
Shifting a grid over a point set

for simple and fast approximation algorithms

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

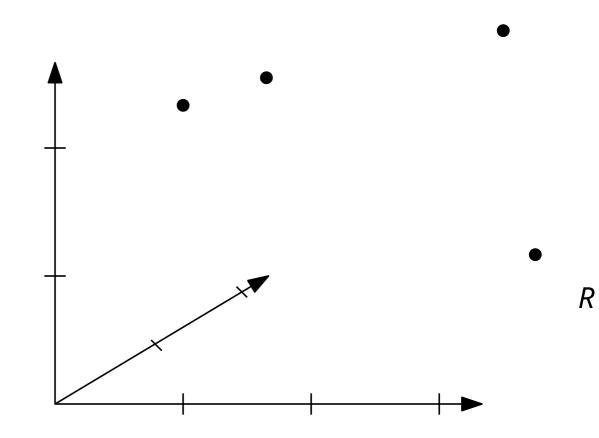
Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Remark: If $|b - b'| = i\Delta$ for some $i \ge 0$, then b and b' induce the same partition. (Later we will use this to choose $b \in [y + i\Delta, y + j\Delta]$ for i < j.)

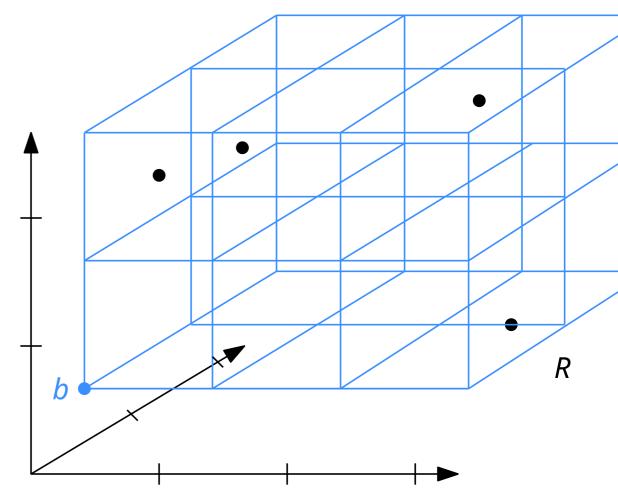
Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Remark: If $|b - b'| = i\Delta$ for some $i \ge 0$, then b and b' induce the same partition. (Later we will use this to choose $b \in [y + i\Delta, y + j\Delta]$ for i < j.)

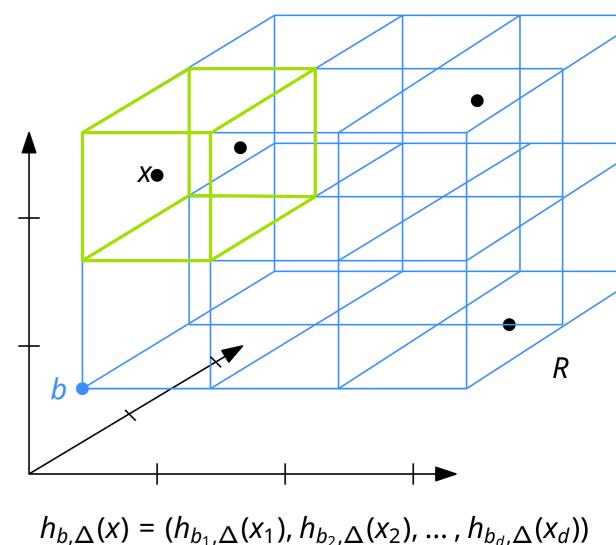
Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}\left[h_{b,\Delta}(x) \neq h_{b,\Delta}(y)\right] = \min\left(\frac{|x-y|}{\Delta}, 1\right)$


Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

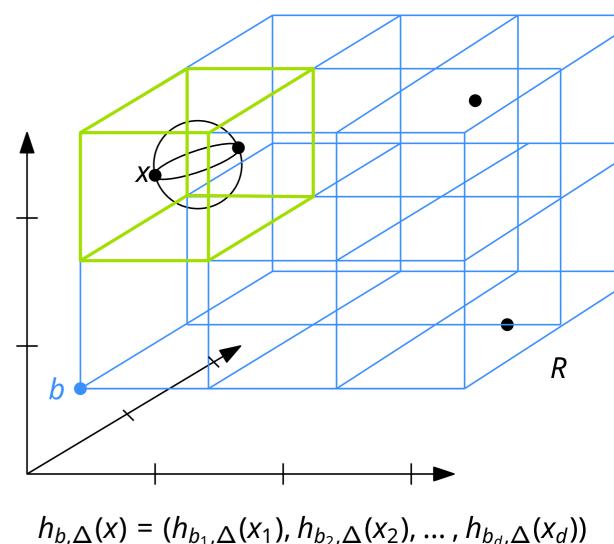
Remark: If $|b - b'| = i\Delta$ for some $i \ge 0$, then b and b' induce the same partition. (Later we will use this to choose $b \in [y + i\Delta, y + j\Delta]$ for i < j.)


Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}\left[h_{b,\Delta}(x) \neq h_{b,\Delta}(y)\right] = \min\left(\frac{|x-y|}{\Delta}, 1\right)$

Proof: Wlog x < y. Claim holds trivially if $|x - y| > \Delta$. Otherwise assume $b \in [x, x + \Delta]$. Then $h_{b,\Delta}(x) \neq h_{b,\Delta}(y) \Leftrightarrow b \in [x, y]$.


Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

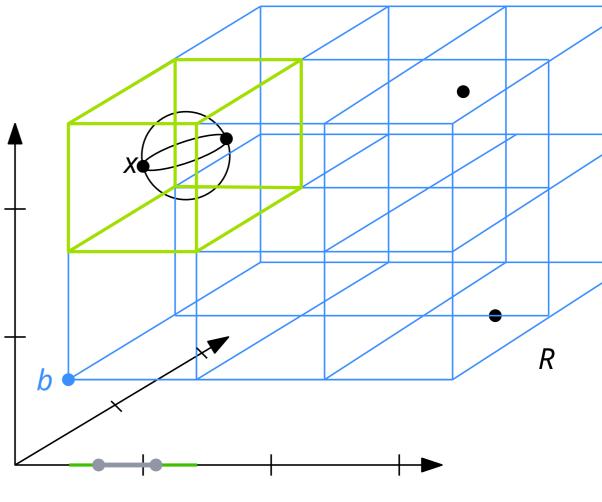
Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .



Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Lemma: Let *B* be a ball in \mathbb{R}^d with Radius *r* (or an axis-parallel hypercube with sidelength 2*r*). The probability that *B* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.



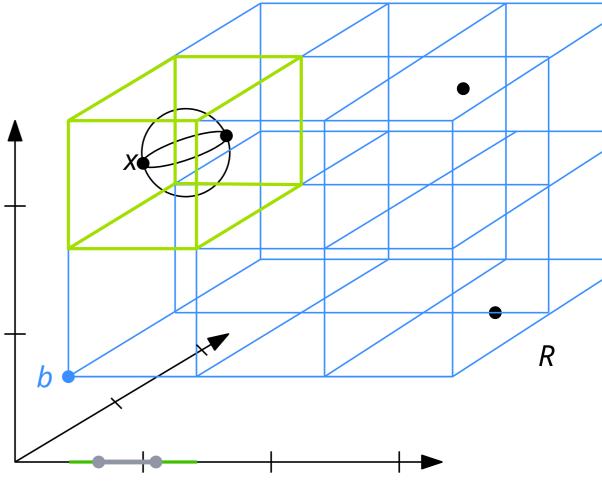
Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Lemma: Let *B* be a ball in \mathbb{R}^d with Radius *r* (or an axis-parallel hypercube with sidelength 2*r*). The probability that *B* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

Proof:

project *B* onto the *i*th coordinate \rightarrow interval *B_i* of length 2*r* and shifted 1-dim grid *G*¹(*b_i*, Δ).

 $h_{b,\Delta}(x)=(h_{b_1,\Delta}(x_1),h_{b_2,\Delta}(x_2),\ldots,h_{b_d,\Delta}(x_d))$


Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Lemma: Let *B* be a ball in \mathbb{R}^d with Radius *r* (or an axis-parallel hypercube with sidelength 2*r*). The probability that *B* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

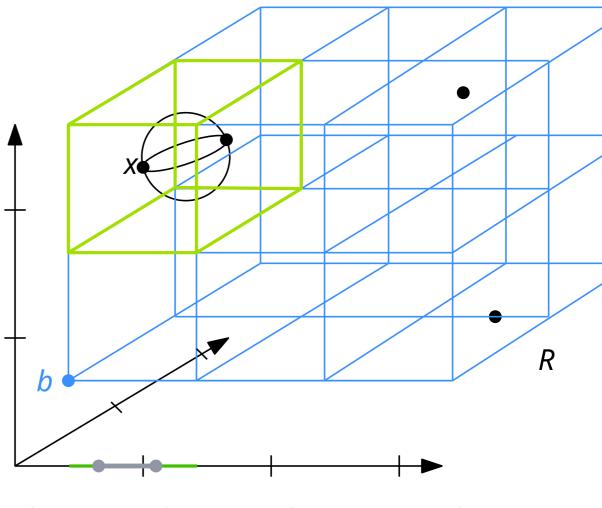
Proof:

project *B* onto the *i*th coordinate \rightarrow interval *B_i* of length 2*r* and shifted 1-dim grid *G*¹(*b_i*, Δ).

B in a single cell if all B_i in a shifted interval.

 $h_{b,\Delta}(x)=(h_{b_1,\Delta}(x_1),h_{b_2,\Delta}(x_2),\ldots,h_{b_d,\Delta}(x_d))$

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .


Lemma: Let *B* be a ball in \mathbb{R}^d with Radius *r* (or an axis-parallel hypercube with sidelength 2*r*). The probability that *B* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

Proof:

project *B* onto the *i*th coordinate \rightarrow interval *B_i* of length 2*r* and shifted 1-dim grid *G*¹(*b_i*, Δ).

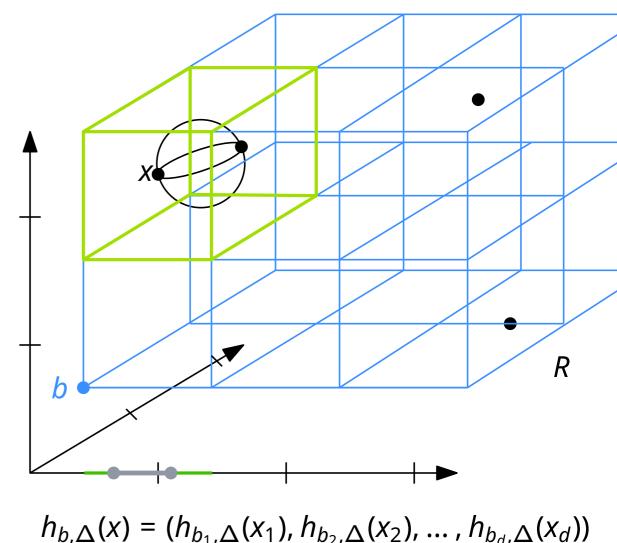
B in a single cell if all B_i in a shifted interval.

event E_i : B_i not in a shifted interval.

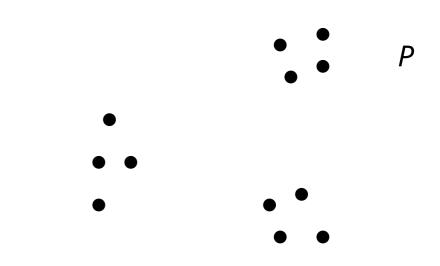
 $h_{b,\Delta}(x)=(h_{b_1,\Delta}(x_1),h_{b_2,\Delta}(x_2),\ldots,h_{b_d,\Delta}(x_d))$

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

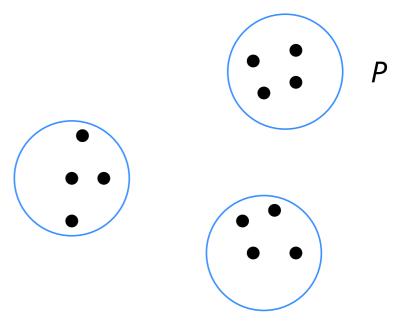
Lemma: Let *B* be a ball in \mathbb{R}^d with Radius *r* (or an axis-parallel hypercube with sidelength 2*r*). The probability that *B* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.


Proof:

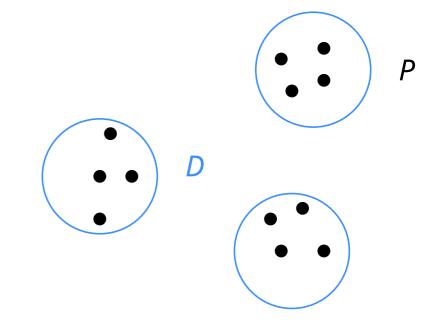
project *B* onto the *i*th coordinate \rightarrow interval *B_i* of length 2*r* and shifted 1-dim grid *G*¹(*b_i*, Δ).


B in a single cell if all B_i in a shifted interval.

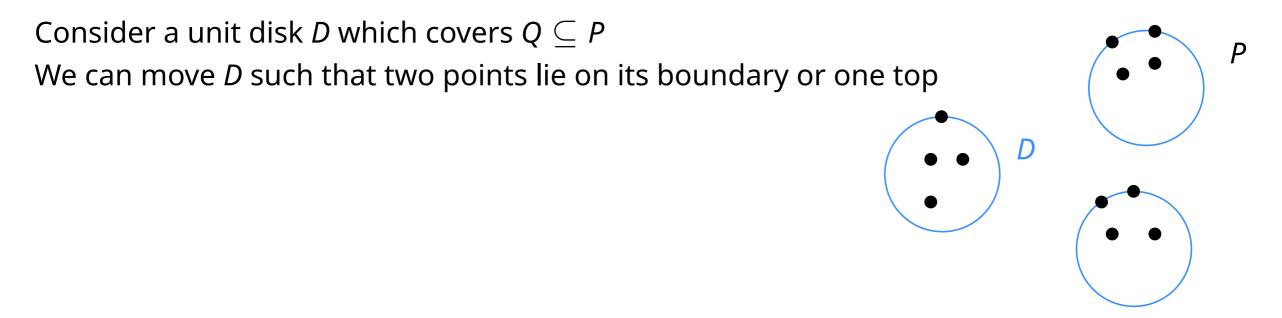
event E_i : B_i not in a shifted interval.


bound:
$$\mathbb{P}\left[\cup_{i=1}^{d} E_i\right] \leq \sum_{i=1}^{d} \mathbb{P}[E_i] \leq 2dr/\Delta$$

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane



Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$



Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$

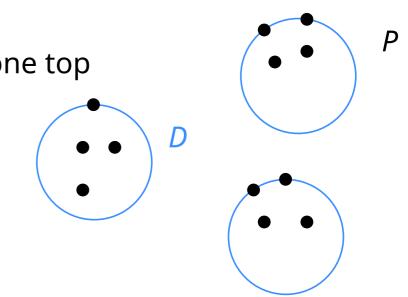
Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

• Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p - q|| \le 2$.

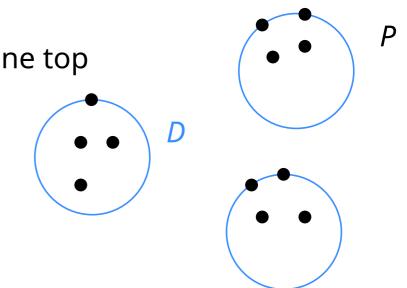


Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q
 P can be covered by more than one canonical unit disk.

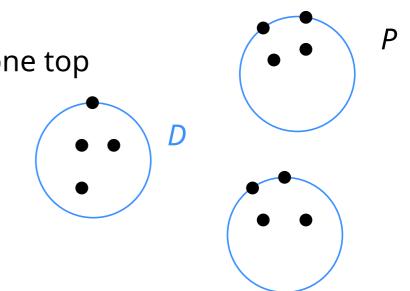

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these.

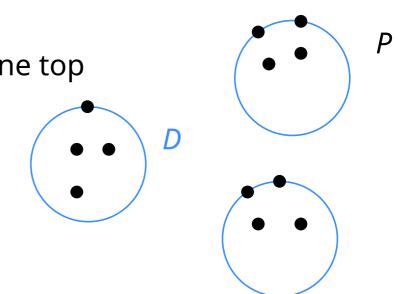


Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.


Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these. We try all at most n^{2k} many k- tuples of these; each we test in O(nk) time.

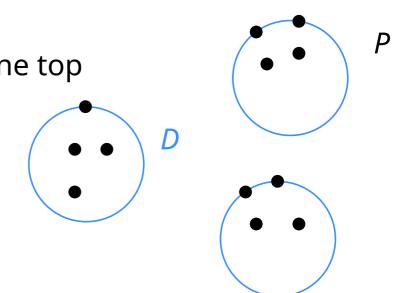
Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.

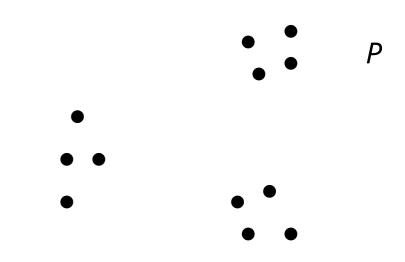
Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these. We try all at most n^{2k} many k- tuples of these; each we test in O(nk) time.


Lemma: For *n* points in \mathbb{R}^2 , we can determine in $O(kn^{2k+1})$ time if a *k* unit disk cover exists.

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we can test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

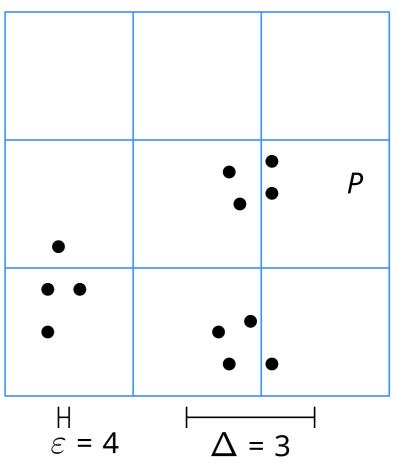
Remark:


- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these. We try all at most n^{2k} many k- tuples of these; each we test in O(nk) time.

Lemma: For *n* points in \mathbb{R}^2 , we can determine in $O(kn^{2k+1})$ time if a *k* unit disk cover exists. but *k* can be linear in *n*

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$


Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

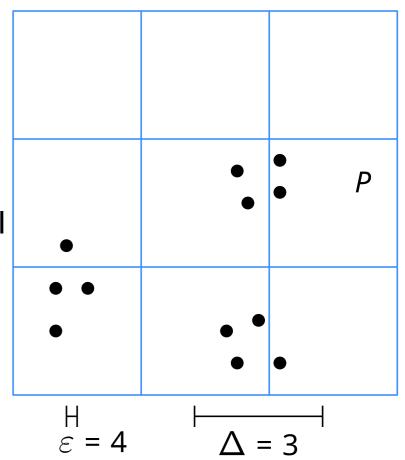
- compute all grid cells containing points in P
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

using slow algorithm

using slow algorithm

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$


Algorithm

- compute all grid cells containing points in P
- for each non-empty grid cell

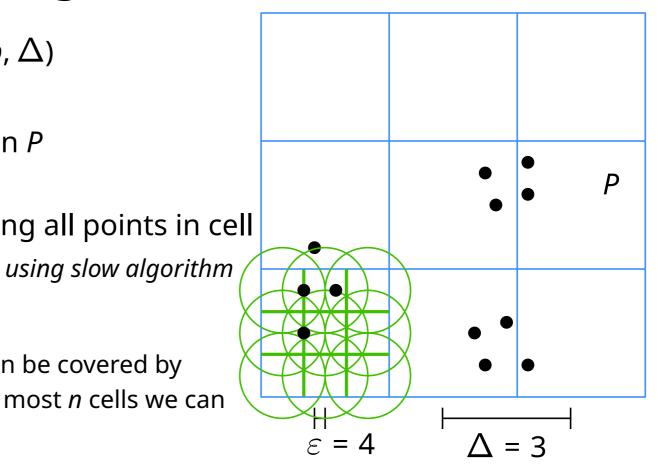
compute minimal # unit disks containing all points in cell

Analysis:

• the running time is $n^{O(1/\varepsilon^2)}$

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm


- compute all grid cells containing points in *P*
- for each non-empty grid cell

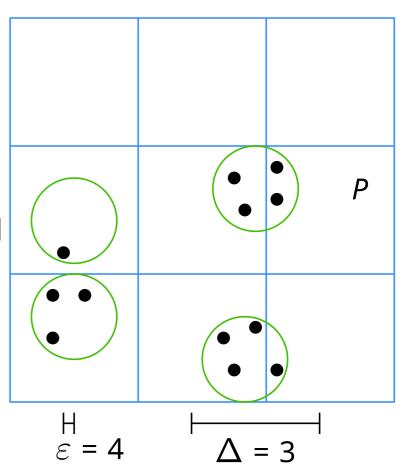
compute minimal # unit disks containing all points in cell

Analysis:

• the running time is $n^{O(1/\varepsilon^2)}$

using hashing and the fact that each grid cell can be covered by $(\Delta + 1)^2 = O(1/\varepsilon^2)$ many unit disks; hence for at most *n* cells we can compute this in $O(Mn^{2M+2}) = n^{O(1/\varepsilon^2)}$ time

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$


Algorithm

- compute all grid cells containing points in *P*
- for each non-empty grid cell compute minimal # unit disks containing all points in cell

Analysis:

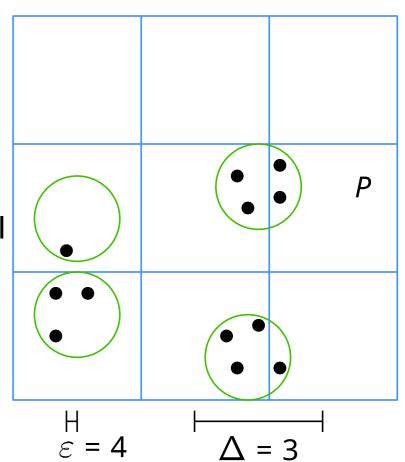
using slow algorithm

- the running time is $n^{O(1/\varepsilon^2)}$
- at most (1 + ε)*opt* disks are computed in expectation

using slow algorithm

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm


- compute all grid cells containing points in *P*
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis:

- the running time is $n^{O(1/\varepsilon^2)}$
- at most (1 + ε)*opt* disks are computed in expectation
 - $F = \{D_1, \dots, D_{opt}\}$: optimal solution

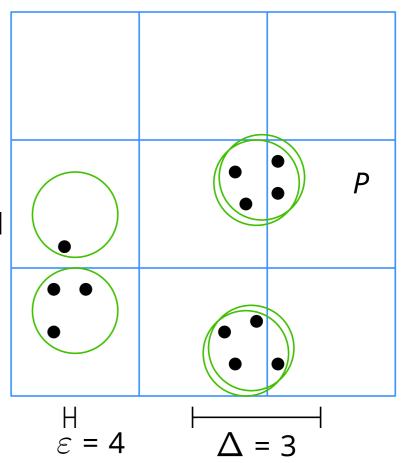
We construct a valid solution *G* from *F* that the algorithm finds.

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

- compute all grid cells containing points in *P*
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell


Analysis:

using slow algorithm

- the running time is $n^{O(1/\varepsilon^2)}$
- at most (1 + ε)*opt* disks are computed in expectation
 - $F = \{D_1, \dots, D_{opt}\}$: optimal solution

We construct a valid solution *G* from *F* that the algorithm finds.

For each grid cell C: F_C the disks in F that intersect C. Let $G = \bigcup_C F_C$ (a multiset).

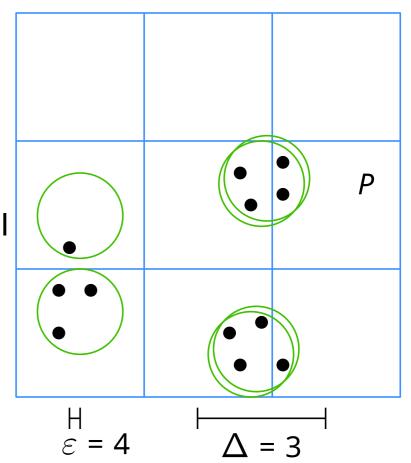
Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

- compute all grid cells containing points in *P*
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis:


using slow algorithm

- the running time is $n^{O(1/\varepsilon^2)}$
- at most (1 + ε)*opt* disks are computed in expectation
 - $F = \{D_1, \dots, D_{opt}\}$: optimal solution

We construct a valid solution *G* from *F* that the algorithm finds.

For each grid cell C: F_C the disks in F that intersect C. Let $G = \bigcup_C F_C$ (a multiset).

For each cell *C* the algorithm returns at most $|F_C|$ disks.

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

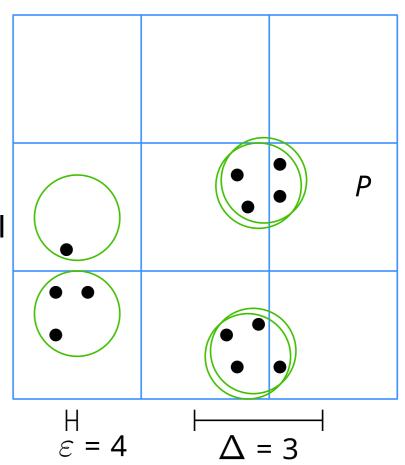
Algorithm

- compute all grid cells containing points in *P*
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis:

using slow algorithm


- the running time is $n^{O(1/\varepsilon^2)}$
- at most (1 + ε)*opt* disks are computed in expectation
 - $F = \{D_1, \dots, D_{opt}\}$: optimal solution

We construct a valid solution *G* from *F* that the algorithm finds.

For each grid cell C: F_C the disks in F that intersect C. Let $G = \bigcup_C F_C$ (a multiset).

For each cell *C* the algorithm returns at most $|F_C|$ disks.

For ε < 12 each disk *D* in *F* intersects \leq 4 cells, thus appears at most 4 times in *G*.

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

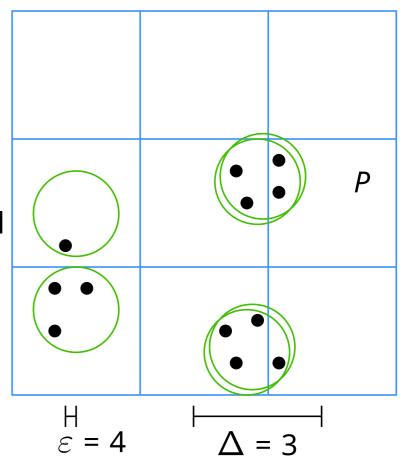
- compute all grid cells containing points in *P*
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis:

using slow algorithm

- the running time is $n^{O(1/\varepsilon^2)}$
- at most (1 + ε)*opt* disks are computed in expectation
 - $F = \{D_1, \dots, D_{opt}\}$: optimal solution


We construct a valid solution *G* from *F* that the algorithm finds.

For each grid cell C: F_C the disks in F that intersect C. Let $G = \bigcup_C F_C$ (a multiset).

For each cell *C* the algorithm returns at most $|F_C|$ disks.

For ε < 12 each disk *D* in *F* intersects \leq 4 cells, thus appears at most 4 times in *G*.

Disk D_i in F appears more than once in $G \Leftrightarrow D_i$ not in one cell; (X_i := indicator variable of this event)

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

- compute all grid cells containing points in *P*
- for each non-empty grid cell

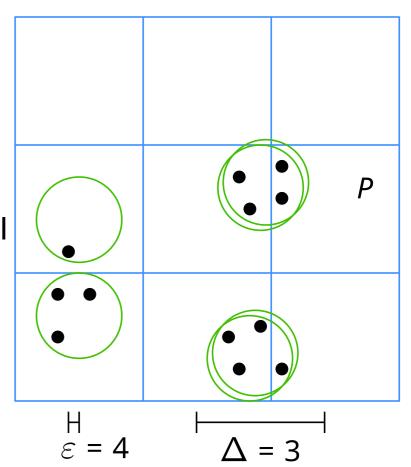
compute minimal # unit disks containing all points in cell

Analysis:

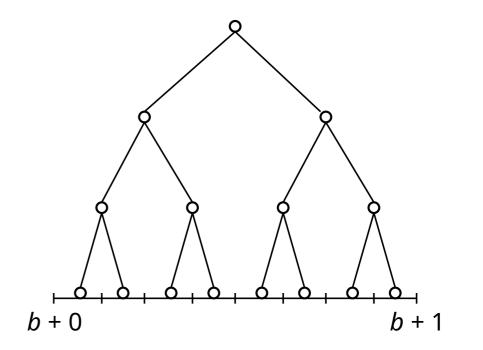
using slow algorithm

- the running time is $n^{O(1/\varepsilon^2)}$
- at most (1 + ε)*opt* disks are computed in expectation
 - $F = \{D_1, \dots, D_{opt}\}$: optimal solution

We construct a valid solution *G* from *F* that the algorithm finds.

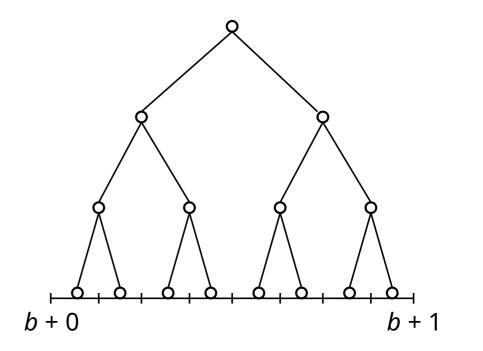

For each grid cell C: F_C the disks in F that intersect C. Let $G = \bigcup_C F_C$ (a multiset).

For each cell *C* the algorithm returns at most $|F_C|$ disks.


For ε < 12 each disk *D* in *F* intersects \leq 4 cells, thus appears at most 4 times in *G*.

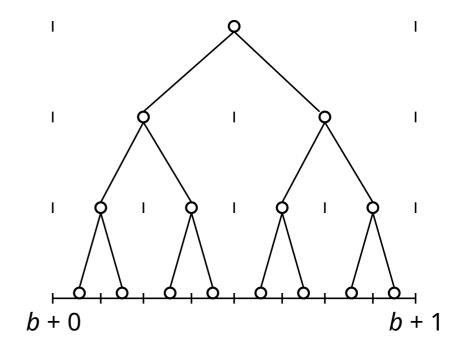
Disk D_i in F appears more than once in $G \Leftrightarrow D_i$ not in one cell; (X_i := indicator variable of this event)

 $\mathbb{E}\left[|G|\right] \leq \mathbb{E}\left[opt + \sum_{i=1}^{opt} 3X_i\right] \leq opt + \sum_{i=1}^{opt} 3\mathbb{E}\left[X_i\right] \leq opt + \sum_{i=1}^{opt} 3\frac{4}{\Delta} = (1 + \frac{12}{\Delta})opt = (1 + \varepsilon)opt$



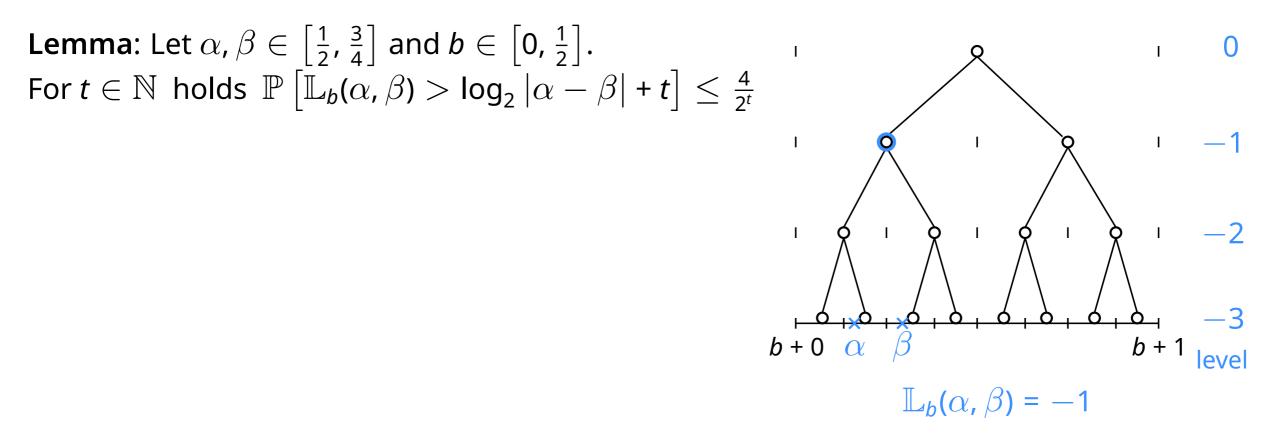
Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]


For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) in T)$

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_b(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

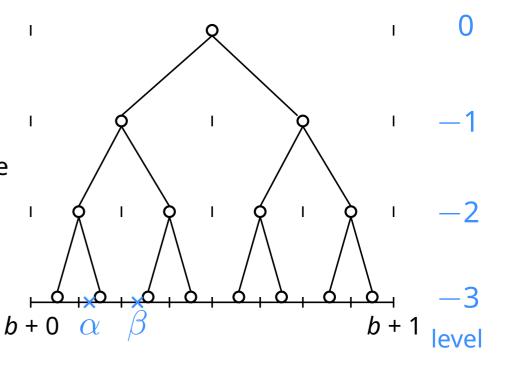

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]


For $\alpha, \beta \in P$ let $\mathbb{L}_b(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

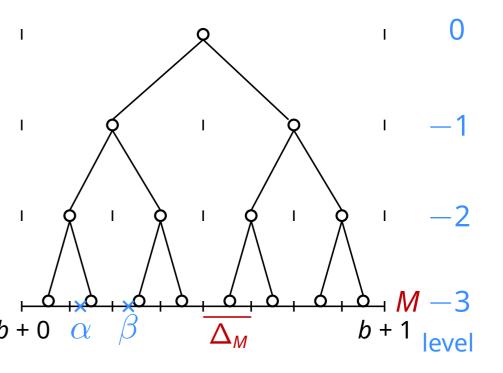
note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Lemma: Let $\alpha, \beta \in \left[\frac{1}{2}, \frac{3}{4}\right]$ and $b \in \left[0, \frac{1}{2}\right]$. For $t \in \mathbb{N}$ holds $\mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta) > \log_{2} |\alpha - \beta| + t\right] \leq \frac{4}{2^{t}}$

Proof:

Let $M = \lfloor \log_2 |\alpha - \beta| \rfloor$ and consider shifted partition of real line with side length $\Delta_{M+i} = 2^{M+i}$ and shift *b*.

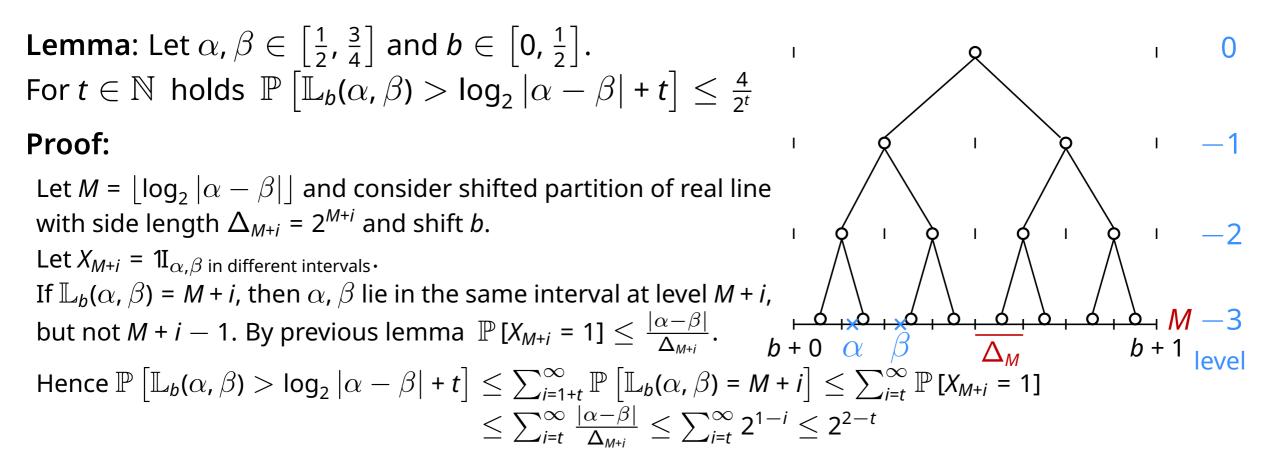
Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]


For $\alpha, \beta \in P$ let $\mathbb{L}_b(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

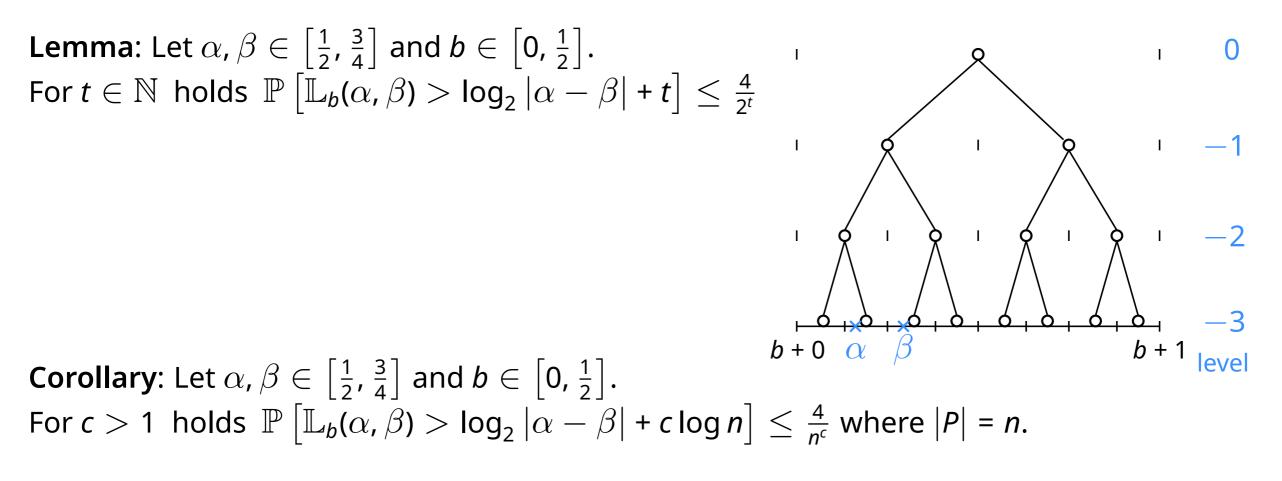
Lemma: Let $\alpha, \beta \in \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}$ and $b \in \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$. For $t \in \mathbb{N}$ holds $\mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta) > \log_{2} |\alpha - \beta| + t\right] \leq \frac{4}{2^{t}}$

Proof:


Let $M = \lfloor \log_2 |\alpha - \beta| \rfloor$ and consider shifted partition of real line with side length $\Delta_{M+i} = 2^{M+i}$ and shift b. Let $X_{M+i} = \Pi_{\alpha,\beta \text{ in different intervals}}$. If $\mathbb{L}_b(\alpha,\beta) = M+i$, then α,β lie in the same interval at level M+i, but not M+i-1. By previous lemma $\mathbb{P}[X_{M+i} = 1] \leq \frac{|\alpha - \beta|}{\Delta_{M+i}}$.

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) in T)$


note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_b(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Shifting Quadtrees in higher dimensions

Now let *P* be a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$.

Consider the shifted compressed quadtree T of P with $b + [0, 1]^d$ as root cell.

Shifting Quadtrees in higher dimensions

Now let *P* be a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$.

Consider the shifted compressed quadtree T of P with $b + [0, 1]^d$ as root cell.

As before, for $p, q \in P$ consider *lca*(p, q) in *T*.

Note that *T* is the combination of 1dim Quadtrees $T_1, ..., T_d$ in each coordinate.

Hence $\mathbb{L}_b(p, q) = \max_{i=1}^d \mathbb{L}_{b_i}(p_i, q_i)$ and is again independent of all other points in *P*.

Shifting Quadtrees in higher dimensions

Now let *P* be a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$.

Consider the shifted compressed quadtree T of P with $b + [0, 1]^d$ as root cell.

As before, for $p, q \in P$ consider lca(p, q) in T.

Note that *T* is the combination of 1dim Quadtrees $T_1, ..., T_d$ in each coordinate.

Hence $\mathbb{L}_{b}(p, q) = \max_{i=1}^{d} \mathbb{L}_{b_{i}}(p_{i}, q_{i})$ and is again independent of all other points in *P*.

We consider $\mathbb{L}_b(p, q)$ as random variable and use

Lemma

For t > 0 holds $\mathbb{P}\left[\mathbb{L}_{b}(p,q) > \log_{2} ||p-q|| + t\right] \leq \frac{4d}{2^{t}}$.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can

quickly find $p \in P$, s.t. $||q - p|| \le \tau d(q, P)$ where $d(q, P) = min_{p \in P} ||q - p||$.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le \tau d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le \tau d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point *rep_v* in *P_v*.

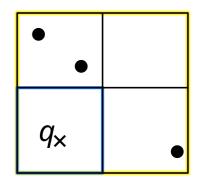
Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le \tau d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point *rep_v* in *P_v*.

Query: For $q \in \left[\frac{1}{2}, \frac{3}{4}\right]^d$ let v be the lowest node in T s.t. q in the region of v. If rep_v is defined (i.e. $P_v \neq \emptyset$), return it; otherwise return $rep_{par(v)}$.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .


That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le \tau d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point rep_v in P_v .

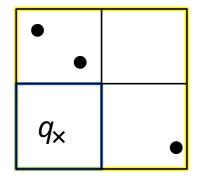
Query: For $q \in \left[\frac{1}{2}, \frac{3}{4}\right]^d$ let v be the lowest node in T s.t. q in the region of v. If rep_v is defined (i.e. $P_v \neq \emptyset$), return it; otherwise return $rep_{par(v)}$.

Analysis:

- 1. If *v* is a non-empty leaf, then rep_v is returned
- 2. If *v* is an empty leaf, then $rep_{par(v)}$ is returned
- 3. If v is a compressed node, i.e. its region an annulus, we return rep_v

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

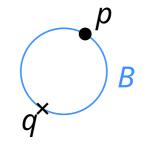
That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le \tau d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.


Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point rep_v in P_v .

Query: For $q \in \left[\frac{1}{2}, \frac{3}{4}\right]^d$ let v be the lowest node in T s.t. q in the region of v. If rep_v is defined (i.e. $P_v \neq \emptyset$), return it; otherwise return $rep_{par(v)}$.

Analysis:

- 1. If *v* is a non-empty leaf, then rep_v is returned
- 2. If *v* is an empty leaf, then $rep_{par(v)}$ is returned
- 3. If v is a compressed node, i.e. its region an annulus, we return rep_v

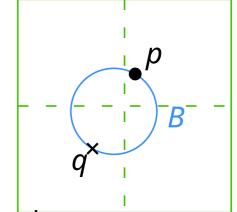

In 1. and 3. $||q - p|| \le diam(v)$ and in 2. $||q - p|| \le 2diam(v)$

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof: Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.


Proof:

Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

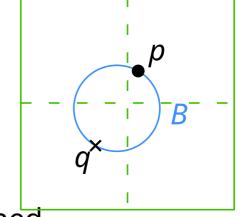
Let *u* be the lowest node in *T* that fully contains *B*.

The query returns either *u* or one of its descendants.

Hence an ANN at distance at most $2diam(v) \leq 2diam(u)$ is returned.

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof:


Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Let *u* be the lowest node in *T* that fully contains *B*.

The query returns either *u* or one of its descendants.

Hence an ANN at distance at most $2diam(v) \leq 2diam(u)$ is returned.

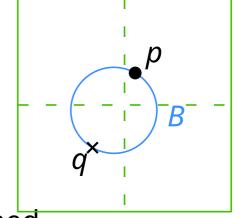
Now let $\ell = ||p - q||$; by a previous lemma, $\mathbb{P}[B \text{ lies in a cell at level } i] \ge 1 - \frac{d\ell}{2^i}$ (*)

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof:

Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Let *u* be the lowest node in *T* that fully contains *B*.


The query returns either *u* or one of its descendants.

Hence an ANN at distance at most $2diam(v) \leq 2diam(u)$ is returned.

Now let $\ell = ||p - q||$; by a previous lemma, $\mathbb{P}[B \text{ lies in a cell at level } i] \ge 1 - \frac{d\ell}{2^i}$ (*)

If *B* lies completely in a cell, let \Box be this cell.

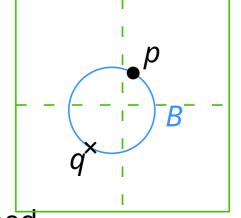
The ANN returned has distance $\leq 2 diam(\Box) \leq 2\sqrt{d}2^i$ hence quality $2\sqrt{d}2^i/\ell$

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof:

Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Let *u* be the lowest node in *T* that fully contains *B*.


The query returns either *u* or one of its descendants.

Hence an ANN at distance at most $2diam(v) \leq 2diam(u)$ is returned.

Now let $\ell = ||p - q||$; by a previous lemma, $\mathbb{P}[B \text{ lies in a cell at level } i] \ge 1 - \frac{d\ell}{2^i}$ (*)

If *B* lies completely in a cell, let \Box be this cell. The ANN returned has distance $\leq 2 diam(\Box) \leq 2\sqrt{d}2^i$ hence quality $2\sqrt{d}2^i/\ell$

And it holds $2\sqrt{d2^{i}}/\ell \leq \tau \Leftrightarrow i \leq \log_{2} \frac{\ell\tau}{2\sqrt{d}}$ Set $i := \lfloor \log_{2}(\frac{\ell\tau}{2\sqrt{d}}) \rfloor$ then it follows with (*) that an τ -ANN is returned with probability at least $1 - \frac{d\ell}{2^{i}} \geq 1 - \frac{4d^{3/2}}{\tau}$

shifting grids \rightarrow approximate disk cover

shifting quadtrees \rightarrow approximate nearest neighbor query

shifting grids \rightarrow approximate disk cover

The probability that a ball *B* of radius *r* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

shifting quadtrees \rightarrow approximate nearest neighbor query

shifting grids \rightarrow approximate disk cover

The probability that a ball *B* of radius *r* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

algorithm design: Solve problem per cell; bound error of *B* not being in one cell using probability

shifting quadtrees \rightarrow approximate nearest neighbor query

shifting grids \rightarrow approximate disk cover

The probability that a ball *B* of radius *r* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

algorithm design: Solve problem per cell; bound error of *B* not being in one cell using probability

shifting quadtrees \rightarrow approximate nearest neighbor query

For t > 0 holds $\mathbb{P}\left[\mathbb{L}_b(p,q) > \log_2 ||p-q|| + t\right] \leq \frac{4d}{2^t}$.

shifting grids \rightarrow approximate disk cover

The probability that a ball *B* of radius *r* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

algorithm design: Solve problem per cell; bound error of *B* not being in one cell using probability

shifting quadtrees \rightarrow approximate nearest neighbor query

For t > 0 holds $\mathbb{P}\left[\mathbb{L}_{b}(p,q) > \log_{2}\left|\left|p-q\right|\right| + t\right] \leq \frac{4d}{2^{t}}$.

With high probability *p* and *q* in same cell at level $\log_2 ||p - q|| + c \log n$