The power of grids

Geometric Approximation Algorithms

Overview

techniques

grids randomization and backward analysis

geometric problems

closest pair smallest disk enclosing *k* points cluster radius (exercise)

Exercise 1.2.A from book:

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

Exercise 1.2.A from book:

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

Exercise 1.2.A from book:

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

Question:

How fast can we compute the clustering radius?

Exercise 1.2.A from book:

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

Input: point set *P* in the plane

Input: point set *P* in the plane

Output: $p,q \in P$, (p
eq q), minimizing $\|p - q\|$

Input: point set *P* in the plane

Output: $p,q \in P$, ($p \neq q$), minimizing $\|p - q\|$

Motivation

- Fundamental problem in Computational Geometry
- Applications in Geographic Information Systems, e.g., find closest airplanes for air traffic control
- Subroutine in other algorithms, e.g., for clustering or matching
- Computing closest pair with grids instrumental for field of randomized algorithms

Input: point set *P* in the plane

Output: $p, q \in P$, (p
eq q), minimizing $\|p - q\|$

Question:

How fast can we compute the closest pair?

Input: point set *P* in the plane

Output: $p, q \in P$, $(p \neq q)$, minimizing ||p - q||

Question:

How fast can we compute the closest pair?

simple: $\Theta(n^2)$, with geometric techniques: $\Theta(n \log n)$

Input: point set *P* in the plane

Output: $p, q \in P$, $(p \neq q)$, minimizing ||p - q||

Question:

How fast can we compute the closest pair?

simple: $\Theta(n^2)$, with geometric techniques: $\Theta(n \log n)$ Lower bound: $\Omega(n \log n)$ (algebraic computation tree

model of computation)

Input: point set *P* in the plane

Output: $p,q \in P$, ($p \neq q$), minimizing $\|p - q\|$

Question:

How fast can we compute the closest pair?

simple: $\Theta(n^2)$, with geometric techniques: $\Theta(n \log n)$

Lower bound: $\Omega(n \log n)$ (algebraic computation tree model of computation)

Our model: real RAM + O(1)-time floor (+ *log*-function) + hashing + randomization (Warning: floor function dangerous from perspective of complexity theory)

Input: point set *P* in the plane

Output: $p,q \in P$, (p
eq q), minimizing $\|p - q\|$

Question:

How fast can we compute the closest pair?

simple: $\Theta(n^2)$, with geometric techniques: $\Theta(n \log n)$

Lower bound: $\Omega(n \log n)$ (algebraic computation tree model of computation)

Our model: real RAM + O(1)-time floor (+ *log*-function) + hashing + randomization (Warning: floor function dangerous from perspective of complexity theory)

Next: *O*(*n*)-time algorithm using grids + randomization

Input: point set *P* in the plane

Output: $p,q \in P$, ($p \neq q$), minimizing $\|p - q\|$

Question:

How fast can we compute the closest pair?

simple: $\Theta(n^2)$, with geometric techniques: $\Theta(n \log n)$

Lower bound: $\Omega(n \log n)$ (algebraic computation tree model of computation)

Our model: real RAM + O(1)-time floor (+ *log*-function) + hashing + randomization (Warning: floor function dangerous from perspective of complexity theory)

Next: *O*(*n*)-time algorithm using grids + randomization

First step O(n)-time decision algorithm: $\exists p, q \in P : ||p - q|| < \alpha$? $(p \neq q)$.

 $\exists p, q \in P: ||p - q|| < \alpha?$

grid notation

 \mathbf{G}_{lpha} grid with side length lpha

cell with id (*i*, *j*) all points (*x*, *y*) with $\alpha i \leq x < \alpha (i + 1)$ and $\alpha j \leq y < \alpha (j + 1)$

grid notation

 ${\bf G}_{lpha}$ grid with side length lpha

cell with id (*i*, *j*) all points (*x*, *y*) with $\alpha i \leq x < \alpha (i + 1)$ and $\alpha j \leq y < \alpha (j + 1)$

for p = (x, y): $G_{\alpha}(p) = (\lfloor \frac{x}{\alpha} \rfloor \alpha, \lfloor \frac{y}{\alpha} \rfloor \alpha)$ lower left grid point of cell containing p

for p = (x, y): $id(p) = (\lfloor \frac{x}{\alpha} \rfloor, \lfloor \frac{y}{\alpha} \rfloor)$

grid notation

 ${\bf G}_{lpha}$ grid with side length lpha

cell with id (*i*, *j*) all points (*x*, *y*) with $\alpha i \leq x < \alpha (i + 1)$ and $\alpha j \leq y < \alpha (j + 1)$

for p = (x, y): $G_{\alpha}(p) = (\lfloor \frac{x}{\alpha} \rfloor \alpha, \lfloor \frac{y}{\alpha} \rfloor \alpha)$ lower left grid point of cell containing p

for p = (x, y): $id(p) = (\lfloor \frac{x}{\alpha} \rfloor, \lfloor \frac{y}{\alpha} \rfloor)$

grid cluster: block of 3×3 cells

1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$

1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$

2. If \exists cell with > 4 points: return true

- 1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$
- 2. If \exists cell with > 4 points: return true
- 3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $< \alpha$ found

- 1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$
- 2. If \exists cell with > 4 points: return true

3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $< \alpha$ found

- 1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$
- 2. If \exists cell with > 4 points: return true
- 3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $< \alpha$ found
- 4. If checks in 2.+3. fail, return false

1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$

- 2. If \exists cell with > 4 points: return true
- 3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $< \alpha$ found
- 4. If checks in 2.+3. fail, return false

Correctness

???

1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$

- 2. If \exists cell with > 4 points: return true
- 3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $< \alpha$ found
- 4. If checks in 2.+3. fail, return false

 $\exists p, q \in P: ||p - q|| < \alpha?$

Correctness

Line 2: If > 4 points in cell

1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$

- 2. If \exists cell with > 4 points: return true
- 3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $< \alpha$ found
- 4. If checks in 2.+3. fail, return false

Correctness

Line 2: If > 4 points in cell $\Rightarrow \exists p, q \text{ in a subcell of sidelength } \frac{\alpha}{2}$ $\Rightarrow ||p - q|| < \sqrt{2}\frac{\alpha}{2} < \alpha$

1. Hash every point $p = (p_x, p_y)$ to grid cell $(\lfloor \frac{p_x}{\alpha} \rfloor, \lfloor \frac{p_y}{\alpha} \rfloor)$

- 2. If \exists cell with > 4 points: return true
- 3. For every $p \in P$: check distance to other points in grid cluster (cell +8 neighboring cells) return true if distance $< \alpha$ found
- 4. If checks in 2.+3. fail, return false

Correctness

Line 2: If > 4 points in cell

 $\Rightarrow \exists p, q \text{ in a subcell of sidelength } \frac{\alpha}{2} \\ \Rightarrow \|p - q\| < \sqrt{2} \frac{\alpha}{2} < \alpha$

R = ning time $O(n) + O(n) + n \cdot O(9 \cdot 4) + O(1) = O(n)$

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

First step: Decision problem

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

First step: Decision problem

A') Give an O(n + k) algorithm (for given $\alpha' \ge 0$) that

outputs $frueif <math>r \le \alpha'$ falseif $r > 2\sqrt{2}\alpha'$ true or falseif $\alpha' < r \le 2\sqrt{2}\alpha'$

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

First step: Decision problem

A') Give an O(n + k) algorithm (for given $\alpha' \ge 0$) that

outputs
$$frueif $r \leq \alpha'$ falseif $r > 2\sqrt{2}\alpha'$ true or falseif $\alpha' < r \leq 2\sqrt{2}\alpha'$$$

Needs to correctly decide $r \leq \alpha'$, except if r only slightly larger

Compute $\| p - q \|$ of closest pair

Compute $\| p - q \|$ of closest pair

1. p_1, \ldots, p_n points of *P* in random order

Compute $\|p-q\|$ of closest pair

1. p_1, \dots, p_n points of *P* in random order 2. $\alpha = ||p_1 - p_2||$

Compute $\| p - q \|$ of closest pair

- 1. $p_1, ..., p_n$ points of *P* in random order
- 2. $\alpha = \|p_1 p_2\|$
- 3. Run decision algorithm incrementally: add p_i one-by-one if $\exists j < i: \alpha' := ||p_i - p_j|| < \alpha$, restart with $\alpha = \alpha'$

Compute $\| p - q \|$ of closest pair

- 1. $p_1, ..., p_n$ points of *P* in random order
- 2. $\alpha = \|p_1 p_2\|$
- 3. Run decision algorithm incrementally: add p_i one-by-one if $\exists j < i: \alpha' := ||p_i - p_j|| < \alpha$, restart with $\alpha = \alpha'$

Compute $\| p - q \|$ of closest pair

- 1. $p_1, ..., p_n$ points of *P* in random order
- 2. $\alpha = \|p_1 p_2\|$
- 3. Run decision algorithm incrementally: add p_i one-by-one if $\exists j < i: \alpha' := ||p_i - p_j|| < \alpha$, restart with $\alpha = \alpha'$

Compute $\| p - q \|$ of closest pair

- 1. $p_1, ..., p_n$ points of *P* in random order
- 2. $\alpha = \|p_1 p_2\|$
- 3. Run decision algorithm incrementally: add p_i one-by-one if $\exists j < i: \alpha' := ||p_i - p_j|| < \alpha$, restart with $\alpha = \alpha'$

4. return α

Compute $\| p - q \|$ of closest pair

- 1. $p_1, ..., p_n$ points of *P* in random order
- 2. $\alpha = \|p_1 p_2\|$
- 3. Run decision algorithm incrementally: add p_i one-by-one if $\exists j < i: \alpha' := ||p_i - p_j|| < \alpha$, restart with $\alpha = \alpha'$

4. return α

Correctness

Follows from correctness of decision algorithm

Running time

???

Compute $\| p - q \|$ of closest pair

- 1. p_1, \ldots, p_n points of *P* in random order
- 2. $\alpha = \|p_1 p_2\|$
- 3. Run decision algorithm incrementally: add p_i one-by-one if $\exists j < i: \alpha' := ||p_i - p_j|| < \alpha$, restart with $\alpha = \alpha'$

4. return α

Correctness

Follows from correctness of decision algorithm

Running time

worst-case: restart for every *i*: $\sum \Theta(i) = \Theta(n^2)$

Compute $\| p - q \|$ of closest pair

- 1. $p_1, ..., p_n$ points of *P* in random order
- 2. $\alpha = \|p_1 p_2\|$
- 3. Run decision algorithm incrementally: add p_i one-by-one if $\exists j < i: \alpha' := ||p_i - p_j|| < \alpha$, restart with $\alpha = \alpha'$

4. return α

Correctness

Follows from correctness of decision algorithm

Running time

worst-case: restart for every *i*: $\sum \Theta(i) = \Theta(n^2)$ expected case?

Backwards analysis

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

E[Time to insert p_i] =

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

E[Time to insert p_i] = $O(i) \cdot 2/i$ \uparrow \uparrow \downarrow time \cdot probability rebuilding the grid

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

E[Time to insert
$$p_i$$
] = $O(i) \cdot 2/i$ + $O(1) \cdot 1$
 $\oint \quad \oint \quad \oint$
time \cdot probability otherwise
rebuilding the grid

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

E[Overall running time] = $n \cdot O(1) = O(n)$

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

more formally

 α_i : closest pair distance of first *i* points $X_i = \mathbb{1}_{\{\alpha_{i-1} < \alpha_i\}}$ indicator variable

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

more formally

 α_i : closest pair distance of first *i* points $X_i = \mathbb{1}_{\{\alpha_{i-1} < \alpha_i\}}$ indicator variable

running time proportional to $R = 1 + \sum_{i=3}^{n} (1 + iX_i)$ $E[R] = E[1 + \sum_{i=3}^{n} (1 + i \cdot X_i)] \leq n + \sum_{i=3}^{n} i \cdot E[X_i] = n + \sum_{i=3}^{n} i \cdot Pr[X_i = 1]$ $\leq n + \sum_{i=3}^{n} i \cdot 2/i \leq 3n$

Backwards analysis

To analyze insertion of p_i : consider grid after inserting p_i .

Which points would have caused the grid to change? \rightarrow probability $\leq 2/i$

more formally

 α_i : closest pair distance of first *i* points $X_i = \mathbb{1}_{\{\alpha_{i-1} < \alpha_i\}}$ indicator variable

running time proportional to $R = 1 + \sum_{i=3}^{n} (1 + iX_i)$ $E[R] = E[1 + \sum_{i=3}^{n} (1 + i \cdot X_i)] \leq n + \sum_{i=3}^{n} i \cdot E[X_i] = n + \sum_{i=3}^{n} i \cdot Pr[X_i = 1]$ $\leq n + \sum_{i=3}^{n} i \cdot 2/i \leq 3n$

Using grids we can solve the closest pair problem in expected linear time.

Quiz

How often do we need to rebuild the grid in expectation?

- A O(1)
- B *O*(log *n*)
- **C** *O*(*n*)

Quiz

How often do we need to rebuild the grid in expectation?

A O(1)

B *O*(log *n*)

C *O*(*n*)

Quiz

How often do we need to rebuild the grid in expectation?

A O(1)

B *O*(log *n*)

C *O*(*n*)

$$E\left[\sum_{i=3}^{n} X_{i}\right] = \sum_{i=3}^{n} E[X_{i}] \le \sum_{i=3}^{n} 2/i \le \int_{3}^{n+1} 1/x \, dx = O(\log n)$$

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

We already know how to:

A') Give an O(n + k) algorithm (for given $\alpha' \ge 0$) that

outputs
$$\begin{cases} true & \text{if } r \leq \alpha' \\ false & \text{if } r > 2\sqrt{2}\alpha' \\ true \text{ or false } & \text{if } \alpha' < r \leq 2\sqrt{2}\alpha' \end{cases}$$

Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of P by C.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \leq \alpha \leq 10r$.

We already know how to:

A') For given α' , build a grid on C and return for a given $p \in P$ with distance *r* to *C*: $\begin{cases} \text{true} & \text{if } r \leq \alpha' \\ \text{false} & \text{if } r > 2\sqrt{2}\alpha' \\ \text{true or false} & \text{if } \alpha' < r \leq 2\sqrt{2}\alpha' \end{cases}$

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

(A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.

We already know how to:

A') For given α' , build a grid on *C* and return for a given $p \in P$ with distance *r* to *C*: $\begin{cases}
\text{true} & \text{if } r \leq \alpha' \\
\text{false} & \text{if } r > 2\sqrt{2}\alpha' \\
\text{true or false} & \text{if } \alpha' < r \leq 2\sqrt{2}\alpha'
\end{cases}$ Note: Careful in backward analysis (e.g. use canonical grids, i.e., change size by powers of 2)

Input: point set *P* in the plane and $k \in \mathbb{N}$

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

Question: Where do we place (the centers of) disks?

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

Question: Where do we place (the centers of) disks?

Question: Simple $O(n^2)$ -time 2-approximation?

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

- Question: Where do we place (the centers of) disks?
- Question: Simple $O(n^2)$ -time 2-approximation?

Question: If we generalize the closest pair algorithm with centers at point, what is the expected running time?

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

Question: Where do we place (the centers of) disks?

Question: Simple $O(n^2)$ -time 2-approximation?

Question: If we generalize the closest pair algorithm with centers at point, what is the expected running time?

ightarrow *O*(*nk*²), too many centers, too many updates
Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

Question: Where do we place (the centers of) disks?

Question: Simple $O(n^2)$ -time 2-approximation?

Question: If we generalize the closest pair algorithm with centers at point, what is the expected running time?

 \rightarrow O(nk^2), too many centers, too many updates

next: $O(n(n/k)^2)$ -time 2-approximation; can be used to get O(n)-time 2-approximation

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

• compute m = O(n/k) horizontal lines $h_1, ..., h_m$,

s.t. there are at most k/4 points of *P* in between two consecutive lines

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

- compute m = O(n/k) horizontal lines $h_1, ..., h_m$, s.t. there are at most k/4 points of *P* in between two consecutive lines
- compute m = O(n/k) vertical lines $v_1, ..., v_m$, s.t. there are at most k/4 points of *P* in between two consecutive lines

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

- compute m = O(n/k) horizontal lines $h_1, ..., h_m$, s.t. there are at most k/4 points of *P* in between two consecutive lines
- compute m = O(n/k) vertical lines $v_1, ..., v_m$, s.t. there are at most k/4 points of P in between two consecutive lines
- for each intersection point x of these lines compute the smallest disk containing k points of P

Input: point set *P* in the plane and $k \in \mathbb{N}$ **Output:** smallest *k*-enclosing disk, i.e., $|B_{\varepsilon} \cap P| \ge k$

Observe: For a set *P* of *n* points, $q \in R^2$ and $k \in \mathbb{N}$, the *k* closest points to *q* can be found in *O*(*n*) time.

Approximation algorithm

- compute m = O(n/k) horizontal lines $h_1, ..., h_m$, s.t. there are at most k/4 points of *P* in between two consecutive lines
- compute m = O(n/k) vertical lines $v_1, ..., v_m$, s.t. there are at most k/4 points of P in between two consecutive lines
- for each intersection point x of these lines compute the smallest disk containing k points of P
- return the smallest disk found

Runtime:

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4 points left

Runtime:

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4 points left

Recurrence: T(n) = 2T(n/2) + O(n) stopping at $n \le k/4 \rightarrow O(n \log(n/k))$

Runtime:

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4 points left

Recurrence: T(n) = 2T(n/2) + O(n) stopping at $n \le k/4 \rightarrow O(n \log(n/k))$

• Step 3 takes O(n) time for each of the m^2 grid points, where m = O(n/k) $\rightarrow O(n(n/k))^2$ time

Runtime:

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4 points left

Recurrence: T(n) = 2T(n/2) + O(n) stopping at $n \le k/4 \rightarrow O(n \log(n/k))$

- Step 3 takes O(n) time for each of the m^2 grid points, where m = O(n/k) $\rightarrow O(n(n/k))^2$ time
- Approximation ratio: Observe that the optimal disk contains at least one grid point \rightarrow 2-Approximation

Runtime:

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4 points left

Recurrence: T(n) = 2T(n/2) + O(n) stopping at $n \le k/4 \rightarrow O(n \log(n/k))$

• Step 3 takes O(n) time for each of the m^2 grid points, where m = O(n/k) $\rightarrow O(n(n/k))^2$ time

Approximation ratio: Observe that the optimal disk contains at least one grid point

ightarrow 2-Approximation

If disk *B* contains no grid point, then $B \subset \mathcal{H} \cup \mathcal{V}$ for a horizonal slab \mathcal{H} and vertical slab \mathcal{V}

Runtime:

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4 points left

Recurrence: T(n) = 2T(n/2) + O(n) stopping at $n \le k/4 \rightarrow O(n \log(n/k))$

• Step 3 takes O(n) time for each of the m^2 grid points, where m = O(n/k) $\rightarrow O(n(n/k))^2$ time

Approximation ratio: Observe that the optimal disk contains at least one grid point

ightarrow 2-Approximation

If disk *B* contains no grid point, then $B \subset \mathcal{H} \cup \mathcal{V}$ for a horizonal slab \mathcal{H} and vertical slab \mathcal{V}

$$\rightarrow |P \cap B| \leq k/4 + k/4 = k/2 < k$$

Runtime:

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4 points left

Recurrence: T(n) = 2T(n/2) + O(n) stopping at $n \le k/4 \rightarrow O(n \log(n/k))$

• Step 3 takes O(n) time for each of the m^2 grid points, where m = O(n/k) $\rightarrow O(n(n/k))^2$ time

Approximation ratio: Observe that the optimal disk contains at least one grid point

ightarrow 2-Approximation

If disk *B* contains no grid point, then $B \subset \mathcal{H} \cup \mathcal{V}$ for a horizonal slab \mathcal{H} and vertical slab \mathcal{V} $\rightarrow |P \cap B| \leq k/4 + k/4 = k/2 < k$

Using grids we can compute a 2-approximation of the *k*-enclosing disk in $O(n(n/k)^2)$ time.

Quiz

Given *P* let r_{OPT} be the radius of the smallest k-enclosing disk. If $\alpha < 2r_{OPT}$, what can we say about the maximum number gd_{α} of points in any cell of G_{α} ?

- A $gd_{lpha} \leq 1$
- B $gd_{lpha} \leq 5k$
- C gd_{α} can be arbitrary large ($\leq n$)

Quiz

Given *P* let r_{OPT} be the radius of the smallest k-enclosing disk. If $\alpha < 2r_{OPT}$, what can we say about the maximum number gd_{α} of points in any cell of G_{α} ?

A $gd_{lpha} \leq 1$

B $gd_{lpha} \leq 5k$

C gd_{α} can be arbitrary large ($\leq n$)

Quiz

Given *P* let r_{OPT} be the radius of the smallest k-enclosing disk. If $\alpha < 2r_{OPT}$, what can we say about the maximum number gd_{α} of points in any cell of G_{α} ?

A $gd_{lpha} \leq 1$

B $gd_{lpha} \leq 5k$

C gd_{α} can be arbitrary large ($\leq n$)

each disk of radius *r*₀*PT* contains at most *k* points, cell covered by 5 disks

k-Gradation: $P_1 \subset P_2 \subset P_m = P$ such that

(a) any point $p \in P_{i+1}$ is indepently with probability 1/2 included in P_i ,

(b) $|P_1| \le k$ and $|P_2| > k$

we name previous algorithm $\mbox{algSlow}$: outputs an α

k-Gradation: $P_1 \subset P_2 \subset P_m = P$ such that

(a) any point $p \in P_{i+1}$ is indepently with probability 1/2 included in P_i ,

(b) $|P_1| \le k$ and $|P_2| > k$

we name previous algorithm $\mbox{algSlow}$: outputs an α

Algorithm

```
Compute gradation P_1, ..., P_m

\alpha_1 \leftarrow algSlow(P_1)

for i = 2, ..., m do

\alpha_i \leftarrow algGrow(P_i, \alpha_{i-1})

return \alpha_m
```

k-Gradation: $P_1 \subset P_2 \subset P_m = P$ such that

(a) any point $p \in P_{i+1}$ is indepently with probability 1/2 included in P_i ,

(b) $|P_1| \le k$ and $|P_2| > k$

we name previous algorithm $\mbox{algSlow}$: outputs an α

Algorithm

```
Compute gradation P_1, ..., P_m

\alpha_1 \leftarrow algSlow(P_1)

for i = 2, ..., m do

\alpha_i \leftarrow algGrow(P_i, \alpha_{i-1})

return \alpha_m
```

AlgGrow(P_i , α_{i-1})

for every grid cluster *c* with $\geq k$ points: compute $\alpha_c \rightarrow algSlow(c \cap P_i)$ return the minimum of these α_c

k-Gradation: $P_1 \subset P_2 \subset P_m = P$ such that

(a) any point $p \in P_{i+1}$ is indepently with probability 1/2 included in P_i ,

(b) $|P_1| \le k$ and $|P_2| > k$

we name previous algorithm $\mbox{algSlow}$: outputs an α

Algorithm

```
Compute gradation P_1, ..., P_m

\alpha_1 \leftarrow algSlow(P_1)

for i = 2, ..., m do

\alpha_i \leftarrow algGrow(P_i, \alpha_{i-1})

return \alpha_m
```

AlgGrow(P_i , α_{i-1})

for every grid cluster *c* with $\geq k$ points: compute $\alpha_c \rightarrow algSlow(c \cap P_i)$ return the minimum of these α_c

Analysis:discussion + see book

Outline

- Closest Pair Problem part 1 Exercise 1.2 (A) – part 1
- 2. Closest Pair Problem part 2 Exercise 1.2 (A) – part 2
- 3. *k*-enclosing Disk Problem
- 4. (1 + ε)-approximation: Exercise 1.2 (B)

Exercise 1.2 (B)

Compute clustering radius (Exercise 1.2 from book)

Let *C* and *P* be two given sets of points in the plane, such that k = |C| and n = |P|. Let $r = \max_{p \in P} \min_{c \in C} ||c - p||$ be the covering radius of *P* by *C*.

- (A) Give an $O(n + k \log n)$ expected time algorithm that outputs a number α , such that $r \le \alpha \le 10r$.
- (B) For $\varepsilon > 0$, give an $O(n + k\varepsilon^{-2} \log n)$ expected time algorithm that outputs a number α , such that $\alpha \le r \le (1 + \varepsilon)\alpha$.

Exercise 1.2 (B) For $\varepsilon > 0$, give an $O(n + k\varepsilon^{-2} \log n)$ expected time algorithm that outputs a number α , such that $\alpha \leq r \leq (1 + \varepsilon)\alpha$.

Summary Using grids for approximation

closest pair (exact)

k-enclosing disk

cluster radius

Summary Using grids for approximation

closest pair (exact)

k-enclosing disk

cluster radius

Techniques

- approximate decision problem allows to fix the grid
- reduce optimization problem to decision problem using few calls: randomization (in other settings also binary search)
- grid vertices as candidate solution
- (1 + ε)-approximation: grid cells of sidelength $O(\alpha \varepsilon)$ (do Exercise 1.2.B!)