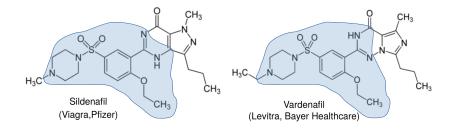
Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000

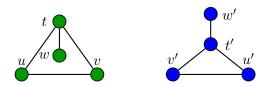

Finding Largest Common Substructures of Molecules in Quadratic Time

Andre Droschinsky Nils Kriege Petra Mutzel

Dept. of Computer Science, TU Dortmund University, Dortmund, Germany

43rd International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM-FOCS 2017) January 16 – 20, 2017

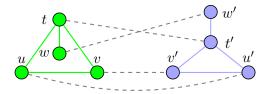
Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
●00000000		000	0000
Largest Common Substructure \equiv Maximum C	ommon Subgraph (MCS)		2/19


Motivation

- Common Substructure is a natural measurement of similarity
 - Useful for prediction of biological activity and reaction site modeling [Raymond, Willett 2002]

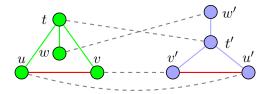
Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
0●0000000		000	0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		3/19

Graph isomorphism


Input: Graphs G and H

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
0●0000000		000	0000
Largest Common Substructure \equiv Maximum C	ommon Subgraph (MCS)		3/19

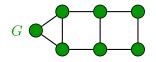
Graph isomorphism

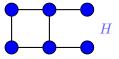

Input: Graphs G and H **Output:** A Bijection $\varphi : V_G \to V_H$ with $\forall x, y \in V_G: xy \in E_G \Leftrightarrow \varphi(x)\varphi(y) \in E_H$

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
0●0000000		000	0000
Largest Common Substructure \equiv Maximum C	ommon Subgraph (MCS)		3/19

Graph isomorphism

Input: Graphs G and H **Output:** A Bijection $\varphi : V_G \to V_H$ with $\forall x, y \in V_G: xy \in E_G \Leftrightarrow \varphi(x)\varphi(y) \in E_H$

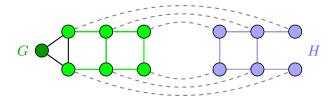



Example: $uv \in E_G$ and $u'v' \in E_H$ $uw \notin E_G$ and $u'w' \notin E_H$

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum C	ommon Subgraph (MCS)		4/19

Maximum Common *Edge* Subgraph (MCES)

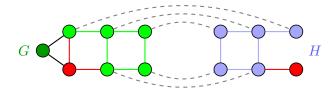
Input: Graphs G and H



Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		4/19

Maximum Common Edge Subgraph (MCES)

Input: Graphs G and H**Output:** An isomorphism between connected subgraphs of G and H with the maximum possible number of edges



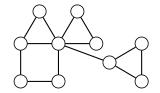
Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum C	ommon Subgraph (MCS)		5/19

Maximum Common Induced Subgraph (MCIS)

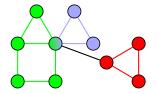
Input: Graphs G and H

Output: An isomorphism between connected *induced* subgraphs of G and H with the maximum possible number of *vertices*

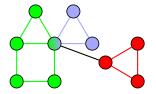
Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		6/19


Maximum Common Induced Subgraph; labeled

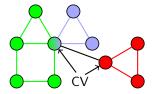
Input: Labeled graphs G and H**Output:** A maximum common induced subgraph with respect to the labels


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum Co	ommon Subgraph (MCS)		7/19

Outerplanar graph: A graph admitting a planar embedding with each vertex on the outer face


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum Co	ommon Subgraph (MCS)		7/19

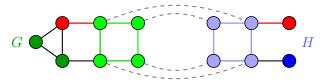
Outerplanar graph: A graph admitting a planar embedding with each vertex on the outer face **Block:** A maximal biconnected subgraph


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum C	ommon Subgraph (MCS)		7/19

Outerplanar graph: A graph admitting a planar embedding with each vertex on the outer face **Block:** A maximal biconnected subgraph **Bridge:** Each remaining edge with its incident vertices


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		7/19

Outerplanar graph: A graph admitting a planar embedding with each vertex on the outer face **Block:** A maximal biconnected subgraph **Bridge:** Each remaining edge with its incident vertices **Cut vertex:** Splits the graph if removed


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		7/19

Outerplanar graph: A graph admitting a planar embedding with each vertex on the outer face **Block:** A maximal biconnected subgraph **Bridge:** Each remaining edge with its incident vertices **Cut vertex:** Splits the graph if removed

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		7/19

Outerplanar graph: A graph admitting a planar embedding with each vertex on the outer face **Block:** A maximal biconnected subgraph **Bridge:** Each remaining edge with its incident vertices **Cut vertex:** Splits the graph if removed

MCIS with Block and Bridge Preserving (BBP)

BBP1: Blocks of common subgraph \mapsto blocks of G and HBBP2: Bridges of common subgraph \mapsto bridges of G and H

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		8/19

Complexity of Maximum Common Subgraph

NP-hard on the following graph classes

- General graphs
- Outerplanar graphs [Syslo 1982]
- Trees, if we want to find a common forest [Brandenburg 2000]

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		9/19

Complexity

Polynomial time results on the following graph classes

- Trees: $\mathcal{O}(|G||H|\Delta)$ [D., K., M. 2016]
- Outerplanar graphs, MCS is biconnected
 - MCES: $\mathcal{O}(|G||H|)$ [Schietgat, Ramon, Bruynooghe 2013]
 - MCIS: $\mathcal{O}(|G||H|)$ [Kriege 2015]

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		9/19

Complexity

Polynomial time results on the following graph classes

- Trees: $\mathcal{O}(|G||H|\Delta)$ [D., K., M. 2016]
- Outerplanar graphs, MCS is biconnected
 - MCES: $\mathcal{O}(|G||H|)$ [Schietgat, Ramon, Bruynooghe 2013]
 - MCIS: $\mathcal{O}(|G||H|)$ [Kriege 2015]
- Outerplanar graphs, MCS with BBP property
 - MCES: $\mathcal{O}(n^4)$ [Schietgat, Ramon, Bruynooghe 2013]
 - MCIS: $\mathcal{O}(|G||H|\Delta)$ [This contribution]

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum	Common Subgraph (MCS)		9/19

Complexity

Polynomial time results on the following graph classes

- Trees: $\mathcal{O}(|G||H|\Delta)$ [D., K., M. 2016]
- Outerplanar graphs, MCS is biconnected
 - MCES: $\mathcal{O}(|G||H|)$ [Schietgat, Ramon, Bruynooghe 2013]
 - MCIS: $\mathcal{O}(|G||H|)$ [Kriege 2015]
- Outerplanar graphs, MCS with BBP property
 - MCES: $\mathcal{O}(n^4)$ [Schietgat, Ramon, Bruynooghe 2013]
 - MCIS: $\mathcal{O}(|G||H|\Delta)$ [This contribution]

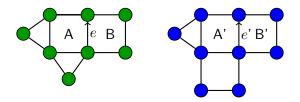
BBP in molecular graphs

- Ring structures are kept intact
- Computation time of few ms

Maximum Common Subgraph 00000000●	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum Common Subgraph (MCS)			10/19

Computing a BBP-MCIS between two outerplanar graphs

Biconnected MCIS between biconnected outerplanar graphs

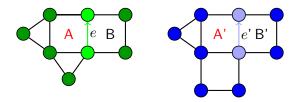

Maximum Common Subgraph 00000000●	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Largest Common Substructure \equiv Maximum Common Subgraph (MCS)			10/19

Computing a BBP-MCIS between two outerplanar graphs

- Biconnected MCIS between biconnected outerplanar graphs
- $\textcircled{O} \text{ Connect the blocks and bridges} \rightarrow \mathsf{BBP}\text{-}\mathsf{MCIS}$

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

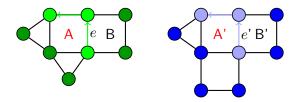


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

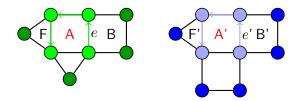


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

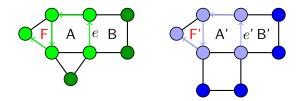


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

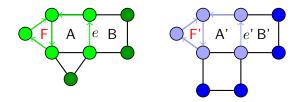


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

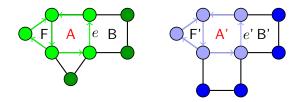


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

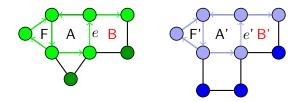


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

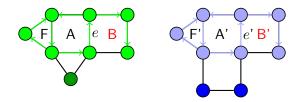


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

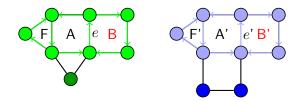


Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces



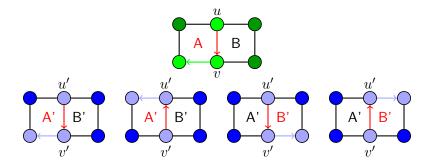
Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected ou	terplanar graphs		11/19

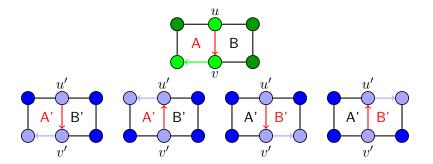
- Outerplanar embedding is unique
- Each edge is incident to exactly two uniquely defined faces

Lemma: Given an arc and face mapping, there is exactly one maximal isomorphism fulfilling that mapping.

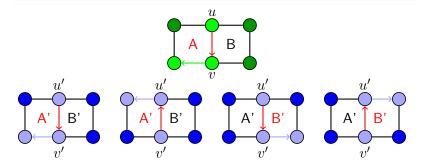

Finding Largest Common Substructures of Molecules in Quadratic Time

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Biconnected MCIS between biconnected	outerplanar graphs		12/19

• Compute all maximal solutions to obtain maximum

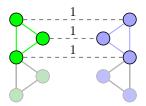

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
	○●	000	0000
Biconnected MCIS between biconnected ou	terplanar graphs		12/19

- Compute all maximal solutions to obtain maximum
- 4 possible types of mappings for each edge pair

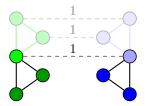

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
	○●	000	0000
Biconnected MCIS between biconnected	outerplanar graphs		12/19

- Compute all maximal solutions to obtain maximum
- 4 possible types of mappings for each edge pair
- Table of size $4|E_G||E_H|$ to store the sizes

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
	○●	000	0000
Biconnected MCIS between biconnected	outerplanar graphs		12/19


- Compute all maximal solutions to obtain maximum
- 4 possible types of mappings for each edge pair
- Table of size $4|E_G||E_H|$ to store the sizes
- Time per cell $\mathcal{O}(1) \rightarrow \operatorname{quadratic}$ total time

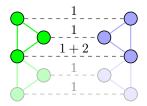
Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ●00	Evaluation 0000
BBP-MCIS between outerplanar graphs			13/19


BBP-MCIS between outerplanar graphs – Example 1

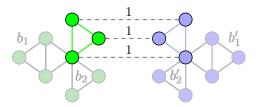
1) Compute a maximal isomorphisms between two blocks


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ●00	Evaluation 0000
BBP-MCIS between outerplanar graphs			13/19

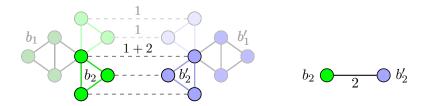
- 1) Compute a maximal isomorphisms between two blocks
- 2) Recursively extend it along cut vertices; consider all possibilities


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ●00	Evaluation 0000
BBP-MCIS between outerplanar graphs			13/19

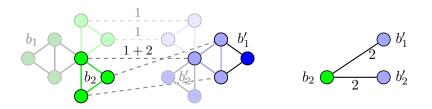
- 1) Compute a maximal isomorphisms between two blocks
- 2) Recursively extend it along cut vertices; consider all possibilities

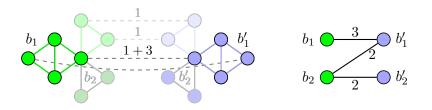

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ●00	Evaluation 0000
BBP-MCIS between outerplanar graphs			13/19
BBT melo betmeen outerplanar grapho			10/1

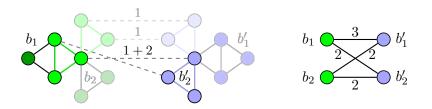
- 1) Compute a maximal isomorphisms between two blocks
- 2) Recursively extend it along cut vertices; consider all possibilities
- 3) Add size of extension to cut vertices \rightarrow Total size 5.



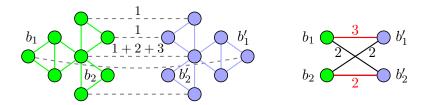
Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ○●○	Evaluation 0000
BBP-MCIS between outerplanar graphs			14/19


1) Compute a maximal isomorphisms between two blocks


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ○●○	Evaluation 0000
BBP-MCIS between outerplanar graphs			14/19


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ○●○	Evaluation 0000
BBP-MCIS between outerplanar graphs			14/19

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ○●○	Evaluation 0000
BBP-MCIS between outerplanar graphs			14/19



Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ○●○	Evaluation 0000
BBP-MCIS between outerplanar graphs			14/19

00000000 00	000	0000
BBP-MCIS between outerplanar graphs		14/19

- 1) Compute a maximal isomorphisms between two blocks
- 2) Try extensions separately for each pair of adjacent blocks
- 3) Compute maximum weight matching for block to block mapping

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS ○○●	Evaluation 0000
BBP-MCIS between outerplanar graphs			15/19

Theorem (Main result)

BBP-MCIS between two outerplanar graphs G and H can be solved in time $\mathcal{O}(|G||H|\Delta).$

 $\Delta =$ Maximum degree of all cut vertices (or 1, if none present)

Corollary

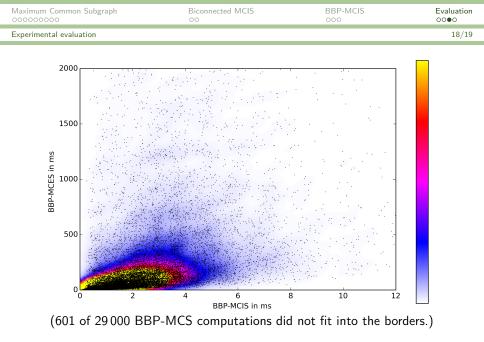
The time complexity of BBP-MCIS between outerplanar molecular graphs G and H is $\Theta(|G||H|).$

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS	Evaluation
	00	000	●000
Experimental evaluation			16/19

Test setup

• Molecular graphs from the NCI Open Database GI50

- 29 000 randomly chosen pairs of outerplanar graphs
- Up to 104 vertices; average size 22 vertices
- Comparison to BBP-MCES from Schietgat et al.
 - No other BBP-MCIS algorithm available
 - Source kindly provided by Leander Schietgat
 - Goal: Maximize number of edges+vertices
- Both sources compiled with GCC; run on Intel i7-3770 CPU


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation ○●○○
Experimental evaluation			17/19

Results

- BBP-MCES/MCIS differ in only 0.40% of 29 000 randomly chosen pairs of outerplanar molecular graphs.
- (fastest) BBP-MCIS BBP-MCES general MCS (slowest)

Table : Running times in ms on randomly chosen molecular graphs

Algorithm	Average	Median	95% less than	Maximum
MCIS	1.97 ms	1.51 ms	$5.28 \mathrm{\ ms}$	40.35 ms
MCES	207.08 ms	41.43 ms	871.48 ms	$26353.68~\mathrm{ms}$

Finding Largest Common Substructures of Molecules in Quadratic Time

A. Droschinsky, N. Kriege, P. Mutzel

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 000●
Experimental evaluation			19/19

Conclusion

• First efficient BBP-MCIS computation in theory and practice

- Supports labels with nonnegative weights attached
- Much faster than BBP-MCES; identical results in 99.6%

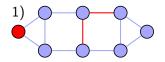
Future work

- BBP-MCIS for non outerplanar molecular graphs
- Negative weights; bounded integer weights

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 000●
Experimental evaluation			19/19

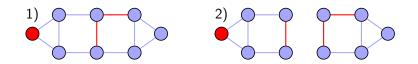
Conclusion

• First efficient BBP-MCIS computation in theory and practice

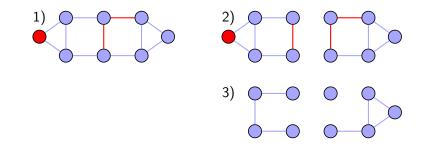

- Supports labels with nonnegative weights attached
- Much faster than BBP-MCES; identical results in 99.6%

Future work

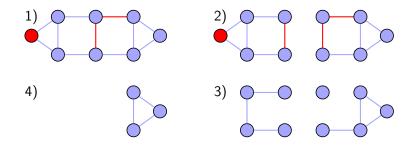
- BBP-MCIS for non outerplanar molecular graphs
- Negative weights; bounded integer weights


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Experimental evaluation			20/19

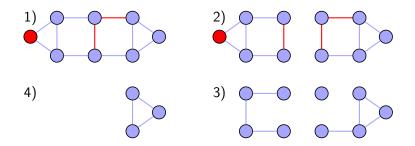
1) Biconnected CIS with different labels; colored red


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Experimental evaluation			20/19

- 1) Biconnected CIS with different labels; colored red
- 2) Separate graph along inner edges with different labels.


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Experimental evaluation			20/19

- 1) Biconnected CIS with different labels; colored red
- 2) Separate graph along inner edges with different labels.
- 3) Remove edges and vertices with different labels.


Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Experimental evaluation			20/19

- 1) Biconnected CIS with different labels; colored red
- 2) Separate graph along inner edges with different labels.
- 3) Remove edges and vertices with different labels.
- 4) Strip non-block parts; store size for each component.

Maximum Common Subgraph	Biconnected MCIS	BBP-MCIS 000	Evaluation 0000
Experimental evaluation			20/19

- 1) Biconnected CIS with different labels; colored red
- 2) Separate graph along inner edges with different labels.
- 3) Remove edges and vertices with different labels.
- 4) Strip non-block parts; store size for each component.
- 5) Store $-\infty$ for removed edge mappings.

