The power of grids

Geometric Approximation Algorithms

Overview

techniques

grids
randomization and backward analysis

geometric problems

closest pair
smallest disk enclosing k points cluster radius (exercise)

Cluster Radius

Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.

Cluster Radius

Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.

Cluster Radius

Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.

Question:

How fast can we compute the clustering radius?

Cluster Radius

Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.

Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

Closest Pair Problem

Input: point set P in the plane

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Motivation

- Fundamental problem in Computational Geometry
- Applications in Geographic Information Systems, e.g., find closest airplanes for air traffic control
- Subroutine in other algorithms, e.g., for clustering or matching
- Computing closest pair with grids instrumental for field of randomized algorithms

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Question:

How fast can we compute the closest pair?

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Question:

How fast can we compute the closest pair?
simple: $\Theta\left(n^{2}\right)$, with geometric techniques: $\Theta(n \log n)$

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Question:

How fast can we compute the closest pair?
simple: $\Theta\left(n^{2}\right)$, with geometric techniques: $\Theta(n \log n)$
Lower bound: $\Omega(n \log n)$ (algebraic computation tree model of computation)

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Question:

How fast can we compute the closest pair?
simple: $\Theta\left(n^{2}\right)$, with geometric techniques: $\Theta(n \log n)$
Lower bound: $\Omega(n \log n)$ (algebraic computation tree model of computation)

Our model: real RAM $+O(1)$-time floor (+ log-function) + hashing + randomization (Warning: floor function dangerous from perspective of complexity theory)

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Question:

How fast can we compute the closest pair?
simple: $\Theta\left(n^{2}\right)$, with geometric techniques: $\Theta(n \log n)$
Lower bound: $\Omega(n \log n)$ (algebraic computation tree model of computation)

Our model: real RAM $+O(1)$-time floor (+ log-function) + hashing + randomization (Warning: floor function dangerous from perspective of complexity theory)

Next: $O(n)$-time algorithm using grids + randomization

Closest Pair Problem

Input: point set P in the plane
Output: $p, q \in P,(p \neq q)$, minimizing $\|p-q\|$

Question:

How fast can we compute the closest pair?
simple: $\Theta\left(n^{2}\right)$, with geometric techniques: $\Theta(n \log n)$
Lower bound: $\Omega(n \log n)$ (algebraic computation tree model of computation)

Our model: real RAM + O(1)-time floor (+ log-function) + hashing + randomization (Warning: floor function dangerous from perspective of complexity theory)

Next: $O(n)$-time algorithm using grids + randomization
Firet step $O(n)$-time decision algorithm: $\quad \exists p, q \in P:\|p-q\|<\alpha ? \quad(p \neq q)$.

Closest Pair: Decision Problem (Algorithm)

Closest Pair: Decision Problem (Algorithm)

grid notation

G_{α} grid with side length α
cell with id (i, j) all points (x, y) with
$\alpha i \leq x<\alpha(i+1)$ and $\alpha j \leq y<\alpha(j+1)$

Closest Pair: Decision Problem (Algorithm)

grid notation

G_{α} grid with side length α
cell with id (i, j) all points (x, y) with
$\alpha i \leq x<\alpha(i+1)$ and $\alpha j \leq y<\alpha(j+1)$
for $p=(x, y): G_{\alpha}(p)=\left(\left\lfloor\frac{x}{\alpha}\right\rfloor \alpha,\left\lfloor\frac{y}{\alpha}\right\rfloor \alpha\right)$ lower left grid point of cell containing p
for $p=(x, y): i d(p)=\left(\left\lfloor\frac{x}{\alpha}\right\rfloor,\left\lfloor\frac{y}{\alpha}\right\rfloor\right)$

Closest Pair: Decision Problem (Algorithm)

grid notation

G_{α} grid with side length α
cell with id (i, j) all points (x, y) with
$\alpha i \leq x<\alpha(i+1)$ and $\alpha j \leq y<\alpha(j+1)$
for $p=(x, y): G_{\alpha}(p)=\left(\left\lfloor\frac{x}{\alpha}\right\rfloor \alpha,\left\lfloor\frac{y}{\alpha}\right\rfloor \alpha\right)$ lower left grid point of cell containing p
for $p=(x, y): i d(p)=\left(\left\lfloor\frac{x}{\alpha}\right\rfloor,\left\lfloor\frac{y}{\alpha}\right\rfloor\right)$
grid cluster: block of 3×3 cells

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true
3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $<\alpha$ found

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true
3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $<\alpha$ found

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true
3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $<\alpha$ found
4. If checks in $2 .+3$. fail, return false

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true
3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $<\alpha$ found
4. If checks in $2 .+3$. fail, return false

Correctness

???

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true
3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $<\alpha$ found
4. If checks in $2 .+3$. fail, return false

Correctness

Line 2: If >4 points in cell

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true
3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $<\alpha$ found
4. If checks in $2 .+3$. fail, return false

Correctness

Line 2: If >4 points in cell
$\Rightarrow \exists p, q$ in a subcell of sidelength $\frac{\alpha}{2}$
$\Rightarrow\|p-q\|<\sqrt{2} \frac{\alpha}{2}<\alpha$

Closest Pair: Decision Problem (Algorithm)

1. Hash every point $p=\left(p_{x}, p_{y}\right)$ to grid cell $\left(\left\lfloor\frac{p_{x}}{\alpha}\right\rfloor,\left\lfloor\frac{p_{y}}{\alpha}\right\rfloor\right)$
2. If \exists cell with >4 points: return true
3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $<\alpha$ found
4. If checks in $2 .+3$. fail, return false

Correctness

Line 2: If >4 points in cell
$\Rightarrow \exists p, q$ in a subcell of sidelength $\frac{\alpha}{2}$
$\Rightarrow\|p-q\|<\sqrt{2} \frac{\alpha}{2}<\alpha$

Running time

$O($ (第 $)+O(n)+n \cdot O(9 \cdot 4)+O(1)=O(n)$

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)
Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)
Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

First step: Decision problem

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)
Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

First step: Decision problem

A^{\prime}) Give an $O(n+k)$ algorithm (for given $\alpha^{\prime} \geq 0$) that outputs

$$
\begin{cases}\text { true } & \text { if } r \leq \alpha^{\prime} \\ \text { false } & \text { if } r>2 \sqrt{2} \alpha^{\prime} \\ \text { true or false } & \text { if } \alpha^{\prime}<r \leq 2 \sqrt{2} \alpha^{\prime}\end{cases}
$$

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)
Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

First step: Decision problem
A^{\prime}) Give an $O(n+k)$ algorithm (for given $\alpha^{\prime} \geq 0$) that outputs

$$
\begin{cases}\text { true } & \text { if } r \leq \alpha^{\prime} \\ \text { false } & \text { if } r>2 \sqrt{2} \alpha^{\prime} \\ \text { true or false } & \text { if } \alpha^{\prime}<r \leq 2 \sqrt{2} \alpha^{\prime}\end{cases}
$$

Needs to correctly decide $r \leq \alpha^{\prime}$, except if r only slightly larger

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$
3. Run decision algorithm incrementally: add p_{i} one-by-one
if $\exists j<i: \alpha^{\prime}:=\left\|p_{i}-p_{j}\right\|<\alpha$, restart with $\alpha=\alpha^{\prime}$

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$
3. Run decision algorithm incrementally: add p_{i} one-by-one
if $\exists j<i: \alpha^{\prime}:=\left\|p_{i}-p_{j}\right\|<\alpha$, restart with $\alpha=\alpha^{\prime}$

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$
3. Run decision algorithm incrementally: add p_{i} one-by-one
if $\exists j<i: \alpha^{\prime}:=\left\|p_{i}-p_{j}\right\|<\alpha$, restart with $\alpha=\alpha^{\prime}$

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$
3. Run decision algorithm incrementally: add p_{i} one-by-one
if $\exists j<i: \alpha^{\prime}:=\left\|p_{i}-p_{j}\right\|<\alpha$, restart with $\alpha=\alpha^{\prime}$
4. return α

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$
3. Run decision algorithm incrementally: add p_{i} one-by-one
if $\exists j<i: \alpha^{\prime}:=\left\|p_{i}-p_{j}\right\|<\alpha$, restart with $\alpha=\alpha^{\prime}$
4. return α

Correctness

Follows from correctness of decision algorithm

Running time

???

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$
3. Run decision algorithm incrementally: add p_{i} one-by-one
if $\exists j<i: \alpha^{\prime}:=\left\|p_{i}-p_{j}\right\|<\alpha$, restart with $\alpha=\alpha^{\prime}$
4. return α

Correctness

Follows from correctness of decision algorithm

Running time

worst-case: restart for every $i: \sum \Theta(i)=\Theta\left(n^{2}\right)$

Closest Pair: Randomized Algorithm

Compute $\|p-q\|$ of closest pair

1. p_{1}, \ldots, p_{n} points of P in random order
2. $\alpha=\left\|p_{1}-p_{2}\right\|$
3. Run decision algorithm incrementally: add p_{i} one-by-one
if $\exists j<i: \alpha^{\prime}:=\left\|p_{i}-p_{j}\right\|<\alpha$, restart with $\alpha=\alpha^{\prime}$
4. return α

Correctness

Follows from correctness of decision algorithm

Running time

worst-case: restart for every $i: \sum \Theta(i)=\Theta\left(n^{2}\right)$
expected case?

Closest Pair: Expected case
Backwards analysis

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability $\leq 2 / i$

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability $\leq 2 / i$

$\mathrm{E}\left[\right.$ Time to insert $\left.p_{i}\right]=$

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability $\leq 2 / i$

E[Time to insert $\left.p_{i}\right]=O(i) \cdot 2 / i$

time • probability rebuilding the grid

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability $\leq 2 / i$

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability $\leq 2 / i$

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change?
\rightarrow probability $\leq 2 / i$

E[Time to insert $\left.p_{i}\right]=O(i) \cdot 2 / i \quad+\quad O(1) \cdot 1 \quad=O(2 i / i+1)=O(1)$ time • probability otherwise rebuilding the grid
$\mathrm{E}[$ Overall running time $]=n \cdot O(1)=O(n)$

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.

Which points would have caused the grid to change? \rightarrow probability $\leq 2 / i$
more formally

α_{i} : closest pair distance of first i points
$X_{i}=\mathbb{\pi}_{\left\{\alpha_{i-1}<\alpha_{i}\right\}}$ indicator variable

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.
Which points would have caused the grid to change? \rightarrow probability $\leq 2 / i$
more formally

α_{i} : closest pair distance of first i points
$X_{i}=\mathbb{T}_{\left\{\alpha_{i-1}<\alpha_{i}\right\}}$ indicator variable
running time proportional to $R=1+\sum_{i=3}^{n}\left(1+i X_{i}\right)$

$$
\begin{aligned}
E[R] & =E\left[1+\sum_{i=3}^{n}\left(1+i \cdot X_{i}\right)\right] \leq n+\sum_{i=3}^{n} i \cdot E\left[X_{i}\right]=n+\sum_{i=3}^{n} i \cdot \operatorname{Pr}\left[X_{i}=1\right] \\
& \leq n+\sum_{i=3}^{n} i \cdot 2 / i \leq 3 n
\end{aligned}
$$

Closest Pair: Expected case

Backwards analysis

To analyze insertion of p_{i} : consider grid after inserting p_{i}.
Which points would have caused the grid to change? \rightarrow probability $\leq 2 / i$

more formally

α_{i} : closest pair distance of first i points
$X_{i}=\mathbb{T}_{\left\{\alpha_{i-1}<\alpha_{i}\right\}}$ indicator variable
running time proportional to $R=1+\sum_{i=3}^{n}\left(1+i X_{i}\right)$

$$
\begin{aligned}
E[R] & =E\left[1+\sum_{i=3}^{n}\left(1+i \cdot X_{i}\right)\right] \leq n+\sum_{i=3}^{n} i \cdot E\left[X_{i}\right]=n+\sum_{i=3}^{n} i \cdot \operatorname{Pr}\left[X_{i}=1\right] \\
& \leq n+\sum_{i=3}^{n} i \cdot 2 / i \leq 3 n
\end{aligned}
$$

Quiz

How often do we need to rebuild the grid in expectation?
A $O(1)$
B $O(\log n)$
C $O(n)$

Quiz

How often do we need to rebuild the grid in expectation?
A $\quad 0(1)$
B $O(\log n)$
C $O(n)$

Quiz

How often do we need to rebuild the grid in expectation?
A $O(1)$
B $O(\log n)$
C $O(n)$

$E\left[\sum_{i=3}^{n} X_{i}\right]=\sum_{i=3}^{n} E\left[X_{i}\right] \leq \sum_{i=3}^{n} 2 / i \leq \int_{3}^{n+1} 1 / x d x=O(\log n)$

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

We already know how to:

A^{\prime}) Give an $O(n+k)$ algorithm (for given $\alpha^{\prime} \geq 0$) that outputs

$$
\begin{cases}\text { true } & \text { if } r \leq \alpha^{\prime} \\ \text { false } & \text { if } r>2 \sqrt{2} \alpha^{\prime} \\ \text { true or false } & \text { if } \alpha^{\prime}<r \leq 2 \sqrt{2} \alpha^{\prime}\end{cases}
$$

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

We already know how to:

A^{\prime}) For given α^{\prime}, build a grid on C and return for a given
$p \in P$ with distance r to C :
$\begin{cases}\text { true } & \text { if } r \leq \alpha^{\prime} \\ \text { false } & \text { if } r>2 \sqrt{2} \alpha^{\prime} \\ \text { true or false } & \text { if } \alpha^{\prime}<r \leq 2 \sqrt{2} \alpha^{\prime}\end{cases}$

Exercise 1.2 (A): Decision Problem

Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.

We already know how to:

A^{\prime}) For given α^{\prime}, build a grid on C and return for a given
$p \in P$ with distance r to C :

$$
\begin{cases}\text { true } & \text { if } r \leq \alpha^{\prime} \\ \text { false } & \text { if } r>2 \sqrt{2} \alpha^{\prime} \\ \text { true or false } & \text { if } \alpha^{\prime}<r \leq 2 \sqrt{2} \alpha^{\prime}\end{cases}
$$

Note: Careful in backward analysis (e.g. use canonical grids, i.e., change size by powers of 2)
k-enclosing Disk Problem

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$ Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$
Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$ Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$

Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$ Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$

Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

-

Question: If we generalize the closest pair algorithm, which issues arise?
Question: Where do we place (the centers of) disks?

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$ Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$

Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?
Question: Where do we place (the centers of) disks?
Question: Simple $O\left(n^{2}\right)$-time 2-approximation?

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$

Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?
Question: Where do we place (the centers of) disks?
Question: Simple $O\left(n^{2}\right)$-time 2-approximation?
Question: If we generalize the closest pair algorithm with centers at point, what is the expected running time?

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$

Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?
Question: Where do we place (the centers of) disks?
Question: Simple $O\left(n^{2}\right)$-time 2-approximation?
Question: If we generalize the closest pair algorithm with centers at point, what is the expected running time?
$\rightarrow O\left(n k^{2}\right)$, too many centers, too many updates

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$
Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?
Question: Where do we place (the centers of) disks?
Question: Simple $O\left(n^{2}\right)$-time 2-approximation?
Question: If we generalize the closest pair algorithm with centers at point, what is the expected running time?
$\rightarrow O\left(n k^{2}\right)$, too many centers, too many updates
next: $O\left(n(n / k)^{2}\right)$-time 2-approximation; can be used to get $O(n)$-time 2-approximation

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$

Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

- compute $m=O(n / k)$ horizontal lines h_{1}, \ldots, h_{m}, s.t. there are at most $k / 4$ points of P in between two consecutive lines

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$
Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

- compute $m=O(n / k)$ horizontal lines h_{1}, \ldots, h_{m},
s.t. there are at most $k / 4$ points of P in between two consecutive lines
- compute $m=O(n / k)$ vertical lines v_{1}, \ldots, v_{m},
s.t. there are at most $k / 4$ points of P in between two consecutive lines

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$
Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

- compute $m=O(n / k)$ horizontal lines h_{1}, \ldots, h_{m},
s.t. there are at most $k / 4$ points of P in between two consecutive lines
- compute $m=O(n / k)$ vertical lines v_{1}, \ldots, v_{m},
s.t. there are at most $k / 4$ points of P in between two consecutive lines
- for each intersection point x of these lines compute the smallest disk containing k points of P

k-enclosing Disk Problem

Input: point set P in the plane and $k \in \mathbb{N}$
Output: smallest k-enclosing disk, i.e., $\left|B_{\varepsilon} \cap P\right| \geq k$
Observe: For a set P of n points, $q \in R^{2}$ and $k \in \mathbb{N}$, the k closest points to q can be found in $O(n)$ time.

Approximation algorithm

- compute $m=O(n / k)$ horizontal lines h_{1}, \ldots, h_{m},
s.t. there are at most $k / 4$ points of P in between two consecutive lines
- compute $m=O(n / k)$ vertical lines v_{1}, \ldots, v_{m},
s.t. there are at most $k / 4$ points of P in between two consecutive lines
- for each intersection point x of these lines compute the smallest disk containing k points of P
- return the smallest disk found

k-enclosing Disk Problem: Analysis

Runtime:

- Steps 1,2 can be achieved by recursively adding median lines, until at most $k / 4$ points left

k-enclosing Disk Problem: Analysis

Runtime:

- Steps 1,2 can be achieved by recursively adding median lines, until at most $k / 4$ points left

Recurrence: $T(n)=2 T(n / 2)+O(n)$ stopping at $n \leq k / 4 \quad \rightarrow \quad O(n \log (n / k))$

k-enclosing Disk Problem: Analysis

Runtime:

- Steps 1,2 can be achieved by recursively adding median lines, until at most $k / 4$ points left

Recurrence: $T(n)=2 T(n / 2)+O(n)$ stopping at $n \leq k / 4 \quad \rightarrow O(n \log (n / k))$

- Step 3 takes $O(n)$ time for each of the m^{2} grid points, where $m=O(n / k)$ $\rightarrow O(n(n / k))^{2}$ time

k-enclosing Disk Problem: Analysis

Runtime:

- Steps 1,2 can be achieved by recursively adding median lines, until at most $k / 4$ points left

Recurrence: $T(n)=2 T(n / 2)+O(n)$ stopping at $n \leq k / 4 \quad \rightarrow O(n \log (n / k))$

- Step 3 takes $O(n)$ time for each of the m^{2} grid points, where $m=O(n / k)$ $\rightarrow O(n(n / k))^{2}$ time

Approximation ratio: Observe that the optimal disk contains at least one grid point \rightarrow 2-Approximation

k-enclosing Disk Problem: Analysis

Runtime:

- Steps 1,2 can be achieved by recursively adding median lines, until at most $k / 4$ points left

Recurrence: $T(n)=2 T(n / 2)+O(n)$ stopping at $n \leq k / 4 \quad \rightarrow O(n \log (n / k))$

- Step 3 takes $O(n)$ time for each of the m^{2} grid points, where $m=O(n / k)$ $\rightarrow O(n(n / k))^{2}$ time

Approximation ratio: Observe that the optimal disk contains at least one grid point
 \rightarrow 2-Approximation

If disk B contains no grid point, then $B \subset \mathcal{H} \cup \mathcal{V}$ for a horizonal slab \mathcal{H} and vertical slab \mathcal{V}

k-enclosing Disk Problem: Analysis

Runtime:

- Steps 1,2 can be achieved by recursively adding median lines, until at most $k / 4$ points left

Recurrence: $T(n)=2 T(n / 2)+O(n)$ stopping at $n \leq k / 4 \quad \rightarrow O(n \log (n / k))$

- Step 3 takes $O(n)$ time for each of the m^{2} grid points, where $m=O(n / k)$ $\rightarrow O(n(n / k))^{2}$ time

Approximation ratio: Observe that the optimal disk contains at least one grid point
 \rightarrow 2-Approximation

If disk B contains no grid point, then $B \subset \mathcal{H} \cup \mathcal{V}$ for a horizonal slab \mathcal{H} and vertical slab \mathcal{V}
$\rightarrow|P \cap B| \leq k / 4+k / 4=k / 2<k$

k-enclosing Disk Problem: Analysis

Runtime:

- Steps 1,2 can be achieved by recursively adding median lines, until at most $k / 4$ points left

Recurrence: $T(n)=2 T(n / 2)+O(n)$ stopping at $n \leq k / 4 \quad \rightarrow O(n \log (n / k))$

- Step 3 takes $O(n)$ time for each of the m^{2} grid points, where $m=O(n / k)$ $\rightarrow O(n(n / k))^{2}$ time

Approximation ratio: Observe that the optimal disk contains at least one grid point
 \rightarrow 2-Approximation

If disk B contains no grid point, then $B \subset \mathcal{H} \cup \mathcal{V}$ for a horizonal slab \mathcal{H} and vertical slab \mathcal{V}
$\rightarrow|P \cap B| \leq k / 4+k / 4=k / 2<k$
Using grids we can compute a 2-approximation of the k-enclosing disk in $O\left(n(n / k)^{2}\right)$ time.

Quiz

Given P let $r_{\text {OPT }}$ be the radius of the smallest k-enclosing disk. If $\alpha<2 r_{\text {OPT }}$, what can we say about the maximum number $g d_{\alpha}$ of points in any cell of G_{α} ?

A $g d_{\alpha} \leq 1$
B $\quad g d_{\alpha} \leq 5 k$
C $g d_{\alpha}$ can be arbitrary large $(\leq n)$

Quiz

Given P let $r_{\text {OPT }}$ be the radius of the smallest k-enclosing disk. If $\alpha<2 r_{\text {OPT }}$, what can we say about the maximum number $g d_{\alpha}$ of points in any cell of G_{α} ?

A $g d_{\alpha} \leq 1$
B $\quad g d_{\alpha} \leq 5 k$
C $g d_{\alpha}$ can be arbitrary large $(\leq n)$

Quiz

Given P let $r_{\text {OPT }}$ be the radius of the smallest k-enclosing disk. If $\alpha<2 r_{\text {OPT }}$, what can we say about the maximum number gd_{α} of points in any cell of G_{α} ?

A $g d_{\alpha} \leq 1$
B $\quad g d_{\alpha} \leq 5 k$
C $g d_{\alpha}$ can be arbitrary large $(\leq n)$

Linear-time 2-approximation for k-enclosing disk

k-Gradation: $P_{1} \subset P_{2} \subset P_{m}=P$ such that
(a) any point $p \in P_{i+1}$ is indepently with probability $1 / 2$ included in P_{i},
(b) $\left|P_{1}\right| \leq k$ and $\left|P_{2}\right|>k$
we name previous algorithm algSlow: outputs an α

Linear-time 2-approximation for k-enclosing disk

k-Gradation: $P_{1} \subset P_{2} \subset P_{m}=P$ such that
(a) any point $p \in P_{i+1}$ is indepently with probability $1 / 2$ included in P_{i},
(b) $\left|P_{1}\right| \leq k$ and $\left|P_{2}\right|>k$
we name previous algorithm algSlow: outputs an α

Algorithm

Compute gradation P_{1}, \ldots, P_{m}
$\alpha_{1} \leftarrow \operatorname{algSlow}\left(P_{1}\right)$
for $i=2, \ldots, m$ do
$\alpha_{i} \leftarrow \operatorname{algGrow}\left(P_{i}, \alpha_{i-1}\right)$
return α_{m}

Linear-time 2-approximation for k-enclosing disk

k-Gradation: $P_{1} \subset P_{2} \subset P_{m}=P$ such that
(a) any point $p \in P_{i+1}$ is indepently with probability $1 / 2$ included in P_{i},
(b) $\left|P_{1}\right| \leq k$ and $\left|P_{2}\right|>k$
we name previous algorithm algSlow: outputs an α

Algorithm

Compute gradation P_{1}, \ldots, P_{m}
$\alpha_{1} \leftarrow \operatorname{algSlow}\left(P_{1}\right)$
for $i=2, \ldots, m$ do
$\alpha_{i} \leftarrow \operatorname{algGrow}\left(P_{i}, \alpha_{i-1}\right)$
return α_{m}
$\operatorname{AlgGrow}\left(P_{i}, \alpha_{i-1}\right)$
for every grid cluster c with $\geq k$ points: compute $\alpha_{c} \rightarrow$ algSlow $\left(c \cap P_{i}\right)$ return the minimum of these α_{c}

Linear-time 2-approximation for k-enclosing disk

k-Gradation: $P_{1} \subset P_{2} \subset P_{m}=P$ such that
(a) any point $p \in P_{i+1}$ is indepently with probability $1 / 2$ included in P_{i},
(b) $\left|P_{1}\right| \leq k$ and $\left|P_{2}\right|>k$
we name previous algorithm algSlow: outputs an α

Algorithm

Compute gradation P_{1}, \ldots, P_{m}
$\alpha_{1} \leftarrow \operatorname{algSlow}\left(P_{1}\right)$
for $i=2, \ldots, m$ do
$\alpha_{i} \leftarrow \operatorname{algGrow}\left(P_{i}, \alpha_{i-1}\right)$
return α_{m}
$\operatorname{AlgGrow}\left(P_{i}, \alpha_{i-1}\right)$
for every grid cluster c with $\geq k$ points: compute $\alpha_{c} \rightarrow$ algSlow $\left(c \cap P_{i}\right)$ return the minimum of these α_{c}

Analysis:discussion + see book

Outline

1. Closest Pair Problem - part 1 Exercise 1.2 (A) - part 1
2. Closest Pair Problem - part 2 Exercise 1.2 (A) - part 2
3. k-enclosing Disk Problem
4. $(1+\varepsilon)$-approximation: Exercise 1.2 (B)

Exercise 1.2 (B)

Compute clustering radius (Exercise 1.2 from book)
Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|P|$. Let $r=\max _{p \in P} \min _{c \in C}\|c-p\|$ be the covering radius of P by C.
A) Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 10 r$.
B) For $\varepsilon>0$, give an $O\left(n+k \varepsilon^{-2} \log n\right)$ expected time
 algorithm that outputs a number α, such that $\alpha \leq r \leq(1+\varepsilon) \alpha$.

Exercise 1.2 (B)

For $\varepsilon>0$, give an $O\left(n+k \varepsilon^{-2} \log n\right)$ expected time algorithm that outputs a number α, such that $\alpha \leq r \leq(1+\varepsilon) \alpha$.

Summary

Using grids for approximation

closest pair (exact)

k-enclosing disk

cluster radius

Summary

Using grids for approximation

closest pair (exact)

k-enclosing disk

cluster radius

Techniques

- approximate decision problem allows to fix the grid
- reduce optimization problem to decision problem using few calls: randomization (in other settings also binary search)
- grid vertices as candidate solution
- $(1+\varepsilon)$-approximation: grid cells of sidelength $O(\alpha \varepsilon) \quad$ (do Exercise 1.2.B!)

