Well-Separated Pair Decomposition

Application: geometric spanners Construction and size

Problem: Connect a set of cities by a new street network.

Problem: Connect a set of cities by a new street network. 1. Idea: Euclidean MST

Problem: Connect a set of cities by a new street network. 1. Idea: Euclidean MST But for any pair (x, y) the graph distance shouldn't be much longer than ||x - y||

Problem: Connect a set of cities by a new street network. 1. Idea: Euclidean MST But for any pair (x, y) the graph distance shouldn't be much longer than ||x - y||

2. Idea: complete graph

Problem: Connect a set of cities by a new street network. 1. Idea: Euclidean MST But for any pair (x, y) the graph distance shouldn't be much longer than ||x - y||2. Idea: complete graph The budget for roads only pays for O(n) roads.

Problem: Connect a set of cities by a new street network. 1. Idea: Euclidean MST But for any pair (x, y) the graph distance shouldn't be much longer than ||x - y||2. Idea: complete graph The budget for roads only pays for O(n) roads. 3. Idea: sparse *t*-spanner detour $\leq t \cdot \text{shortest path}$ O(n) edges

Applications of distance approximation

fast, approximate distance computation • geometric approximation algorithms for diameter,

- minimum spanning tree etc.
- exact algorithms: closest pair, nearest neighbor graph, Voronoi diagrams etc.

communication and connectivity in networks

- topology control in wireless networks
- routing in networks
- network analysis

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

Definition: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x, y \in P$:

 $||xy|| \le \delta_G(x, y) \le t \cdot ||xy||,$

where $\delta_G(x, y) =$ length of the shortest *x*-to-*y* path in *G*.

What is the smallest t for which the following graph is a t-spanner?

A:
$$\sqrt{2}$$

B: 2
C: $\sqrt{2} + 1$

What is the smallest *t* for which the following graph is a *t*-spanner?

What is the smallest *t* for which the following graph is a *t*-spanner?

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is > t then add corresponding edge

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is > t then add corresponding edge

cone-based

- subdivide space around each point into k>6 non-overlapping cones with angle $\phi=2\pi/k$
- connect to "closest" point in each cone

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is > t then add corresponding edge

cone-based

- subdivide space around each point into k>6 non-overlapping cones with angle $\phi=2\pi/k$
- connect to "closest" point in each cone

distance approximation

• well-separated pair decomposition (next!)

Applications of distance approximation

fast, approximate distance computation • geometric approximation algorithms for diameter,

- minimum spanning tree etc.
- exact algorithms: closest pair, nearest neighbor graph, Voronoi diagrams etc.

communication and connectivity in networks

- topology control in wireless networks
- routing in networks
- network analysis

Well-Separated Pair Decomposition

Definition Reminder: Compressed Quadtrees

Definition: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for an s > 0, if A and B both can be covered by a ball of radius r and the distance between the balls is at least sr.

Definition: A pair of disjoint point sets A and B in \mathbb{R}^d is called <u>s-well separated</u> for an s > 0, if A and B both can be covered by a ball of radius r and the distance between the balls is at least sr.

Definition: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for an s > 0, if A and B both can be covered by a ball of radius r and the distance between the balls is at least sr.

Observation:

- s-well separated \Rightarrow s'-well separated for all $s' \leq s$
- singletons $\{a\}$ and $\{b\}$ are *s*-well separated for all s > 0

Definition: A pair of disjoint point sets A and B in \mathbb{R}^d is called <u>s-well separated</u> for an s > 0, if A and B both can be covered by a ball of radius r and the distance between the balls is at least sr.

Observation:

- s-well separated \Rightarrow s'-well separated for all $s' \leq s$
- singletons $\{a\}$ and $\{b\}$ are *s*-well separated for all s > 0

Note: book uses arepsilon arepsilon here.

Well-Separated Pair Decomposition

For a well-separated pair $\{A, B\}$ the distance between all point pairs in $A \otimes B := \{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o(n^2)$ -data structure that approximates all $\binom{n}{2}$ pairwise distances of a point set $P = \{p_1, ..., p_n\}.$

Well-Separated Pair Decomposition

For a well-separated pair $\{A, B\}$ the distance between all point pairs in $A \otimes B := \{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o(n^2)$ -data structure that approximates all $\binom{n}{2}$ pairwise distances of a point set $P = \{p_1, ..., p_n\}.$

Definition: For a set of points P and s > 0 an s-well separated pair decomposition (s-WSPD) is a set of pairs $\{A_1, B_1\}, \ldots, \{A_m, B_m\}\}$ with

•
$$A_i, B_i \subset P$$
 for all i

- $A_i \cap B_i = \emptyset$ for all i
- $\bigcup_{i=1}^{m} A_i \otimes B_i = P \otimes P$
- $\{A_i, B_i\}$ s-well separated for all i

28 pairs of points

12 *s*-well separated pairs

28 pairs of points

28 pairs of points 12 *s*-well separated pairs

WSPD of size $O(n^2)$ is trivial. What is the 'size'? Can we get size O(n)?

What size does a 2-WSPD on the following point set have at least?

What size does a 2-WSPD on the following point set have at least?

Reminder: quadtrees

Definition: A quadtree is a rooted tree, in which every interior node has 4 children. Every node corresponds to a square, and the squares of children are the quadrants of the parent's square.

SE

Reminder: Compressed quadtrees

Definition: A compressed quadtree is a quadtree in which paths of non-separating inner nodes are compressed to an edge.

Theorem 2: A compressed quadtree for n points in \mathbb{R}^d for fixed *d* has size O(n) and can be computed in $O(n \log n)$ time.

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

$\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$
Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

- $\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

Definition: For every inner node u of a quadtree $\mathcal{T}(P)$ let level(u) be the level of u in the corresponding uncompressed quadtree. For leaves u, level $(u) := \infty$

- $\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

Definition: For every inner node u of a quadtree $\mathcal{T}(P)$ let level(u) be the level of u in the corresponding uncompressed quadtree. For leaves u, level $(u) := \infty$

- $\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

Notes: (a) levels in book < 0, (b) book works with $\Delta(u)$ = radius of circle around square (or 0 for leaves) instead.

- $\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

next: using quadtree to compute WSPD

- $\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$

Well-Separated Pair Decomposition

Construction

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0*Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0*Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m} \text{wsPairs}(u_i, v, \mathcal{T}, s)$

WSPAIRS
$$(u, v, \mathcal{T}, s)$$

Input: quadtree increase radius of smaller circle,
Output: WSPD for check distance $\geq sr$ in $O(1)$ time
1: if rep $(u) = \emptyset$ or rep $(v) = \emptyset$ or leaves $u = v$ then return \emptyset
2: else if P_u and P_v s-well separated then return $\{\{u, v\}\}\}$
3: else
4: if level $(u) >$ level (v) then exchange u and v
5: $(u_1, \ldots, u_m) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^m$ WSPAIRS (u_i, v, \mathcal{T}, s)

 $e_{_{o}}$

b

wsPAIRS
$$(u, v, \mathcal{T}, s)$$

Input: quadtree relative around σ_u and σ_v (or radius 0 for point in increase radius of smaller circle,
Output: WSPD for check distance $\geq sr$ in $O(1)$ time
1: if rep $(u) = \emptyset$ or rep $(v) = \emptyset$ or eaves $u = v$ then return \emptyset
2: else if P_u and P_v s-well separated then return $\{\{u, v\}\}\}$
3: else
4: if level $(u) >$ level (v) then exchange u and v
5: $(u_1, \ldots, u_m) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^m$ wsPAIRS (u_i, v, \mathcal{T}, s) $\{\{b, c\}, \{d\}\}\}$

C

WSPAIRS (u, v, \mathcal{T}, s)

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset

- 2: else if P_u and P_v s-well separated then return $\{\{u, v\}\}$ 3: **else**
- if level(u) > level(v) then exchange u and v 4:
- $(u_1,\ldots,u_m) \leftarrow \mathsf{children} \mathsf{ of } u \mathsf{ in } \mathcal{T}$ 5:
- $(u_1, \dots, u_m) \leftarrow \text{children of } u \text{ if } f = \{b, c\}, \{d\}\}$ return $\bigcup_{i=1}^m \text{wsPAIRS}(u_i, v, \mathcal{T}, s) = \{\{a\}, \{d\}\}\}$ 6:

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

1: if $\operatorname{rep}(u) = \varnothing$ or $\operatorname{rep}(v) = \varnothing$ or leaves u = v then return \varnothing

 $\{ \{b, c\}, \{d\} \} \\ \{ \{a\}, \{d\} \}$

 $\{\{b,c\},\{e\}\}$

 $\{\{d\}, \{e\}\}$

 $\{\{a\}, \{b\}\}$

 $\{\{a\}, \{c\}\}$

- 2: else if P_u and P_v *s*-well separated then return $\{\{u, v\}\}$ 3: else
- 4: if level(u) > level(v) then exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m}$ wsPAIRS (u_i, v, \mathcal{T}, s)

WSPAIRS (u, v, \mathcal{T}, s)

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$ *Output:* WSPD for $P_u \otimes P_v$

1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset

- 2: else if P_u and P_v s-well separated then return $\{\{u, v\}\}$ 3: **else**
- if level(u) > level(v) then exchange u and v 4:
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- return ($\int_{i=1}^{m}$ wsPairs (u_i, v, \mathcal{T}, s) 6:
- initial call wsPAIRS $(u_0, u_0, \mathcal{T}, s)$
- avoid duplicate wsPAIRS $(u_i, u_j, \mathcal{T}, s)$ and wsPAIRS $(u_j, u_i, \mathcal{T}, s)$
- pairs of leaves are s-well separated \rightarrow algorithm terminates
- output are pairs of quadtree nodes

Quiz

Is the size of the *s*-WSPD constructed minimal?

- A: Yes, because the *s*-WSPD is unique.
- B: Yes, because all *s*-WSPDs have the same size.
- C: No, not necessarily.

Quiz

Is the size of the *s*-WSPD constructed minimal?

A: Yes, because the *s*-WSPD is unique.

B: Yes, because all *s*-WSPDs have the same size.

C: No, not necessarily.

Quiz

Is the size of the *s*-WSPD constructed minimal?

A: Yes, because the *s*-WSPD is unique.

B: Yes, because all *s*-WSPDs have the same size.

C: No, not necessarily.

Question: How many pairs are generated by the algorithm?

Well-Separated Pair Decomposition

Complexity

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch:

Assumptions: $s \ge 1$, QT uncompressed. Count the non-terminal calls.

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

> Assumptions: $s \ge 1$, QT uncompressed. Count the non-terminal calls.

Proof sketch:

WSPAIRS (u, v, \mathcal{T}, s)

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0*Output:* WSPD for $P_u \otimes P_v$

1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset

- 2: else if P_u and P_v s-well separated then return $\{\{u, v\}\}$ 3: **else**
- if level(u) > level(v) then exchange u and v4:
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^{m}$ wsPAIRS (u_i, v, \mathcal{T}, s)

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch: Assumptions: $s \ge 1$, QT uncompressed. Count the non-terminal calls.

> Charging argument: charge non-term. call to the non-split square. claim: $O(s^d)$ charges to each square

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch: Assumptions: $s \ge 1$, QT uncompressed. Count the non-terminal calls.

SX R_{c}

Charging argument: charge non-term. call to the non-split square. claim: $O(s^d)$ charges to each square Consider call (u, v) with v smaller of side length x.

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch: Assumptions: $s \geq 1$, QT uncompressed. Count the non-terminal calls.

Charging argument: charge non-term. call to the non-split square. claim: $O(s^d)$ charges to each square Consider call (u, v) with v smaller of side length x. u, v are not separated, u is at most factor 2 larger than v \Rightarrow distance between the balls $\leq s \max(r_u, r_v) \leq 2sr_v = sx\sqrt{d}$ \Rightarrow distance between their centers $\leq (1/2 + 1 + s)x\sqrt{d} \leq 3sx\sqrt{d} =: R_v$ packing lemma: only $O(s^d)$ such squares.

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then $|X| \le (1 + \lceil 2r/x \rceil)^d.$

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then $|X| \le (1 + \lceil 2r/x \rceil)^d.$

Proof:

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then $|X| \le (1 + \lceil 2r/x \rceil)^d.$

Proof:

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then $|X| \le (1 + \lceil 2r/x \rceil)^d.$

Proof:

intersect the ball

Well-Separated Pair Decomposition

Application: *t*-spanner

t-spanner

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

t-spanner

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P) = (P, \binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

Definition: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x, y \in P$:

 $||xy|| \le \delta_G(x, y) \le t \cdot ||xy||,$

where $\delta_G(x, y) =$ length of the shortest *x*-to-*y* path in *G*.
Definition: For *n* points *P* in \mathbb{R}^d and a WSPD *W* of *P* define the graph G = (P, E) with $E = \{\{x, y\} \mid \{u, v\} \in W \text{ and } rep(u) = x, rep(v) = y\}.$

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G = (P, E) with $E = \{\{x, y\} \mid \{u, v\} \in W \text{ and } rep(u) = x, rep(v) = y\}.$

Reminder: every pair $\{u, v\} \in W$ corresponds to two quadtree nodes u and v. From each quadtree node a representative is selected in the following way. For leaf udefine as representative

$$\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$$

For an inner node v set rep(v) = rep(u) for a non-empty child u of v.

Definition: For *n* points *P* in \mathbb{R}^d and a WSPD *W* of *P* define the graph G = (P, E) with $E = \{\{x, y\} \mid \{u, v\} \in W \text{ and } rep(u) = x, rep(v) = y\}.$

Definition: For *n* points *P* in \mathbb{R}^d and a WSPD *W* of *P* define the graph G = (P, E) with $E = \{\{x, y\} \mid \{u, v\} \in W \text{ and } rep(u) = x, rep(v) = y\}.$ **Lemma:** If W is an s-WSPD for $s = 4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^d n)$ edges.

Definition: For *n* points *P* in \mathbb{R}^d and a WSPD *W* of *P* define the graph G = (P, E) with $E = \{\{x, y\} \mid \{u, v\} \in W \text{ and } rep(u) = x, rep(v) = y\}.$ **Lemma:** If W is an s-WSPD for $s = 4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^d n)$ edges. **Proof:** induction on distances

Definition: For *n* points *P* in \mathbb{R}^d and a WSPD *W* of *P* define the graph G = (P, E) with $E = \{\{x, y\} \mid \{u, v\} \in W \text{ and } rep(u) = x, rep(v) = y\}.$ **Lemma:** If W is an s-WSPD for $s = 4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^d n)$ edges. **Proof:** induction on distances

Definition: For *n* points *P* in \mathbb{R}^d and a WSPD *W* of *P* define the graph G = (P, E) with $E = \{\{x, y\} \mid \{u, v\} \in W \text{ and } rep(u) = x, rep(v) = y\}.$ **Lemma:** If W is an s-WSPD for $s = 4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^d n)$ edges.

Question: How large does s need to be if $t = 1 + \varepsilon$

A: 4

Summary

Theorem: For a set P of n points in \mathbb{R}^d and an $\varepsilon \in (0,1]$ a $(1+\varepsilon)$ -spanner for Pwith $O(n/\varepsilon^d)$ edges can be computed in $O(n \log n + n/\varepsilon^d)$ time.

Summary

Theorem: For a set P of n points in \mathbb{R}^d and an $\varepsilon \in (0,1]$ a $(1+\varepsilon)$ -spanner for P with $O(n/\varepsilon^d)$ edges can be computed in $O(n\log n + n/\varepsilon^d)$ time. **Proof:** For $t = (1 + \varepsilon)$ it holds with $s = 4 \cdot \frac{t+1}{t-1}$ $O(s^d n) = O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^d n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^d n\right) =$

Summary

Theorem: For a set P of n points in \mathbb{R}^d and an $\varepsilon \in (0,1]$ a $(1+\varepsilon)$ -spanner for P with $O(n/\varepsilon^d)$ edges can be computed in $O(n\log n + n/\varepsilon^d)$ time. **Proof:** For $t = (1 + \varepsilon)$ it holds with $s = 4 \cdot \frac{t+1}{t-1}$ $O(s^d n) = O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^d n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^d n\right) =$

Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the $\Theta(n^2)$ exact distances, but approximate distances are enough

Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the $\Theta(n^2)$ exact distances, but approximate distances are enough

Can't we compute exact solutions in the same time? Often in \mathbb{R}^2 yes, but not in \mathbb{R}^d for d > 2 (EMST, diameter). EMST, Voronoi diagrams, . . . can be computed in O(n) time from quadtress/WSPDs

Additional highlights in book

- very simple from WSPD: closest pair and approximate diameter
- with basic geometry from WSPD: nearest neighbor graph
- semi-separated pair decomposition