ∆ b + 2∆

x+ ∆

. . . generalizes to grids and quadtrees . . .

Lemma: Let s be a segment in the plane, The probability that s intersects the
shifted grid of side length ∆ is at most

√
2‖s‖/∆.

Furthermore the expected number of intersection of s with vertical and
horizonal lines ofG∆ is in the range

[
‖s‖/∆,

√
2‖s‖/∆

]



Shifted Grids: Consequences

patching lemma + shifted grids→ k portals per cell suffice
(see patching lemma)
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Shifted Grids: Consequences

patching lemma + shifted grids→ k portals per cell suffice
(see patching lemma)

expected snapping error≤ 2H
m+1‖πopt‖

error for one intersection with an edge e of a cell≤ 2 ‖e‖
2(m+1) = ‖e‖/(m+ 1)

expected error for all intersections with a grid with side length ∆:

≤
√

2‖πopt‖
∆

∆
m+1 ≤ 2‖πopt‖/(m+ 1)

add overH levels of quadtree



Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals
uses: patching lemma (+ shifting)

uses: shifting
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k−2

1 + 2H
m+1

Recall: k = 90
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uses: patching lemma (+ shifting)

uses: shifting



Quality of Approximation

Introduced error when:
• snapping to the grid

• bounding the number of intersections at k per side of each square

• requiring the use of portals

1 + ε
2

1 + 8
k−2

1 + 2H
m+1

Recall: k = 90
ε andm ≥ 20H

ε(
1 +

ε

2

)(
1 +

8

k − 2

)(
1 +

2H

m+ 1

)
||πOPT|| ≤

(
1 +

ε

2

)(
1 +

ε

10

)2

||πOPT||

≤ (1 + ε)||πOPT||

uses: patching lemma (+ shifting)

uses: shifting



Summary

dynamic programming on quadtrees

correctness: patching lemma + shifting + snap to grid

shifted quadtree with points snapped to grid

running time: not too many subproblems, since subsquares
only connect at few portals



Summary

dynamic programming on quadtrees

correctness: patching lemma + shifting + snap to grid

For a set P of n points in R2 and ε > 0, we can compute a tour π over P with
expected length (1 + ε)||πOPT|| in time (ε−1 log n)O(1/ε)

shifted quadtree with points snapped to grid

running time: not too many subproblems, since subsquares
only connect at few portals


