
Well-Separated Pair Decomposition
Application: geometric spanners
Construction and size
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Motivation
Problem: Connect a set of cities by a new street network.

But for any pair (x, y) the graph distance shouldn’t be
much longer than ‖x− y‖

The budget for roads only pays for O(n) roads.
3. Idea: sparse t-spanner

detour≤ t·shortest pathO(n) edges

1. Idea: Euclidean MST

2. Idea: complete graph



Applications of distance approximation

communication and connectivity in networks
• topology control in wireless networks
• routing in networks
• network analysis

fast, approximate distance computation

• geometric approximation algorithms for diameter,
minimum spanning tree etc.

• exact algorithms: closest pair, nearest neighbor graph,
Voronoi diagrams etc.



t-spanner

For a set P of n points in Rd the Euclidean graph EG(P ) = (P,
(
P
2

)
) is the

complete, weighted graph with Euclidean distances as edge weights.



t-spanner

For a set P of n points in Rd the Euclidean graph EG(P ) = (P,
(
P
2

)
) is the

complete, weighted graph with Euclidean distances as edge weights.

u
vw(uv) = ||u− v||



t-spanner

For a set P of n points in Rd the Euclidean graph EG(P ) = (P,
(
P
2

)
) is the

complete, weighted graph with Euclidean distances as edge weights.

Since EG(P ) has Θ(n2) edges, we want a sparse graph with O(n) edges such
that the shortest paths in the graph approximate the edge weights of EG(P ).

u
vw(uv) = ||u− v||



t-spanner

For a set P of n points in Rd the Euclidean graph EG(P ) = (P,
(
P
2

)
) is the

complete, weighted graph with Euclidean distances as edge weights.

Since EG(P ) has Θ(n2) edges, we want a sparse graph with O(n) edges such
that the shortest paths in the graph approximate the edge weights of EG(P ).

Definition: A weighted graph G with vertex set P is called t-spanner for P and a
stretch factor t ≥ 1, if for all pairs x, y ∈ P :

||xy|| ≤ δG(x, y) ≤ t · ||xy|| ,

where δG(x, y) = length of the shortest x-to-y path in G.
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Quiz
What is the smallest t for which the following graph is a t-spanner?

A:
√

2

B: 2

C:
√

2 + 1

How can we compute a t-spanner?
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Spanner construction paradigms
greedy
• sort point pairs by distance, start with no edges
• if for the next point pair the dilation is > t then

add corresponding edge

cone-based
• subdivide space around each point into k > 6

non-overlapping cones with angle φ = 2π/k
• connect to “closest” point in each cone

distance approximation
• well-separated pair decomposition (next!)

k = 8



Applications of distance approximation

communication and connectivity in networks
• topology control in wireless networks
• routing in networks
• network analysis

fast, approximate distance computation

• geometric approximation algorithms for diameter,
minimum spanning tree etc.

• exact algorithms: closest pair, nearest neighbor graph,
Voronoi diagrams etc.



Well-Separated Pair Decomposition
Definition
Reminder: Compressed Quadtrees



Well-Separated Pairs
Definition: A pair of disjoint point sets A and B in Rd is called s-well separated
for an s > 0, if A and B both can be covered by a ball of radius r and the
distance between the balls is at least sr.

≥ sr

r

r
A

B



Well-Separated Pairs
Definition: A pair of disjoint point sets A and B in Rd is called s-well separated
for an s > 0, if A and B both can be covered by a ball of radius r and the
distance between the balls is at least sr.

≥ sr

r

r
A

B

A′

B′

r′

r′
≥sr′



Well-Separated Pairs
Definition: A pair of disjoint point sets A and B in Rd is called s-well separated
for an s > 0, if A and B both can be covered by a ball of radius r and the
distance between the balls is at least sr.

≥ sr

r

r
A

B

A′

B′

r′

r′
≥sr′

Observation:
• s-well separated⇒ s′-well separated for all s′ ≤ s
• singletons {a} and {b} are s-well separated for all
s > 0



Well-Separated Pairs
Definition: A pair of disjoint point sets A and B in Rd is called s-well separated
for an s > 0, if A and B both can be covered by a ball of radius r and the
distance between the balls is at least sr.

≥ sr

r

r
A

B

A′

B′

r′

r′
≥sr′

Observation:
• s-well separated⇒ s′-well separated for all s′ ≤ s
• singletons {a} and {b} are s-well separated for all
s > 0

Note: book uses
1/ε here.



Well-Separated Pair Decomposition

Goal: o(n2)-data structure that approximates all
(
n
2

)
pairwise distances of a point

set P = {p1, . . . , pn}.

For a well-separated pair {A,B} the distance between all point pairs in
A⊗B := {{a, b} | a ∈ A, b ∈ B, a 6= b} is similar.



Well-Separated Pair Decomposition

Goal: o(n2)-data structure that approximates all
(
n
2

)
pairwise distances of a point

set P = {p1, . . . , pn}.

For a well-separated pair {A,B} the distance between all point pairs in
A⊗B := {{a, b} | a ∈ A, b ∈ B, a 6= b} is similar.

Definition: For a set of points P and s > 0 an s-well separated pair
decomposition (s-WSPD) is a set of pairs {{A1, B1}, . . . , {Am, Bm}} with
• Ai, Bi ⊂ P for all i
• Ai ∩Bi = ∅ for all i
•
⋃m

i=1Ai ⊗Bi = P ⊗ P
• {Ai, Bi} s-well separated for all i
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Example

28 pairs of points 12 s-well separated pairs

WSPD of size O(n2) is trivial.
What is the ‘size’? Can we get size O(n)?
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Reminder: quadtrees

NE NW SW SE

Definition: A quadtree is a rooted tree, in which every interior node has 4
children. Every node corresponds to a square, and the squares of children are the
quadrants of the parent’s square.



Reminder: Compressed quadtrees
Definition: A compressed quadtree is a quadtree in which paths of
non-separating inner nodes are compressed to an edge.

Theorem 2: A compressed quadtree for n points in Rd for
fixed d has size O(n) and can be computed in O(n log n)
time.
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where σu is the square corresponding to u.
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Representative and Level
Definition: For every node u of a quadtree T (P ) let Pu = σu ∩ P ,
where σu is the square corresponding to u.

For every leaf u define the representative

rep(u) =

{
p if Pu = {p} (u is leaf)
∅ otherwise.

u

p

p

q r

rq For every inner node v set
rep(v) = rep(u) of a non-empty child u of v.

∅∅

∅ ∅q

p

level 0

level∞

level 3

Notes: (a) levels in book < 0, (b) book works with
∆(u) = radius of circle around square (or 0 for
leaves) instead.



Representative and Level
Definition: For every node u of a quadtree T (P ) let Pu = σu ∩ P ,
where σu is the square corresponding to u.

For every leaf u define the representative

rep(u) =

{
p if Pu = {p} (u is leaf)
∅ otherwise.

u

p

p

q r

rq For every inner node v set
rep(v) = rep(u) of a non-empty child u of v.

∅∅

∅ ∅q

p

level 0

level∞

level 3

next: using quadtree to compute WSPD
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Construction of a WSPD

a b
c

d

e

u0

b

d

c
a

e

wsPairs(u, v, T , s)
Input: quadtree nodes u, v, quadtree T , s > 0
Output: WSPD for Pu ⊗ Pv

1: if rep(u) = ∅ or rep(v) = ∅ or leaves u = v then return∅
2: else if Pu and Pv s-well separated then return {{u, v}}
3: else
4: if level(u) > level(v) then exchange u and v
5: (u1, . . . , um)← children of u in T
6: return

⋃m
i=1 wsPairs(ui, v, T , s)
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Construction of a WSPD

a b
c

d

e

u0

b

d

c
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e

• initial call wsPairs(u0, u0, T , s)
• avoid duplicate wsPairs(ui, uj , T , s) and wsPairs(uj , ui, T , s)
• pairs of leaves are s-well separated→ algorithm terminates
• output are pairs of quadtree nodes

wsPairs(u, v, T , s)
Input: quadtree nodes u, v, quadtree T , s > 0
Output: WSPD for Pu ⊗ Pv

1: if rep(u) = ∅ or rep(v) = ∅ or leaves u = v then return∅
2: else if Pu and Pv s-well separated then return {{u, v}}
3: else
4: if level(u) > level(v) then exchange u and v
5: (u1, . . . , um)← children of u in T
6: return

⋃m
i=1 wsPairs(ui, v, T , s)
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C: No, not necessarily.
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Quiz
Is the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.

B: Yes, because all s-WSPDs have the same size.

C: No, not necessarily.

Question: How many pairs are generated by the algorithm?



Well-Separated Pair Decomposition
Complexity



Analysis of WSPD-Construction
Theorem: For a point set P in Rd and s ≥ 1 we can construct an s-WSPD with
O(sdn) pairs in time O(n log n+ sdn).
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Analysis of WSPD-Construction
Theorem: For a point set P in Rd and s ≥ 1 we can construct an s-WSPD with
O(sdn) pairs in time O(n log n+ sdn).
Proof sketch:

v
u

x rv ≤ sx
√
d

Rv

u, v are not separated,
u is at most factor 2 larger than v
⇒ distance between the balls
≤ smax(ru, rv) ≤ 2srv = sx

√
d

⇒ distance between their centers
≤ (1/2 + 1 + s)x

√
d ≤ 3sx

√
d =: Rv

packing lemma: onlyO(sd) such squares.

Assumptions: s ≥ 1, QT uncompressed.
Count the non-terminal calls.
Charging argument: charge non-term. call to the non-split square.
claim: O(sd) charges to each square
Consider call (u, v) with v smaller of side length x.
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Packing Lemma
Lemma: Let B be a ball of radius r in Rd and X a set of pairwise disjoint
quadtree cells with side length≥ x, that intersect B. Then

|X| ≤ (1 + d2r/xe)d.
Proof:

x

r



Packing Lemma
Lemma: Let B be a ball of radius r in Rd and X a set of pairwise disjoint
quadtree cells with side length≥ x, that intersect B. Then

|X| ≤ (1 + d2r/xe)d.
Proof:

x

r

x

r



Packing Lemma
Lemma: Let B be a ball of radius r in Rd and X a set of pairwise disjoint
quadtree cells with side length≥ x, that intersect B. Then

|X| ≤ (1 + d2r/xe)d.
Proof:

x

r

x

r

2r
in every dimension at most 1 + d2r/xe squares can
intersect the ball



Well-Separated Pair Decomposition
Application: t-spanner



t-spanner

For a set P of n points in Rd the Euclidean graph EG(P ) = (P,
(
P
2

)
) is the

complete, weighted graph with Euclidean distances as edge weights.

Since EG(P ) has Θ(n2) edges, we want a sparse graph with O(n) edges such
that the shortest paths in the graph approximate the edge weights of EG(P ).
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t-spanner

For a set P of n points in Rd the Euclidean graph EG(P ) = (P,
(
P
2

)
) is the

complete, weighted graph with Euclidean distances as edge weights.

Since EG(P ) has Θ(n2) edges, we want a sparse graph with O(n) edges such
that the shortest paths in the graph approximate the edge weights of EG(P ).

Definition: A weighted graph G with vertex set P is called t-spanner for P and a
stretch factor t ≥ 1, if for all pairs x, y ∈ P :

||xy|| ≤ δG(x, y) ≤ t · ||xy|| ,

where δG(x, y) = length of the shortest x-to-y path in G.
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WSPD and t-Spanner
Definition: For n points P in Rd and a WSPD W of P define the graph
G = (P,E) with E = {{x, y} | {u, v} ∈W and rep(u) = x, rep(v) = y}.

Reminder: every pair {u, v} ∈W corresponds to two
quadtree nodes u and v. From each quadtree node a
representative is selected in the following way. For leaf u
define as representative

rep(u) =

{
p if Pu = {p} (u is leaf)
∅ otherwise.

For an inner node v set rep(v) = rep(u) for a non-empty
child u of v.
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Definition: For n points P in Rd and a WSPD W of P define the graph
G = (P,E) with E = {{x, y} | {u, v} ∈W and rep(u) = x, rep(v) = y}.
Lemma: If W is an s-WSPD for s = 4 · t+1

t−1 , then G is a t-spanner for P with
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Proof: induction on distances
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WSPD and t-Spanner
Definition: For n points P in Rd and a WSPD W of P define the graph
G = (P,E) with E = {{x, y} | {u, v} ∈W and rep(u) = x, rep(v) = y}.
Lemma: If W is an s-WSPD for s = 4 · t+1

t−1 , then G is a t-spanner for P with
O(sdn) edges.

Question: How large does s need to be if t = 1 + ε

A: 4

B: O(1/ε)

C: O(1/εd)
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ε
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n
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Summary
Theorem: For a set P of n points in Rd and an ε ∈ (0, 1] a (1 + ε)-spanner for P
with O(n/εd) edges can be computed in O(n log n+ n/εd) time.

P

compressed quadtree

WSPD

(1 + ε)-spanner

O(n log n)

O(n/εd)

O(n/εd)

Proof: For t = (1 + ε) it holds with s = 4 · t+1
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Discussion
Applications of the WSPD?
WSPD is always useful, when we don’t need the Θ(n2) exact distances, but
approximate distances are enough

Can’t we compute exact solutions in the same time?
Often in R2 yes, but not in Rd for d > 2 (EMST, diameter).
EMST, Voronoi diagrams, . . . can be computed in O(n) time from
quadtress/WSPDs

Additional highlights in book

• very simple from WSPD: closest pair and approximate diameter
• with basic geometry from WSPD: nearest neighbor graph
• semi-separated pair decomposition
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