
The power of grids
Geometric Approximation Algorithms

Welcome!

Overview
techniques

grids
randomization and backward analysis

geometric problems
closest pair
smallest disk enclosing k points
cluster radius (exercise)

Main: grids + closest pair

cluster radius as running exercise

Cluster Radius
Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

Cluster Radius

r

Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

Cluster Radius

r

Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

Question:
How fast can we compute the clustering radius?

Cluster Radius

r

Exercise 1.2.A from book:

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

Give an O(n + k log n) expected time algorithm that outputs
a number α, such that r ≤ α ≤ 10r.

Closest Pair Problem
Input: point set P in the plane

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

Motivation

• Fundamental problem in Computational Geometry

• Applications in Geographic Information Systems,
e.g., find closest airplanes for air traffic control

• Subroutine in other algorithms, e.g., for clustering or matching

• Computing closest pair with grids instrumental for field of
randomized algorithms

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

Question:
How fast can we compute the closest pair?

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

simple: Θ(n2), with geometric techniques: Θ(n log n)

Question:
How fast can we compute the closest pair?

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

simple: Θ(n2), with geometric techniques: Θ(n log n)

Lower bound: Ω(n log n) (algebraic computation tree
model of computation)

Question:
How fast can we compute the closest pair?

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

simple: Θ(n2), with geometric techniques: Θ(n log n)

Lower bound: Ω(n log n) (algebraic computation tree
model of computation)

Our model: real RAM + O(1)-time floor (+ log-function) + hashing + randomization
(Warning: floor function dangerous from perspective of complexity theory)

Question:
How fast can we compute the closest pair?

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

simple: Θ(n2), with geometric techniques: Θ(n log n)

Lower bound: Ω(n log n) (algebraic computation tree
model of computation)

Our model: real RAM + O(1)-time floor (+ log-function) + hashing + randomization
(Warning: floor function dangerous from perspective of complexity theory)

Next: O(n)-time algorithm using grids + randomization

Question:
How fast can we compute the closest pair?

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair Problem
Input: point set P in the plane
Output: p, q ∈ P, (p 6= q) , minimizing ‖p− q‖

simple: Θ(n2), with geometric techniques: Θ(n log n)

Lower bound: Ω(n log n) (algebraic computation tree
model of computation)

Our model: real RAM + O(1)-time floor (+ log-function) + hashing + randomization
(Warning: floor function dangerous from perspective of complexity theory)

Next: O(n)-time algorithm using grids + randomization

First step O(n)-time decision algorithm: ∃p, q ∈ P : ‖p− q‖ < α ? (p 6= q).

αQuestion:
How fast can we compute the closest pair?

Rabin's algorithm from 1976, see https://rjlipton.wpcomstaging.com/2009/03/01/rabin-flips-a-coin/

Algorithm today by Golin et al
M. Golin, R. Raman, C. Schwarz, M. Smid
Simple randomized algorithms for closest pair problems
Nordic J. Comput., 2 (1995), pp. 3-27

https://www.sciencedirect.com/science/article/pii/B9780444825377500218#bb0360

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
Gα grid with side length α

cell with id (i, j) all points (x, y) with
αi ≤ x < α(i + 1) and αj ≤ y < α(j + 1)

grid notation

(0, 0)

(3, 1)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
Gα grid with side length α

cell with id (i, j) all points (x, y) with
αi ≤ x < α(i + 1) and αj ≤ y < α(j + 1)

grid notation

for p = (x, y): Gα(p) = (b xαcα, b
y
αcα) lower left grid

point of cell containing p

for p = (x, y): id(p) = (b xαc, b
y
αc)

(0, 0)

(3, 1)

p

Gα(p)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
Gα grid with side length α

cell with id (i, j) all points (x, y) with
αi ≤ x < α(i + 1) and αj ≤ y < α(j + 1)

grid notation

for p = (x, y): Gα(p) = (b xαcα, b
y
αcα) lower left grid

point of cell containing p

for p = (x, y): id(p) = (b xαc, b
y
αc)

grid cluster: block of 3× 3 cells

(0, 0)

(3, 1)

p

Gα(p)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true
3. For every p ∈ P: check distance to other points in

grid cluster (cell +8 neighboring cells)
return true if distance < α found

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true
3. For every p ∈ P: check distance to other points in

grid cluster (cell +8 neighboring cells)
return true if distance < α found

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true
3. For every p ∈ P: check distance to other points in

grid cluster (cell +8 neighboring cells)
return true if distance < α found

4. If checks in 2.+3. fail, return false

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true
3. For every p ∈ P: check distance to other points in

grid cluster (cell +8 neighboring cells)
return true if distance < α found

4. If checks in 2.+3. fail, return false

Correctness

???

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true
3. For every p ∈ P: check distance to other points in

grid cluster (cell +8 neighboring cells)
return true if distance < α found

4. If checks in 2.+3. fail, return false

Correctness
Line 2: If > 4 points in cell

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true
3. For every p ∈ P: check distance to other points in

grid cluster (cell +8 neighboring cells)
return true if distance < α found

4. If checks in 2.+3. fail, return false

Correctness
Line 2: If > 4 points in cell
⇒ ∃p, q in a subcell of sidelength α

2
⇒‖p− q‖ <

√
2α2 < α

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Closest Pair: Decision Problem (Algorithm)

∃p, q ∈ P : ‖p− q‖ < α?

α
2. If ∃ cell with > 4 points: return true
3. For every p ∈ P: check distance to other points in

grid cluster (cell +8 neighboring cells)
return true if distance < α found

4. If checks in 2.+3. fail, return false

Correctness
Line 2: If > 4 points in cell
⇒ ∃p, q in a subcell of sidelength α

2
⇒‖p− q‖ <

√
2α2 < α

Running time
O(n) + O(n) + n · O(9 · 4) + O(1) = O(n)

1. Hash every point p = (px, py) to grid cell (b pxα c, b
py
α c)

notation not essential, but useful to have

correctness & running time on whiteboad

Exercise 1.2 (A): Decision Problem

r

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

Compute clustering radius (Exercise 1.2 from book)

Solve together.

Grid of size alpha.

Mark cells containing the points of C.

For points in P: mark point as covered if there is a marked cell in its grid cluster.
Return true if all points in P are covered, false otherwise

Exercise 1.2 (A): Decision Problem

r

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

First step: Decision problem

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

Compute clustering radius (Exercise 1.2 from book)

Solve together.

Grid of size alpha.

Mark cells containing the points of C.

For points in P: mark point as covered if there is a marked cell in its grid cluster.
Return true if all points in P are covered, false otherwise

Exercise 1.2 (A): Decision Problem

r

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

First step: Decision problem

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

(A’) Give an O(n + k) algorithm (for given α′ ≥ 0) that
outputs

true if r ≤ α′

false if r > 2
√
2α′

true or false if α′ < r ≤ 2
√
2α′

Compute clustering radius (Exercise 1.2 from book)

Solve together.

Grid of size alpha.

Mark cells containing the points of C.

For points in P: mark point as covered if there is a marked cell in its grid cluster.
Return true if all points in P are covered, false otherwise

Exercise 1.2 (A): Decision Problem

r

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

First step: Decision problem

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

(A’) Give an O(n + k) algorithm (for given α′ ≥ 0) that
outputs

true if r ≤ α′

false if r > 2
√
2α′

true or false if α′ < r ≤ 2
√
2α′

Needs to correctly decide r ≤ α′, except if r only slightly larger

Compute clustering radius (Exercise 1.2 from book)

Solve together.

Grid of size alpha.

Mark cells containing the points of C.

For points in P: mark point as covered if there is a marked cell in its grid cluster.
Return true if all points in P are covered, false otherwise

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order

p1
p2

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖

p1
p2

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖
3. Run decision algorithm incrementally:

add pi one-by-one
if ∃j < i : α′ := ‖pi − pj‖ < α, restart with α = α′

p1
p2

p3

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖
3. Run decision algorithm incrementally:

add pi one-by-one
if ∃j < i : α′ := ‖pi − pj‖ < α, restart with α = α′

p1
p2

p3

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖
3. Run decision algorithm incrementally:

add pi one-by-one
if ∃j < i : α′ := ‖pi − pj‖ < α, restart with α = α′

p1
p2

p3

p4

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖
3. Run decision algorithm incrementally:

add pi one-by-one
if ∃j < i : α′ := ‖pi − pj‖ < α, restart with α = α′

p1
p2

p3

p4

4. return α

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖
3. Run decision algorithm incrementally:

add pi one-by-one
if ∃j < i : α′ := ‖pi − pj‖ < α, restart with α = α′

p1
p2

p3

p4

4. return α

Correctness
Follows from correctness of decision algorithm

Running time
???

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖
3. Run decision algorithm incrementally:

add pi one-by-one
if ∃j < i : α′ := ‖pi − pj‖ < α, restart with α = α′

p1
p2

p3

p4

4. return α

Correctness
Follows from correctness of decision algorithm

Running time
worst-case: restart for every i:

∑
Θ(i) = Θ(n2)

Closest Pair: Randomized Algorithm
Compute ‖p− q‖ of closest pair
1. p1, ... , pn points of P in random order
2. α = ‖p1 − p2‖
3. Run decision algorithm incrementally:

add pi one-by-one
if ∃j < i : α′ := ‖pi − pj‖ < α, restart with α = α′

p1
p2

p3

p4

4. return α

Correctness
Follows from correctness of decision algorithm

Running time
worst-case: restart for every i:

∑
Θ(i) = Θ(n2)

expected case?

Closest Pair: Expected case
Backwards analysis

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

E[Time to insert pi] =

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

E[Time to insert pi] = O(i) · 2/i

time · probability
rebuilding the grid

≤

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

E[Time to insert pi] = O(i) · 2/i

time · probability
rebuilding the grid

≤
+ O(1) · 1

otherwise

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

E[Time to insert pi] = O(i) · 2/i

time · probability
rebuilding the grid

≤
+ O(1) · 1

otherwise

= O(2i/i + 1) = O(1)

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

E[Time to insert pi] = O(i) · 2/i

time · probability
rebuilding the grid

≤
+ O(1) · 1

otherwise

= O(2i/i + 1) = O(1)

E[Overall running time] = n · O(1) = O(n)

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

more formally
αi: closest pair distance of first i points
Xi = 1I{αi−1<αi} indicator variable

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

more formally
αi: closest pair distance of first i points
Xi = 1I{αi−1<αi} indicator variable

running time proportional to R = 1 +
∑n

i=3(1 + iXi)

E[R] = E[1 +
∑n

i=3(1 + i · Xi)] ≤ n +
∑n

i=3 i · E[Xi] = n +
∑n

i=3 i · Pr[Xi = 1]

≤ n +
∑n

i=3 i · 2/i ≤ 3n

Closest Pair: Expected case
Backwards analysis

To analyze insertion of pi: consider grid after
inserting pi.

Which points would have caused the grid to change?
→ probability≤ 2/i

Using grids we can solve the closest pair problem in expected linear time.

more formally
αi: closest pair distance of first i points
Xi = 1I{αi−1<αi} indicator variable

running time proportional to R = 1 +
∑n

i=3(1 + iXi)

E[R] = E[1 +
∑n

i=3(1 + i · Xi)] ≤ n +
∑n

i=3 i · E[Xi] = n +
∑n

i=3 i · Pr[Xi = 1]

≤ n +
∑n

i=3 i · 2/i ≤ 3n

Quiz
How often do we need to rebuild the grid in expectation?

A O(1)

B O(log n)

C O(n)

Quiz
How often do we need to rebuild the grid in expectation?

A O(1)

B O(log n)

C O(n)

Quiz
How often do we need to rebuild the grid in expectation?

A O(1)

B O(log n)

C O(n)

E
[∑n

i=3 Xi
]
=
∑n

i=3 E[Xi] ≤
∑n

i=3 2/i ≤
∫ n+1
3 1/x dx = O(log n)

Exercise 1.2 (A): Decision Problem
Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

r

Exercise 1.2 (A): Decision Problem
Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

We already know how to:

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

r

(A’) Give an O(n + k) algorithm (for given α′ ≥ 0) that
outputs

true if r ≤ α′

false if r > 2
√
2α′

true or false if α′ < r ≤ 2
√
2α′

Exercise 1.2 (A): Decision Problem
Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

We already know how to:

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

(A’) For given α′, build a grid on C and return for a given
p ∈ P with distance r to C:

true if r ≤ α′

false if r > 2
√
2α′

true or false if α′ < r ≤ 2
√
2α′

r

Exercise 1.2 (A): Decision Problem
Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

We already know how to:

(A) Give an O(n + k log n) expected time algorithm that
outputs a number α, such that r ≤ α ≤ 10r.

(A’) For given α′, build a grid on C and return for a given
p ∈ P with distance r to C:

true if r ≤ α′

false if r > 2
√
2α′

true or false if α′ < r ≤ 2
√
2α′

r

Note: Careful in backward analysis (e.g. use canonical grids, i.e., change size by powers of 2)

k-enclosing Disk Problem

k=8

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N

k=8

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

Approximation algorithm

Question: If we generalize the closest pair algorithm, which issues arise?

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

Approximation algorithm

Question: Where do we place (the centers of) disks?

Question: If we generalize the closest pair algorithm, which issues arise?

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

Approximation algorithm

Question: Simple O(n2)-time 2-approximation?
Question: Where do we place (the centers of) disks?

Question: If we generalize the closest pair algorithm, which issues arise?

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

Approximation algorithm

Question: Simple O(n2)-time 2-approximation?
Question: Where do we place (the centers of) disks?

Question: If we generalize the closest pair algorithm, which issues arise?

Question: If we generalize the closest pair algorithm with centers at
point, what is the expected running time?

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

Approximation algorithm

Question: Simple O(n2)-time 2-approximation?
Question: Where do we place (the centers of) disks?

Question: If we generalize the closest pair algorithm, which issues arise?

Question: If we generalize the closest pair algorithm with centers at
point, what is the expected running time?
→ O(nk2), too many centers, too many updates

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

Approximation algorithm

Question: Simple O(n2)-time 2-approximation?

next: O(n(n/k)2)-time 2-approximation; can be used to get O(n)-time 2-approximation

Question: Where do we place (the centers of) disks?

Question: If we generalize the closest pair algorithm, which issues arise?

Question: If we generalize the closest pair algorithm with centers at
point, what is the expected running time?
→ O(nk2), too many centers, too many updates

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

• compute m = O(n/k) horizontal lines h1, ... , hm,
s.t. there are at most k/4 points of P in between two consecutive lines

Approximation algorithm

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

• compute m = O(n/k) vertical lines v1, ... , vm,
s.t. there are at most k/4 points of P in between two consecutive lines

• compute m = O(n/k) horizontal lines h1, ... , hm,
s.t. there are at most k/4 points of P in between two consecutive lines

Approximation algorithm

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

• compute m = O(n/k) vertical lines v1, ... , vm,
s.t. there are at most k/4 points of P in between two consecutive lines

• for each intersection point x of these lines
compute the smallest disk containing k points of P

• compute m = O(n/k) horizontal lines h1, ... , hm,
s.t. there are at most k/4 points of P in between two consecutive lines

Approximation algorithm

k-enclosing Disk Problem
Input: point set P in the plane and k ∈ N
Output: smallest k-enclosing disk, i.e., |Bε ∩ P| ≥ k

k=8

Observe: For a set P of n points, q ∈ R2 and k ∈ N,
the k closest points to q can be found in O(n) time.

• compute m = O(n/k) vertical lines v1, ... , vm,
s.t. there are at most k/4 points of P in between two consecutive lines

• for each intersection point x of these lines
compute the smallest disk containing k points of P

• return the smallest disk found

• compute m = O(n/k) horizontal lines h1, ... , hm,
s.t. there are at most k/4 points of P in between two consecutive lines

Approximation algorithm

k-enclosing Disk Problem: Analysis

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4
points left

Runtime:

k-enclosing Disk Problem: Analysis

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4
points left

Runtime:

Recurrence: T(n) = 2T(n/2) + O(n) stopping at n ≤ k/4 → O(n log(n/k))

k-enclosing Disk Problem: Analysis

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4
points left

Runtime:

• Step 3 takes O(n) time for each of the m2 grid points, where m = O(n/k)
→ O(n(n/k))2 time

Recurrence: T(n) = 2T(n/2) + O(n) stopping at n ≤ k/4 → O(n log(n/k))

k-enclosing Disk Problem: Analysis

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4
points left

Runtime:

• Step 3 takes O(n) time for each of the m2 grid points, where m = O(n/k)
→ O(n(n/k))2 time

Approximation ratio: Observe that the optimal disk contains at least one grid point
→ 2-Approximation

Recurrence: T(n) = 2T(n/2) + O(n) stopping at n ≤ k/4 → O(n log(n/k))

k-enclosing Disk Problem: Analysis

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4
points left

Runtime:

• Step 3 takes O(n) time for each of the m2 grid points, where m = O(n/k)
→ O(n(n/k))2 time

Approximation ratio: Observe that the optimal disk contains at least one grid point
→ 2-Approximation

Recurrence: T(n) = 2T(n/2) + O(n) stopping at n ≤ k/4 → O(n log(n/k))

H

V

If disk B contains no grid point, then B ⊂ H ∪ V for a
horizonal slabH and vertical slab VB

k-enclosing Disk Problem: Analysis

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4
points left

Runtime:

• Step 3 takes O(n) time for each of the m2 grid points, where m = O(n/k)
→ O(n(n/k))2 time

Approximation ratio: Observe that the optimal disk contains at least one grid point
→ 2-Approximation

Recurrence: T(n) = 2T(n/2) + O(n) stopping at n ≤ k/4 → O(n log(n/k))

H

V

If disk B contains no grid point, then B ⊂ H ∪ V for a
horizonal slabH and vertical slab VB

→ |P ∩ B| ≤ k/4 + k/4 = k/2 < k

k-enclosing Disk Problem: Analysis

• Steps 1,2 can be achieved by recursively adding median lines, until at most k/4
points left

Runtime:

• Step 3 takes O(n) time for each of the m2 grid points, where m = O(n/k)
→ O(n(n/k))2 time

Approximation ratio: Observe that the optimal disk contains at least one grid point
→ 2-Approximation

Recurrence: T(n) = 2T(n/2) + O(n) stopping at n ≤ k/4 → O(n log(n/k))

H

V

If disk B contains no grid point, then B ⊂ H ∪ V for a
horizonal slabH and vertical slab VB

→ |P ∩ B| ≤ k/4 + k/4 = k/2 < k

Using grids we can compute a 2-approximation of the k-enclosing disk in O(n(n/k)2)
time.

Quiz
Given P let rOPT be the radius of the smallest k-enclosing disk. If α < 2rOPT , what can we
say about the maximum number gdα of points in any cell of Gα?

A gdα ≤ 1

B gdα ≤ 5k

C gdα can be arbitrary large (≤ n)

Quiz
Given P let rOPT be the radius of the smallest k-enclosing disk. If α < 2rOPT , what can we
say about the maximum number gdα of points in any cell of Gα?

A gdα ≤ 1

B gdα ≤ 5k

C gdα can be arbitrary large (≤ n)

Quiz
Given P let rOPT be the radius of the smallest k-enclosing disk. If α < 2rOPT , what can we
say about the maximum number gdα of points in any cell of Gα?

A gdα ≤ 1

B gdα ≤ 5k

C gdα can be arbitrary large (≤ n)

each disk of radius rOPT contains at most k
points, cell covered by 5 disks

Linear-time 2-approximation for k-enclosing disk
k-Gradation: P1 ⊂ P2 ⊂ Pm = P such that

(a) any point p ∈ Pi+1 is indepently with probability 1/2 included in Pi,
(b) |P1| ≤ k and |P2| > k

we name previous algorithm algSlow: outputs an α

Linear-time 2-approximation for k-enclosing disk
k-Gradation: P1 ⊂ P2 ⊂ Pm = P such that

(a) any point p ∈ Pi+1 is indepently with probability 1/2 included in Pi,
(b) |P1| ≤ k and |P2| > k

Algorithm

we name previous algorithm algSlow: outputs an α

Compute gradation P1, ... , Pm
α1 ← algSlow(P1)
for i = 2, ... ,m do
αi ← algGrow(Pi,αi−1)

return αm

Linear-time 2-approximation for k-enclosing disk
k-Gradation: P1 ⊂ P2 ⊂ Pm = P such that

(a) any point p ∈ Pi+1 is indepently with probability 1/2 included in Pi,
(b) |P1| ≤ k and |P2| > k

Algorithm

we name previous algorithm algSlow: outputs an α

Compute gradation P1, ... , Pm
α1 ← algSlow(P1)
for i = 2, ... ,m do
αi ← algGrow(Pi,αi−1)

return αm

AlgGrow(Pi,αi−1)
for every grid cluster c with≥ k points: compute αc → algSlow(c ∩ Pi)
return the minimum of these αc

Linear-time 2-approximation for k-enclosing disk
k-Gradation: P1 ⊂ P2 ⊂ Pm = P such that

(a) any point p ∈ Pi+1 is indepently with probability 1/2 included in Pi,
(b) |P1| ≤ k and |P2| > k

Algorithm

we name previous algorithm algSlow: outputs an α

Compute gradation P1, ... , Pm
α1 ← algSlow(P1)
for i = 2, ... ,m do
αi ← algGrow(Pi,αi−1)

return αm

AlgGrow(Pi,αi−1)
for every grid cluster c with≥ k points: compute αc → algSlow(c ∩ Pi)
return the minimum of these αc

Analysis:discussion + see book

Outline
1. Closest Pair Problem – part 1

Exercise 1.2 (A) – part 1

2. Closest Pair Problem – part 2
Exercise 1.2 (A) – part 2

3. k-enclosing Disk Problem

4. (1 + ε)-approximation: Exercise 1.2 (B)

Exercise 1.2 (B)

r
(A) Give an O(n + k log n) expected time algorithm that

outputs a number α, such that r ≤ α ≤ 10r.

Compute clustering radius (Exercise 1.2 from book)

Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c− p‖ be
the covering radius of P by C.

(B) For ε > 0, give an O(n + kε−2 log n) expected time
algorithm that outputs a number α, such that
α ≤ r ≤ (1 + ε)α.

Exercise 1.2 (B)
For ε > 0, give an O(n + kε−2 log n) expected time algorithm that outputs a number α, such
that α ≤ r ≤ (1 + ε)α.

Summary
Using grids for approximation

r

closest pair (exact) k-enclosing disk cluster radius

Summary
Using grids for approximation

r

closest pair (exact) k-enclosing disk cluster radius

• approximate decision problem allows to fix the grid
• reduce optimization problem to decision problem using few calls:

randomization (in other settings also binary search)
• grid vertices as candidate solution
• (1 + ε)-approximation: grid cells of sidelength O(αε) (do Exercise 1.2.B!)

Techniques

