Well-Separated Pair Decomposition

Application: geometric spanners
Construction and size

Motivation

Problem: Connect a set of cities by a new street network.

Motivation

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST

Motivation

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST

But for any pair (x, y) the graph distance shouldn't be much longer than $\|x-y\|$

Motivation

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST

But for any pair (x, y) the graph distance shouldn't be much longer than $\|x-y\|$
2. Idea: complete graph

Motivation

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST

But for any pair (x, y) the graph distance shouldn't be much longer than $\|x-y\|$
2. Idea: complete graph

The budget for roads only pays for $O(n)$ roads.

Motivation

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST

But for any pair (x, y) the graph distance shouldn't be much longer than $\|x-y\|$
2. Idea: complete graph

The budget for roads only pays for $O(n)$ roads.
3. Idea: sparse t-spanner
$O(n)$ edges detour $\leq t \cdot$ shortest path

Applications of distance approximation

fast, approximate distance computation

- geometric approximation algorithms for diameter, minimum spanning tree etc.
- exact algorithms: closest pair, nearest neighbor graph, Voronoi diagrams etc.
communication and connectivity in networks
- topology control in wireless networks
- routing in networks
- network analysis

t-spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete, weighted graph with Euclidean distances as edge weights.

t-spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E} \mathcal{G}(P)=\left(P,\binom{P}{2}\right)$ is the complete, weighted graph with Euclidean distances as edge weights.

t-spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{E G}(P)$ has $\Theta\left(n^{2}\right)$ edges, we want a sparse graph with $O(n)$ edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{E G}(P)$.

t-spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{E G}(P)$ has $\Theta\left(n^{2}\right)$ edges, we want a sparse graph with $O(n)$ edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{E G}(P)$.

Definition: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x, y \in P$:

$$
\|x y\| \leq \delta_{G}(x, y) \leq t \cdot\|x y\|
$$

where $\delta_{G}(x, y)=$ length of the shortest x-to- y path in G.

Quiz

What is the smallest t for which the following graph is a t-spanner?

A: $\sqrt{2}$
B: 2
C: $\sqrt{2}+1$

Quiz

What is the smallest t for which the following graph is a t-spanner?

$$
\begin{aligned}
& \text { A: } \sqrt{2} \\
& \text { B: } 2 \\
& \text { C: } \sqrt{2}+1
\end{aligned}
$$

Quiz

What is the smallest t for which the following graph is a t-spanner?

A: $\sqrt{2}$
B: 2
How can we compute a t-spanner?
C: $\sqrt{2}+1$

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is $>t$ then add corresponding edge

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is $>t$ then add corresponding edge

cone-based

- subdivide space around each point into $k>6$ non-overlapping cones with angle $\phi=2 \pi / k$
- connect to "closest" point in each cone

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is $>t$ then add corresponding edge

cone-based

- subdivide space around each point into $k>6$ non-overlapping cones with angle $\phi=2 \pi / k$
- connect to "closest" point in each cone

distance approximation

- well-separated pair decomposition (next!)

Applications of distance approximation

fast, approximate distance computation

- geometric approximation algorithms for diameter, minimum spanning tree etc.
- exact algorithms: closest pair, nearest neighbor graph, Voronoi diagrams etc.
communication and connectivity in networks
- topology control in wireless networks
- routing in networks
- network analysis

Well-Separated Pair Decomposition

Definition

Reminder: Compressed Quadtrees

Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for an $s>0$, if A and B both can be covered by a ball of radius r and the distance between the balls is at least $s r$.

Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for an $s>0$, if A and B both can be covered by a ball of radius r and the distance between the balls is at least $s r$.

Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for an $s>0$, if A and B both can be covered by a ball of radius r and the distance between the balls is at least $s r$.

Observation:

- s-well separated $\Rightarrow s^{\prime}$-well separated for all $s^{\prime} \leq s$
- singletons $\{a\}$ and $\{b\}$ are s-well separated for all $s>0$

Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for an $s>0$, if A and B both can be covered by a ball of radius r and the distance between the balls is at least $s r$.

Observation:

- s-well separated $\Rightarrow s^{\prime}$-well separated for all $s^{\prime} \leq s$
- singletons $\{a\}$ and $\{b\}$ are s-well separated for all $s>0$

Well-Separated Pair Decomposition

For a well-separated pair $\{A, B\}$ the distance between all point pairs in $A \otimes B:=\{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o\left(n^{2}\right)$-data structure that approximates all $\binom{n}{2}$ pairwise distances of a point set $P=\left\{p_{1}, \ldots, p_{n}\right\}$.

Well-Separated Pair Decomposition

For a well-separated pair $\{A, B\}$ the distance between all point pairs in $A \otimes B:=\{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o\left(n^{2}\right)$-data structure that approximates all $\binom{n}{2}$ pairwise distances of a point set $P=\left\{p_{1}, \ldots, p_{n}\right\}$.

Definition: For a set of points P and $s>0$ an s-well separated pair decomposition (s-WSPD) is a set of pairs $\left\{\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$ with

- $A_{i}, B_{i} \subset P$ for all i
- $A_{i} \cap B_{i}=\varnothing$ for all i
- $\bigcup_{i=1}^{m} A_{i} \otimes B_{i}=P \otimes P$
- $\left\{A_{i}, B_{i}\right\} s$-well separated for all i

Example

28 pairs of points

Example

28 pairs of points

$12 s$-well separated pairs

Example

28 pairs of points

$12 s$-well separated pairs

WSPD of size $O\left(n^{2}\right)$ is trivial.
What is the 'size'? Can we get size $O(n)$?

Quiz

What size does a 2-WSPD on the following point set have at least?

A: 3
B: 4
C: 5
D: 6

Quiz

What size does a 2-WSPD on the following point set have at least?

$$
\begin{aligned}
& \text { A: } 3 \\
& \text { B: } 4 \\
& \text { C: } 5 \\
& \text { D: } 6
\end{aligned}
$$

Quiz

What size does a 2-WSPD on the following point set have at least?

B: 4
C: 5
D: 6

Reminder: quadtrees

Definition: A quadtree is a rooted tree, in which every interior node has 4 children. Every node corresponds to a square, and the squares of children are the quadrants of the parent's square.

Reminder: Compressed quadtrees

Definition: A compressed quadtree is a quadtree in which paths of non-separating inner nodes are compressed to an edge.

Theorem 2: A compressed quadtree for n points in \mathbb{R}^{d} for fixed d has size $O(n)$ and can be computed in $O(n \log n)$ time.

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_{u}=\sigma_{u} \cap P$, where σ_{u} is the square corresponding to u.

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_{u}=\sigma_{u} \cap P$, where σ_{u} is the square corresponding to u.

For every leaf u define the representative

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_{u}=\sigma_{u} \cap P$, where σ_{u} is the square corresponding to u.

For every leaf u define the representative

For every inner node v set

$$
\operatorname{rep}(v)=\operatorname{rep}(u) \text { of a non-empty child } u \text { of } v
$$

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_{u}=\sigma_{u} \cap P$, where σ_{u} is the square corresponding to u.

For every leaf u define the representative

$$
\operatorname{rep}(u)= \begin{cases}p & \text { if } P_{u}=\{p\}(u \text { is leaf }) \\ \varnothing & \text { otherwise }\end{cases}
$$

For every inner node v set
$\operatorname{rep}(v)=\operatorname{rep}(u)$ of a non-empty child u of v.

Definition: For every inner node u of a quadtree $\mathcal{T}(P)$ let level (u) be the level of u in the corresponding uncompressed quadtree. For leaves u, level $(u):=\infty$

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_{u}=\sigma_{u} \cap P$, where σ_{u} is the square corresponding to u.

For every leaf u define the representative

$$
\operatorname{rep}(u)= \begin{cases}p & \text { if } P_{u}=\{p\}(u \text { is leaf }) \\ \varnothing & \text { otherwise }\end{cases}
$$

For every inner node v set

$$
\operatorname{rep}(v)=\operatorname{rep}(u) \text { of a non-empty child } u \text { of } v
$$

Definition: For every inner node u of a quadtree $\mathcal{T}(P)$ let level (u) be the level of u in the corresponding uncompressed quadtree. For leaves $u, \operatorname{level}(u):=\infty$

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_{u}=\sigma_{u} \cap P$, where σ_{u} is the square corresponding to u.

For every leaf u define the representative

For every inner node v set
$\operatorname{rep}(v)=\operatorname{rep}(u)$ of a non-empty child u of v.

Notes: (a) levels in book < 0, (b) book works with $\Delta(u)=$ radius of circle around square (or 0 for leaves) instead.

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_{u}=\sigma_{u} \cap P$, where σ_{u} is the square corresponding to u.

For every leaf u define the representative

$$
\operatorname{rep}(u)= \begin{cases}p & \text { if } P_{u}=\{p\}(u \text { is leaf }) \\ \varnothing & \text { otherwise }\end{cases}
$$

For every inner node v set
$\operatorname{rep}(v)=\operatorname{rep}(u)$ of a non-empty child u of v.
next: using quadtree to compute WSPD

Well-Separated Pair Decomposition

Construction

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{wSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{WSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if rep $(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{WSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if rep $(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{wSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if rep $(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{wSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if rep $(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{wSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if rep $(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{WSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{WSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

$\operatorname{wsPAirs}(u, v, \mathcal{T}, s)$
Input: quadtree circles around σ_{u} and σ_{v} (or radius 0 for point in a leaf), Output: WSPD fo increase radius of smaller circle,
Output: WSPD fo check distance $\geq s r$ in $O(1)$ time
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ oryeaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: \quad return $\bigcup_{i=1}^{m} \operatorname{wSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Construction of a WSPD

$\operatorname{wsPAirs}(u, v, \mathcal{T}, s)$
Input: quadtree, circles around σ_{u} and σ_{v} (or radius 0 for point in a leaf), Output: WSPD increase radius of smaller circle,
Output: WSPD fo check distance $\geq s r$ in $O(1)$ time
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ oryeaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: \quad return $\bigcup_{i=1}^{m} \operatorname{wsPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$
$\{\{b, c\},\{d\}\}$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if rep $(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m}$ WSPAIRS $\left(u_{i}, v, \mathcal{T}, s\right) \quad\{\{b, c\},\{d\}\}$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{WsPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

$$
\begin{aligned}
& \{\{b, c\},\{d\}\} \\
& \{\{a\},\{d\}\} \\
& \{\{b, c\},\{e\}\} \\
& \{\{d\},\{e\}\} \\
& \{\{a\},\{b\}\} \\
& \{\{a\},\{c\}\} \\
& \{\{b\},\{c\}\} \\
& \{\{a\},\{e\}\}
\end{aligned}
$$

Construction of a WSPD

wsPairs (u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{wSPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

- initial call wsPairs $\left(u_{0}, u_{0}, \mathcal{T}, s\right)$
- avoid duplicate wsPairs $\left(u_{i}, u_{j}, \mathcal{T}, s\right)$ and $\operatorname{wsPairs}\left(u_{j}, u_{i}, \mathcal{T}, s\right)$
- pairs of leaves are s-well separated \rightarrow algorithm terminates
- output are pairs of quadtree nodes

Quiz

Is the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.
B: Yes, because all s-WSPDs have the same size.
C: No, not necessarily.

Quiz

Is the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.
B: Yes, because all s-WSPDs have the same size.
C: No, not necessarily.

Quiz

Is the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.
B: Yes, because all s-WSPDs have the same size.
C: No, not necessarily.

Question: How many pairs are generated by the algorithm?

Well-Separated Pair Decomposition

Complexity

Analysis of WSPD-Construction

Theorem: For a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Analysis of WSPD-Construction

Theorem: For a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$. Proof sketch: Assumptions: $s \geq 1$, QT uncompressed. Count the non-terminal calls.

Analysis of WSPD-Construction

Theorem: For a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$. Proof sketch: Assumptions: $s \geq 1$, QT uncompressed.

> Count the non-terminal calls.

$\operatorname{wsPAIRs}(u, v, \mathcal{T}, s)$
Input: quadtree nodes u, v, quadtree $\mathcal{T}, s>0$
Output: WSPD for $P_{u} \otimes P_{v}$
1: if $\operatorname{rep}(u)=\varnothing$ or rep $(v)=\varnothing$ or leaves $u=v$ then return \varnothing
2: else if P_{u} and $P_{v} s$-well separated then return $\{\{u, v\}\}$
3: else
4: \quad if level $(u)>\operatorname{level}(v)$ then exchange u and v
5: $\quad\left(u_{1}, \ldots, u_{m}\right) \leftarrow$ children of u in \mathcal{T}
6: return $\bigcup_{i=1}^{m} \operatorname{wsPAIRS}\left(u_{i}, v, \mathcal{T}, s\right)$

Analysis of WSPD-Construction

Theorem: For a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$. Proof sketch: Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.
Charging argument: charge non-term. call to the non-split square. claim: $O\left(s^{d}\right)$ charges to each square

Analysis of WSPD-Construction

Theorem: For a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$. Proof sketch: Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.
Charging argument: charge non-term. call to the non-split square. claim: $O\left(s^{d}\right)$ charges to each square
Consider call (u, v) with v smaller of side length x.

Analysis of WSPD-Construction

Theorem: For a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$. Proof sketch: Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.
Charging argument: charge non-term. call to the non-split square. claim: $O\left(s^{d}\right)$ charges to each square
Consider call (u, v) with v smaller of side length x.
u, v are not separated,
u is at most factor 2 larger than v
\Rightarrow distance between the balls

$$
\leq s \max \left(r_{u}, r_{v}\right) \leq 2 s r_{v}=s x \sqrt{d}
$$

\Rightarrow distance between their centers

$$
\leq(1 / 2+1+s) x \sqrt{d} \leq 3 s x \sqrt{d}=: R_{v}
$$

packing lemma: only $O\left(s^{d}\right)$ such squares.

Packing Lemma

Lemma: Let B be a ball of radius r in \mathbb{R}^{d} and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

Packing Lemma

Lemma: Let B be a ball of radius r in \mathbb{R}^{d} and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d}
$$

Proof:

Packing Lemma

Lemma: Let B be a ball of radius r in \mathbb{R}^{d} and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then

$$
|X| \leq(1+\lceil 2 r / x\rceil)^{d}
$$

Proof:

Packing Lemma

Lemma: Let B be a ball of radius r in \mathbb{R}^{d} and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then

$$
|\bar{X}| \leq(1+\lceil 2 r / x\rceil)^{d} .
$$

Proof:

in every dimension at most $1+\lceil 2 r / x\rceil$ squares can intersect the ball

Well-Separated Pair Decomposition

Application: t-spanner

t-spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{E G}(P)$ has $\Theta\left(n^{2}\right)$ edges, we want a sparse graph with $O(n)$ edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{E G}(P)$.

t-spanner

For a set P of n points in \mathbb{R}^{d} the Euclidean graph $\mathcal{E G}(P)=\left(P,\binom{P}{2}\right)$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{E G}(P)$ has $\Theta\left(n^{2}\right)$ edges, we want a sparse graph with $O(n)$ edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{E G}(P)$.

Definition: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x, y \in P$:

$$
\|x y\| \leq \delta_{G}(x, y) \leq t \cdot\|x y\|
$$

where $\delta_{G}(x, y)=$ length of the shortest x-to- y path in G.

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$ with $E=\{\{x, y\} \mid\{u, v\} \in W$ and $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$.

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$ with $E=\{\{x, y\} \mid\{u, v\} \in W$ and $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$.

Reminder: every pair $\{u, v\} \in W$ corresponds to two quadtree nodes u and v. From each quadtree node a representative is selected in the following way. For leaf u define as representative

$$
\operatorname{rep}(u)= \begin{cases}p & \text { if } P_{u}=\{p\}(u \text { is leaf }) \\ \varnothing & \text { otherwise }\end{cases}
$$

For an inner node v set rep $(v)=\operatorname{rep}(u)$ for a non-empty child u of v.

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$ with $E=\{\{x, y\} \mid\{u, v\} \in W$ and $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$.

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$ with $E=\{\{x, y\} \mid\{u, v\} \in W$ and $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$. Lemma: If W is an s-WSPD for $s=4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O\left(s^{d} n\right)$ edges.

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$ with $E=\{\{x, y\} \mid\{u, v\} \in W$ and $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$. Lemma: If W is an s-WSPD for $s=4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O\left(s^{d} n\right)$ edges.
Proof: induction on distances

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$ with $E=\{\{x, y\} \mid\{u, v\} \in W$ and $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$. Lemma: If W is an s-WSPD for $s=4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O\left(s^{d} n\right)$ edges.
Proof: induction on distances

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^{d} and a WSPD W of P define the graph $G=(P, E)$ with $E=\{\{x, y\} \mid\{u, v\} \in W$ and $\operatorname{rep}(u)=x, \operatorname{rep}(v)=y\}$. Lemma: If W is an s-WSPD for $s=4 \cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O\left(s^{d} n\right)$ edges.

Question: How large does s need to be if $t=1+\varepsilon$
A: 4
B: $O(1 / \varepsilon)$
C: $O\left(1 / \varepsilon^{d}\right)$

Summary

Theorem: For a set P of n points in \mathbb{R}^{d} and an $\varepsilon \in(0,1]$ a $(1+\varepsilon)$-spanner for P with $O\left(n / \varepsilon^{d}\right)$ edges can be computed in $O\left(n \log n+n / \varepsilon^{d}\right)$ time.

Summary

Theorem: For a set P of n points in \mathbb{R}^{d} and an $\varepsilon \in(0,1]$ a $(1+\varepsilon)$-spanner for P with $O\left(n / \varepsilon^{d}\right)$ edges can be computed in $O\left(n \log n+n / \varepsilon^{d}\right)$ time.
Proof: For $t=(1+\varepsilon)$ it holds with $s=4 \cdot \frac{t+1}{t-1}$
$O\left(s^{d} n\right)=O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^{d} n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^{d} n\right)=$

Summary

Theorem: For a set P of n points in \mathbb{R}^{d} and an $\varepsilon \in(0,1]$ a $(1+\varepsilon)$-spanner for P with $O\left(n / \varepsilon^{d}\right)$ edges can be computed in $O\left(n \log n+n / \varepsilon^{d}\right)$ time.
Proof: For $t=(1+\varepsilon)$ it holds with $s=4 \cdot \frac{t+1}{t-1}$

$$
O\left(s^{d} n\right)=O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^{d} n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^{d} n\right)=
$$

Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the $\Theta\left(n^{2}\right)$ exact distances, but approximate distances are enough

Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the $\Theta\left(n^{2}\right)$ exact distances, but approximate distances are enough

Can't we compute exact solutions in the same time?

Often in \mathbb{R}^{2} yes, but not in \mathbb{R}^{d} for $d>2$ (EMST, diameter).
EMST, Voronoi diagrams, . . . can be computed in $O(n)$ time from quadtress/WSPDs

Additional highlights in book

- very simple from WSPD: closest pair and approximate diameter
- with basic geometry from WSPD: nearest neighbor graph
- semi-separated pair decomposition

