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Abstract. The question that we investigate in this paper is, whether it
is possible for Genetic Programming to extract certain regularities from
raw time series data of human speech. We examine whether a genetic
programming algorithm can find programs that are able to discriminate
certain spoken vowels and consonants. We present evidence that this can
indeed be achieved with a surprisingly simple approach that does not
need preprocessing. The data we have collected on the system’s behavior
show that even speaker-independent discrimination is possible with GP.

1 Introduction

Human speech is very resistant to machine learning approaches. The underlying
nature of the time-dependent signal with its variable features in many dimensions
at the same time, together with the intricate apparatus that has evolved in
human speech production and recognition make it one of the most challenging
— and at the same time most rewarding — tasks in machine pattern recognition.

The strength of Genetic Programming [Koz92] is its ability to abstract an
underlying principle from a finite set of fitness cases. This principle can be con-
sidered the essence of the regularities that determine the appearance of concrete
fitness cases. Genetic programming tries to extract these regularities from the
fitness cases in the form of an algorithm or a computer program. The partic-
ular implementation of genetic programming that we use enables us to evolve
computer programs at the very lowest level, the machine code level.

Despite their potential complexity it is obvious that regularities rule human
speech production, otherwise oral communication would never be possible. These
regularities, however, must already reside in the “raw” time signal, i.e. the signal
void of any preprocessing, because any method of feature-extraction can only
extract what is already there.

The question, then, that we investigate in this paper is whether i1t it pos-
sible for a genetic programming system to extract the underlying regularities
of speech data from the raw time signal, without any further preprocessing or
transformation.



2 Classification Based on Short-Time Windows

2.1 The Goal

At an abstract level, the task of the genetic programming system is to evolve
programs based on the time signal that are able to distinguish certain sounds.
Since the task is complicated by the fact that at reasonable sampling rates there
is a huge amount of data, it is necessary to impose certain restrictions.

For classification we shall use a short window for the time signal. The size of
this window will be 20 ms. At those window sizes the (transient) speech signal
can be regarded as approximately stationary. Thus classification of more complex
transient signals from longer time periods will not be studied here.

Some of the challenges with our approach will be summarized in the sections
to follow.

2.2 Size of the Data Set

When using the time signal as a basis for classification, the system will have to
cope with very large data sets. The samples used here have been recorded with
a sampling rate of 8 kHz, which means that for each 20 ms window of the signal
we have 160 sampled values.

It would be very hard, if not outright impossible, to evolve a GP-program
with 160 independent input variables. There would be far too many degrees of
freedom, which could easily lead to over-fitting. Besides, the programs would
have to become very complex: Reading such a large input and filtering out
distinctive features for classification requires a very large amount of instructions.

In many automatic speech recognition systems of today this problem is solved
by calculating a feature-vector. Applying a Fourier transform, a filter bank,
or other feature extraction measures does not only emphasize the important
features, it also drastically reduces the amount of data to be fed into the learning
system.

In this study, however, we will not allow any of these measures, as we want
to show that genetic programming is able to find discriminating features in the
time signal without any preprocessing applied to it. We must find a way, though,
to reduce the input to the GP-program without reducing or changing the data.

2.3 Scanning the Time Signal

The solution to the problem of the previous section we embarked on is the
following. If it is not possible to give the program all data at once; we shall
feed them step by step: The time signal is scanned from start to end. The GP
program is expected to run through an iteration where in every iteration step it
gets only one sampled value plus the current position of the sampled value. The
program then produces an output vector which consists of different components.
Additionally, in every iteration step the program gets the output vector of the



time signal window

output vector of the
W ome pm o ome om om oz ok pra:eding iteration

sampled value

position index

output vector

output value

Fig. 1. Data flow when classifying a time signal window

preceding iteration. For the first iteration, we initialize this vector to 0 in each
component. Figure 1 illustrates our approach.

The feedback from the output is important. It makes the behavior of the
program in iteration n dependent not only on the current input but also on the
behavior in the previous step, n — 1, which again depends on what happened
in the step before and so on. With this method, the output produced in step n
depends on all sampled values read up to that moment.

Thus, the output of the last iteration is influenced by all sampled values in
the scanned time signal window. This output can be used for classification of the
signal. For this classification we use only one component of the output vector,
leaving it up to the system to use the others for itself on its way to solve the
problem.

Relying on such an approach dramatically reduced the number of inputs to
the program from a three-digit number to a one-digit number, without applying
any preprocessing to the data.

2.4 Calculating the Fitness

In the present study, we only examine classification into two classes. Experiments
using more than two classes have been very discouraging so far and will not be
considered here.

In order to distinguish two classes A and B we determine a target value for
each class, T)4 and T3. Here we use the values 10,000 and 0. This means that if



the output value of the program after the last iteration is bigger than 5,000, the
scanned sample will be classified as class A, otherwise as class 5 sample.

Fitness of a program is calculated using the error, i.e. the absolute value of
difference between the target value and the actual output of the program. The
sum of all errors for the presented training instances, the so called fitness cases,
is the fitness of the individual. Thus, the fitness value is the lower the better,
the best possible fitness value 1s 0.

2.5 Improving Generalization with Stochastic Sampling

When choosing fitness cases, it is important that they represent the problem in
the best possible way. The goal is to evolve programs that can generalize. 1t is
not very useful to have programs that work good on known data, the fitness
cases, but fail on unknown data (overfitting).

In order to avoid overfitting, how can we choose the “right” fitness cases?
We will have to choose a sample of fitness cases that is adequate to the prob-
lem. This means in practice that we will need many fitness cases. Using a large
amount of fitness cases for evaluating the fitness has, on the other hand, a serious
disadvantage: It will require a very long time to train the system.

There is a method, however, to maintain good generalization abilities by
using a large number of fitness cases while not requiring that much computing
power, stochastic sampling' [NB95c,NB97]: From a large set of fitness cases a
small sample 1s chosen randomly before a fitness evaluation takes place. Fitness
evaluation is performed only on the small sample, and hence is less expensive
than evaluation on the entire fitness case set.

Thus, no program from the population can really “know” the data it will be
confronted with. There are not many fitness cases when fitness is calculated, and
memorizing does not help, because at the next evaluation a completely different
set 1s presented. Thus, programs must develop a strategy for how to cope with
many different possible inputs. They are forced to really learn instead of just to
memorize. Learning in this context means to perform an abstraction process.

Of course, at any moment a relatively good program may be in “bad luck”
and be competing against a program that might work worse on most other fitness
cases. But seen over many tournaments in the evolutionary process, only those
programs will survive that have developed a strategy to cope with more fitness
cases than other programs.

A further advantage of this method is that the total amount of fitness cases
can be increased arbitrarily, without slowing down the system because the num-
ber of fitness cases used for each fitness evaluation remains the same. It can be
expected, that a larger set of fitness cases will result in better generalization
because the generated GP programs will have to be able to cope with an even
larger set of data.

Reports in the literature [GR94] on the failure of this stochastic selection
method for training do not conform to our experiences.

! A similar method called Random Subset Selection, which uses a slightly different way
of selecting the fitness cases, has been described in [GR94].
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fitness-case no.| input-sample |desired output

0 sample of an [a] 10000
1 sample of an [a] 10000

M/2 -1 |sample of an [a] 10000

M/2 sample of an [i] 0
M/2+1 |sample of an [i] 0
M-1 sample of an [i] 0

Table 1. Template of a fitness case table used to evolve a program that can distinguish
between [a] and [i]. A simple measure to help the system succeed in the classification
task is to provide approximately the same amount of fitness cases for each class.

2.6 Applying Stochastic Sampling to Speech Sound Discrimination

The classifiers that we want to evolve will work on a short time window. The
speech sounds that the system will need to classify are vowels, fricatives or
nasals. These are sounds which can be articulated for a longer time than 20 ms
and hence can be regarded as approximately stationary.

If we record a speaker producing an [a] for half a second and sample the signal
with a frequency of 8 kHz, we get 4000 sampled values. Therefore we might put
the 20 ms window on the time signal at 4000 different positions. Because the
signal always changes at least slightly over time, we hence gain 4000 different
fitness cases out of one half second of recording. The large amount of possible
fitness cases is ideal for stochastic sampling: Calculating all fitness cases would
be far too expensive, but their large number will be very helpful for avoiding
overfitting. Before fitness of an individual program with respect to a certain
sample of fitness cases is evaluated, a window is layed upon the sample at a
random position.

In order to ensure that programs do not over-adapt to a certain act of speak-
ing, fitness should be calculated using samples of different acts of speaking. It is
advisable to establish a fitness case table for registering which samples are being
used and which class they belong to, i.e. what the desired output should be.
Table 1 shows a fitness case table used to evolve an “[a]-[i]-classifier” program
that can distinguish between [a] and [i]. Fitness case tables for evolving other
classifiers can be constructed in similar ways. It is important to note, that the
sounds to be classified do not contain significant time-structured features. For
instance, for classifying sounds like diphthongs or plausives, the method would
have to be modified.



If instead of one-speaker samples those of many speaker are used for the
training, it is also possible to reach speaker-independent phone recognition?.
Samples recorded from many different speakers enable the system to abstract

from speaking habits of a single or a few speakers.

3 A Run Example

In this section we shall demonstrate the dynamics of our system with an example
run. The phenomena documented here have been observed in many other runs,
so the documentation should be considered representative. The behavior of the
system applied to other phone discrimination problems i1s qualitatively similar,
though different recognition rates and fitness values will occur in each case.

3.1 The GP-System and its Parameters

We used the Automatic Induction of Machine Code by Genetic Programming
(AIMGP) system? for this problem. AIMGP is a linear GP system that directly
manipulates instructions in the machine code. We call it a “linear” system be-
cause the representation of the evolved programs is instruction-after-instruction,
and therefore linear as opposed to the hierarchical, tree-based structure in most
common GP systems.* Theoretically, any GP system could be used for this
problem, and there are already many [BNKF98]. The problem addressed here,
however, is quite complex and requires a lot of computing power. The advan-
tage of AIMGP compared to other GP systems is its speed (at least a factor
of ten compared to other existing GP systems) and it is therefore better suited
for the challenge of this task. In addition, the representation of individuals is
very efficient in AIMGP, giving us the opportunity to run large populations
(10,000 individuals) on a single processor system (SPARC), which turned out to
be necessary to solve this problem [Nor97].

The parameter settings are shown in Table 2. The choices shown have gen-
erated good results, although a parameter optimization was not done. Our goal
was not to succeed with parameter tweaking, but in principle.

3.2 The Fitness Case Table

In our example run we want to evolve a program that can distinguish between [a]
and [i]. The fitness case table consists of two samples of each vowel, spoken by the
same speaker (see Table 3). So, the system is set to develop a speaker-dependent
classifier.

2 Phones are subunits of phonemes.

? formerly known as CGPS [Nor94,NB95b]

* The linear representation seems to have merits of its own, not only regarding the
speedup due to directly executing machine code instructions. [Nor97]



Parameter Setting
population size: 10 000
selection: tournament
tournament size: 4(2x2)
maximum number of tournaments: 5 000 000
mutation-frequency (terminals): 20 %
mutation-frequency (instructions): 35 %
crossover-frequency: 100 %

maximum program size:

256 instructions

maximum initial size:

30 instructions

maximum initial value of terminal numbers: 100

number of input-registers: 3
number of output(memory)-registers: 1
number of ADFs: 0

instruction set: addition

subtraction
multiplication
left shift

right shift
bitwise logical OR
bitwise logical AND
bitwise logical XOR

termination-criterion:

exceeding the maximum

number of tournaments

Table 2. The Koza tableau of parameter settings for AIMGP

10000

| Sample |Target Value|
sample 1 of an [a] 10000
sample 2 of an [a]

sample 1 of an [i] 0
sample 2 of an [i] 0

Table 3. Fitness case table for developing a program that can distinguish between [a]

and [i]. All recordings have been taken from the same speaker.

3.3 Fitness Development

In Figure 2 the fitness development is shown for evolving an [a]-[i]-classifier.
Due to the fitness value being calculated as the sum of errors (see section 2.4),
the most interesting fitness value is 20,000. We call it the critical value. Caused
by the structure of the fitness cases, this value can be reached by programs
that have a constant output of 5,000, no matter what the input might be. This
trivial “solution” leads to a recognition-rate of 50% in a two-class discrimination

problem.




As soon as the mean fitness falls below the critical value the ability for
discriminating the two classes 1s indicated. For a program to fall below the
critical value is far from trivial. The critical value is a local optimum, because
other programs that produce a non-constant output might easily be wrong and
go extinct. For this reason it 1s important to set the population size large enough,
so that some of the programs with non-constant output are still able to survive.
These programs might eventually breed later on and escape the local optimum.

Therefore, the progression of the mean fitness during the first 1,000,000 tour-
naments in Figure 2 is particularly interesting. One can see it falling very fast
to the critical value, but not falling below. For about 400,000 tournaments the
mean fitness stagnates at the critical value. Afterwards it suddenly increases
again, reaches 1ts maximum at 600,000 tournaments and then descends, falling
below the critical value at about 850,000 tournaments. Fitness keeps decreasing,
until 1t reaches a value of about 5,000.

How can this progression be explained? At first, the local optimum is quickly
found. Then, for about 400,000 tournaments, nothing seems to happen if we
observe mean fitness only. But if we observe fitness of the best program, it
becomes apparent that something is going on indeed. Best fitness is considerably
lower than mean fitness and heavy fluctuations are observable. Recall that the
system works with stochastic sampling. The same individual may have very
different fitness-values, depending on which fitness case is chosen. Especially in
the first phase of the evolutionary process this can lead to heavy fluctuations in
fitness when observing a special individual. Note also, that the best individual
1s not always the same, so the fact that it consistently remains below the critical
value (from the outset) does not mean that one individual has already found a
solution.

But why is it that the mean fitness increases again sharply? Is there some-
thing wrong with the process, 1s the population getting worse? No, just the
opposite. A raise in average fitness indicates that the system is about to dis-
cover or already has discovered a solution. This solution, however, is not very
robust. It can be destroyed by crossover or mutation events, and also due to bad-
luck resulting from stochastic sampling. At this point, a look at the best fitness
reveals that it is not changing that much anymore during this period, giving an
additional hint that a solution has been found already. As evolution continues,
the individuals that have found the discriminating features are busy breeding
and becoming more robust. They will finally take over the whole genetic pool.

3.4 Development of Program Length

In Figure 2 we depict the length development of programs over the same time
period as that of Figure 2. One can see immediately that length increases dra-
matically at about 1 million tournaments. The limit for program length is set to
256. This limit is reached by both the average program length and the length of
the best individual after about 2 million tournaments.

The interesting point about this dynamics is that the dramatic grow of pro-
gram length happens at the time when fitness decreases. This means that long
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Fig.2. The development of the program lengths (above) compared with the fitness
development (below) when evolving a [a]-[i]-classifier. The x-axis gives the amount of
tournaments performed. One tournament is equivalent to four fitness evaluations, 5000
tournaments are equivalent to one generation.

programs have an advantage compared to short ones. We might want to con-
clude that longer programs are more resistant against destructive mutation or
crossover as we have pointed out elsewhere [NB95a,BNKF98] in more details.

3.5 Performance of the Evolved Individual

As a measure of the performance of the evolved individual we calculate the
classification rate: Before the run, ten samples of each vowel had been recorded
by the same speaker. Two samples have been used for evolving the classifier
already. The eight samples left are unknown to the system. These samples are
now used to calculate the classification rate of the best-of-run program. Each
sample is about 0.5 s long which means that we can lay about 4000 time windows



of 20 ms upon this sample. So, having 8 samples per vowel, we obtain 64 000
validation cases.

We calculate the recognition rate by determining the percentage of validation
cases on which the classifier made the correct decision. The best individual of
the run documented in this section had a recognition rate of 98.8 %. When
tested on unknown samples spoken by different speakers, the program still had
a recognition rate of 93.7 %. This is quite surprising, given the fact that the
program had been evolved based on data taken from one speaker only. Thus,
there 1s strong evidence for a very good generalization ability of our system.

3.6 Behavior of the Evolved Program

Because the performance of the evolved program is relatively good, it would
be interesting to know what it actually does. When looking at the program
code, though, one quickly discovers that it is not easy to understand. Even
after introns, 1.e. code segments that do not affect the output, are removed,
the remaining code still consists of about 60 instructions. When the program is
converted into closed expressions the result is also not very intuitive. After all,
GP develops programs by evolution, not by intuition.
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Fig. 3. The dynamics of the output value of an [a]-[i]-classifier working on a sample of
an [a] (left side) resp. an [i] (right side).

We therefore approach this problem empirically by studying program behav-
ior. Figure 3 shows the dynamics of the output-value when the classifier scans
an [a] and an [i], respectively. Each dot represents the output-value after one of
the 160 necessary calls during scanning a 20 ms time window. For an [a], the
target-value is 10 000 (case A), for an [i] it is 0 (case B).

In both figures one can see a monotone increase of the output value. However,
there is a sudden step in case A from 2000 up to 8000. After this step the value
is increasing steeper than before. In case B no such step can be observed.

This transition occurred in all evolved classifiers we have investigated. Some-
times there was even more than one step. The time of the transition i1s not the



same for all input data. The transition may be delayed, depending on the po-
sition of the time-window. Probably this avoids a dependence on a phase-lag
caused by the position of the time-window.

Some hints how the program might work can be obtained from linear digital
filters. These filters work in a similar fashion as the evolved classifiers. The
section 3.8 will discuss this topic in more detail.

3.7 An Undiscovered Bug

When looking at the closed expressions which evolved, we made a very aston-
ishing discovery: Only one of the memory-registers (originally 6), intended to be
used for feedback of the output (see section 2.3), was employed by the system!
The only memory register used was the one that simultaneously served as single
output register. That register was used subsequently for calculating the fitness
of the individual program, after all 160 samples had passed through it.

Unfortunately, the reason for this parsimonious behavior of programs was a
bug in our system! All memory registers (except the one also serving as output)
were erased or at least changed in some way between calls and were therefore of
no use in feedback.

This bug seems amazingly severe. Instead of the seven potentially indepen-
dent feedback signals that we intended to provide originally, the system had only
one. Although the results presented here have been produced by this uninten-
tionally weak system, they are pretty good. The system had learned to cope with
this weakness and did not use the additional registers in feedback, for their lack
of stability. Instead, they were put to use as additional calculation registers for
storage of provisional results within the program.

This whole episode can be seen as another example for the robustness of the
GP paradigm, which has been observed by other researchers before. Kinnear
notes on this topic in [Kin94]:

“Few of us have experience with truly robust computer algorithms or
systems. Genetic Programming is such a system, and through the same
power that allows it to search out every loophole in a fitness test it can
also sometimes manage to evolve correct solutions to problems despite
amazingly severe bugs.”

3.8 Linear Digital Filters and Evolved Classifiers

How Do Linear Digital Filters Work? Digital filters work by extracting cer-
tain frequencies from the time signal: A linear digital filter computes a sequence
of output-points y,, from a sequence of input-points zj, using the formula (from

[PFTV8S]):
M

N
Yn = chl‘n—k + Zdjyn—j (1)

k=0 j=1



The M + 1 coefficients ¢, and the N coefficients d; are fixed in advance and
will determine the filter response. The filter produces a new output using the
current input and the M earlier input-values before, and also using the N outputs
produced earlier. If N is 0 the filter is called non-recursive or finite impulse
response (FIR)-filter and the former output does not affect the current output.
If N # 0 the filter is called recursive or infinite impulse response (I1IR)-filter.

What is the use of these filters? They are used to extract certain frequencies
in a signal and to dampen others. This behavior is expressed by the filter response
funetion. For linear digital filters it reads [PFTV88]:

Zi@W—O Ck6—2m’k(fA)

H(F =
=TSN e

(2)

With this formula one can calculate the filter response if the ¢ and d coefficients
are given. In order to design a filter, however, one must go the other way: The ¢’s
and d’s are to be determined for a desired filter-response. For further information
on filter design, the reader is referred to [HP91,MK93].

Are The Evolved Programs Digital Filters? When looking at the algorithm
for digital filters, they appear similar to our GP-approach for classifying speech
data. In an IIR-filter there is a feedback of the output. The N formerly produced
outputs are being used to produce the current output. The data-flow 1s very
similar to the one shown in Figure 1. There, too, several output-values are being
fed back, although the output-values are all from the same iteration.

The GP system, however, certainly does not evolve a linear response. Instead,
it uses bit- and shift-operations plus multiplication operations all of which result
in non-linear behavior. Trrespective of the nature of the filter, formula (1) sug-
gests that GP-evolved programs might be able to extract features from a time
signal in quite a similar way. Although linear digital filters provide a hint, the
resulting programs are much more complicated than a simple linear digital filter.

4 Experimental Results

4.1 The Quality of the Testing-Data

For the experiments documented here sound-samples of several speakers have
been recorded. The recording was done with the standard sound-device of a
SPARCstation 10. Samples are in 8 kHz p-law format. They have been con-
verted to a linear 8 bit format. Except for this conversion the data had not been
changed in any way. The recordings are not free from noise. Although there are
no background voices on the recordings, the fan is audible to the human ear.

® Infinite impulse response means, that a filter of this kind may have an response
that extends indefinitely (due to the feedback of the output). In contrast, finite
impulse response filters have a definite end to their response if there is no input-
signal anymore.



In summary, the quality of the recordings is not very high. With a sampling
rate of 8 kHz only signal frequencies below 4 kHz can be played back reliably.
For certain speech sounds this is definitely not enough. One cannot, for instance,
distinguish between [s] and [f] when talking on the phone, a transmission of
comparable quality.

4.2 Speaker-Dependent Vowel Discrimination

For vowel discrimination we used the vowels [a], [¢], [i], [o] and [u]. For each pair
of vowels we evolved classifiers, all in all ten different types of classifiers. In the
speaker-dependent case all recordings used to train the system and to test its
performance were spoken by the same person.

For determining the recognition rate we used the eight unknown samples
of each of the two vowels the classifier is able to distinguish. Each classifier
scans a time window of 20 ms. This window is shifted over the entire sample.
In each iteration the window starts 0.12 ms later, which corresponds to exactly
one sampled value at a sampling rate of 8 kHz. The number of hits, i.e. correct
classification answers, is counted and a percentage is computed. Two samples of
different classes form a pair. The hit-rate of a pair is calculated as the mean of
the hit-rates of each sample in the pair. The longer sample is cut off in order to
have an equal number of chances to classify correctly.

For each classifier we get eight pairs. The classification rate is computed as
the mean of the hit-rates of all eight pairs. Table 4 shows the recognition rates
for all possible vowel combinations. For each vowel combination five GP runs
have been done. Table 4 shows the best value that could be reached in these
runs.

| 2] [e] [ [ [[o] [[u]]

a 93.1199.1|75.0{50.0
el — [85.2[74.0]79.1
Al — | — [29.4[76.1
ol||— — | — | — |75.4
all— — | — | — | —

Table 4. The recognition rates for vowel classification in the speaker-dependent case

(in %)

Looking at these values it becomes apparent, that there are obviously some
combinations that make it easier to classify than others. These combinations are
[a] and [e] and also [a] and [i], where recognition rates of more than 90 % could
be obtained (for [a] and [i] we even obtained over 99 %, which can be considered
perfect). For all other combinations we have recognition rates of over 70 %. An
exception is the combination [a] and [u], where no solution could be found.



We think these results may even be improved by doing more runs or opti-
mizing GP run parameters.

4.3 Speaker-Independent Vowel Discrimination

As said earlier, in order to evolve a classificator that can discriminate vowels
irrespective of the speaker, it 1s necessary to have training data spoken by as
many people as possible. For this test series we had training and testing data
spoken by six persons. For reliable speaker-independence this 1s, of course not
enough diversity. However, our aim was to show that speaker independence is
possible at all. With six different speakers, the system will already have to cope
with a lot of in-class-variance.

The recognition rates were determined in the same way as before. The only
difference was that training and testing samples have been recorded from six
different speakers.

Table 5 shows the best recognition rates that could be obtained. It is some-
what surprising that the combinations with best results are not always the same
as in the speaker-dependent case. [a] and [0], as well as [a] and [u] could be dis-
criminated very well in this case although this was not possible in the speaker-
dependent case. On the other hand results for [a] and [e] as well as [e] and [i] are
worse.

| 2] [e] [ [ [[o] [[u]]

a][[—[72.2[92.2]88.6]96.4
[e]|—| — [78.9/61.3[69.7
[~ — [— [81.1]65.2
[o][—] — | — [ — [60.0
| g oy

Table 5. The recognition rates for vowel discrimination in the speaker-independent
case (in %)

Speaker-independent vowel discrimination is more difficult, because the in-
class variance 1s much higher. Therefore, probably more runs would have been
necessary to reach the same level of recognition rates. However, it is clear already
from these limited results that distinctive features could be found by GP that
were exploited for discrimination.

4.4 Discriminating Voiced and Unvoiced Fricatives

In the third task we examined, discrimination between voiced and unvoiced
fricatives there are now more than one phones in each class. In this test series
there are three each; the voiced fricatives [z], [3] and [v], and their unvoiced



pendants [s], [[] and [f]. Three phones in each class mean a still larger in-class
variance than before.

The recognition rates can be read from Table 6. One can see that the value
for all combinations with [3] is at about 60 %, while the rates are much higher
in all other combinations. The reason could be that [3] differs too much from
[z] and [v]. Recall that the recordings have been sampled with 8 kHz, a quality
that makes it difficult even for humans to distinguish between certain sounds.
Signals that contain high frequencies loose information and fricatives have high
frequency formants.

L 1E B[]
s][90.4[59.6]81.6
1[[00-6]59.5]81.2
1][90.5/60.0/81.3

Table 6. The recognition rates classification of voiced and unvoiced fricatives (in %).
Only one classifier used.

In the other cases the GP system has found a way to separate the classes.
Recognition rates of 80 to 90 % could be obtained.

4.5 Discriminating Nasal and Oral Sounds

Like in the discrimination task of voiced versus unvoiced sounds this problem
has several sounds in one class. In our test series we evolved programs that can
discriminate the nasal sounds [n] and [m] from the vowels [a] and [e]. This is
another example of large in-class variance, since in the sections 4.2 and 4.3 the
vowels [a] and [e] were discriminated, while here they have to fall into the same
class.

Table 7 shows our results. Again, the system was able to find distinctive
features that can be applied to all different phones in the two classes.

| [Ta] [e]
[n][[89.3[78.8
[m]][97.0[36.4

Table 7. The recognition rates for classification of oral versus nasal sounds (in %).
Only one classifier used.



5 Conclusions

Looking at our experimental results, the most important conclusion is that in
every case it was possible for the GP system to evolve programs able to filter
out certain discriminating features from the time signal. Even if in some cases
the recognition rates were not optimal, there was always a tendency toward
discrimination.

Thus, the question that we started with; Is it possible for genetic program-
ming to extract an underlying law from the raw time signal in order to make
a classification? can be positively answered. Indeed, the system has extracted
regularities, regularities at least, that underlie a large part of the fitness cases,
and that are helpful for discriminating the two classes.

In the speech recognition literature, 1t is often stated that the time signal
would not be suitable for classification. It would not contain the needed features
in an easily accessible way. When looking at the time signal one can indeed be
amazed, how similar signals of different phones can look in some cases, and how
different signals of the same phone can look in another time window. But this is
clearly no limitation to the GP system.

What is particularly interesting in the GP system is the way, in which it
classifies. Most methods used in speech recognition (or more general pattern
recognition) perform some kind of comparison of a feature-vector with some
reference-vector. Nothing like that is happening here. The evolved programs are
(after removing the introns) much too short to memorize reference vectors. They
have to use the regularities residing in the data to discriminate classes.

Another interesting aspect of this approach is, that the evolved classifiers are
very fast, for various reasons:

— No additional preprocessing is needed,;
— The programs are already represented in machine code;

— Introns® (code that does not effect the output) can be removed from the
final program, resulting in a speedup of approximately a factor of 5.

It is certainly too early to say how far this approach might lead, but we see
at least some potential for applications to be developed along these lines. The
evolution of machine code results in very rapidly executing code that can - by
virtue of being the native language of the CPU - perform well even on weak
platforms.

¢ In chapter 7 of [BNKF98] further information on the emergence of introns in GP can

be found.
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