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2 1 INTRODUCTION

1 Introduction

In recent years computer simulations have been used to study the phenomena of life, not by sim-
ulating life as-it-is (weak AL) but by instantiating life as-it-could be (strong AL) [?]. AL systems
have been used, e.g. for studying questions concerning the emergence and quality of organiza-
tions [?, ?, ?], the process of diversi�cation [?], the origin of replicators [?], or morphological
evolution [?].

An important property of most strong AL systems is that they contain the ability for self-
reference. For instance Ray's Tierra organisms are able to read, copy and modify their own
code. In Fontana's Algorithmic Chemistry every object is a character string able to process
other objects by using the lambda-calculus which maps the character string into an (active)
function. The dualism inherent in those systems can be traced back to Goedel [?] who de�ned
a mapping of mathematical statements into natural numbers that allowed self-reference and to
von Neumann's stored program computer [?].

The system discussed here is inspired by a chemical reaction dynamics, where molecules collide
and interact to create new molecules forming metabolic networks. This contribution tries to
give insight into the origin and evolution of these networks [?]. Related work [?, ?, ?, ?, ?]
focuses on the static structure of the emerged networks. Here we will concentrate on dynamic
phenomena, especially on the emergence of prebiotic evolution [?]. Evolutionary phenomena
can be observed, although no explicit �tness, mutation, recombination or selection operators are
used. Variations are only performed by the objects (molecules, binary strings) themselves when
they act in machine form.

1.1 Self-organization and Evolution

It seems worthwile to start our considerations with a short note on self-organization and what
we mean by "evolution" in the context of this paper. Self-organization is a process where a
system is organized while the components directing this process are part of the system. This
kind of view of "self-organization" implies: 1.) Every organization phenomenon becomes a result
of self-organization provided we enlarge the system boundaries. 2.) Self-organization need not
to be directed.

When transforming this linguistic abstract description of self-organization into the language of
computer science it seems to be straight forward to represent an organizer as a program and the
data a program is working on as the target for organization. In order to close the loop inherent
in self-organization we need a mapping from data to machines or vice versa, yielding the dualism
of the system components. The information residing in the system should either act as active
machines or should be processed as passive data.

The organization process can also be expressed in the terms of mathematics as the application
of (active) operators to (passive) data. An example for this approach is [?] where the operands
are binary strings. Operators are formed out of binary strings by "folding" them into a matrix.

The outline of this paper is as follows: Section 2 gives a general introduction to algorithmic
reaction systems. In Section 3 we brie
y describe the special reaction mechanisms used for
this contribution. Section 4 summarizes methods for investigation and visualisation. In Sec-
tion 5 we discuss four qualitative types of dynamic self-oranizattion phenomena by showing
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typical simulation results, namely (1) extinction, (2) emergence of an oranization structure, (3)
exploration/innovation, and (4) evolution.

2 Algorithmic Reaction Systems

The system used for the experiments in this paper is called an algorithmic reaction system,
because the interaction between the participants is speci�ed by an algorithm. It consists of the
following three components:

� A soup (population) of objects.
These objects may be abstract symbols [?], character sequences [?], lambda-expressions
[?], binary strings [?, ?], numbers [?] or proofs [?]. Here, we use binary strings with a
constant length of 32 bit. In a basic setting, the soup has no topological structure so that
its state can be noted as a concentration vector.

� A collision or reaction rule.
The collision rule de�nes the interaction among two objects s1 and s2 which may lead to
the generation of a new object s3. This is denoted as:

s1 + s2 =) s3

Note that the operator "+" is not commutative.

� An algorithm to run the system.
In this contribution we use an algorithm that can also be found with minor modi�cations
in [?, ?, ?, ?].

Reactor algorithm

1. Select two objects s1; s2 from the soup randomly, without removing them.

2. If there exists a reaction s1 + s2 =) s3 and the �lter condition f(s1; s2; s3) holds, replace
a randomly selected object of the soup by s3.

The replaced objects form the dilution 
ux of the system. The �lter f can be used to block
lethal objects and to introduce elastic collisions easily. The term collision refers to one execution
of the two steps of the reactor algorithm. A collision is called elastic if no product s3 is inserted
into the soup. So, a collision of two objects s1; s2 is elastic, if no product if de�ned by the
reaction rule or if the �lter condition prohibits the insertion of the product. An object is said to
be lethal if it is able to replicate in an unproportionally large number in almost any ensemble
con�guration.

The interaction scheme of the algorithm can be written as a chemical reaction equation:

s1 + s2 +X �! s1 + s2 +

(
1
2s3 with s1 + s2 =) s3
1
2s

0

3 with s2 + s1 =) s0

3

In other words, that s1 and s2 are not consumed but act as catalysts of the reaction. The raw
material X is used to balance the equation. It does not appear explicitly in the system and
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could be interpreted as computational resources like processing time or memory [?]. Reaction
systems exhibiting this kind of reaction scheme are able to form hypercyclic oranizations [?].

In order to measure the running time of the algorithm we call M iterations (collisions) a gen-
eration, where M is the soup or reactor size. Using "generations" rather than "number of
iterations" allows an easier comparison of runs with di�erent soup sizes.

2.1 A model for the algorithmic reactor

In a setting corresponding to a well-stirred tank reactor the state of the system can be described
by a concentration vector x = (x1; : : : ; xn) with x1 + � � � + xn = 1 and xi > 0. xi is the
concentration of string type si. For a large and constant population size the behavior of the
reactor algorithm is modeled by the catalytic network equation [?]:

dxk
dt

=
nX
i=1

nX
j=1

�kijxixj � xk

nX
i;j;k=1

�kijxixj k = 1; : : : ; n (1)

with second order rate constant �kij for the reaction i+ j
�k
ij

=) k .

Here the rate constants become

�kij =

(
1 if s1 + s2 =) s3 and the �lter condition f(s1; s2; s3) holds,

0 otherwise.

Equation 1 becomes the famous replicator equation if for all i; j 2 f1; : : : ; ng

�kij = 1 =) i = k _ j = k

holds [?, ?].

Simulating systems with a large number n of di�erent objects becomes di�cult. For the special
case if only a small fraction of all possible objects being present in the reactor, a technique called
meta dynamics is used elsewhere, where the ODE Sytem (equation 1) is treated dynamically
and updated under certain conditions. For example equations are removed when the corre-
sponding concentration falls below a given theshold [?, ?] . The advantage of this method is,
that a potentially in�nite number of objects can be handled by still using the ODE framework.
Problems arise, however, when the diversity (e.g. the number of di�erent objects in the reactor)
becomes high, as will be the case here.

3 Special 32-bit Reaction Mechanisms

We will now brie
y describe the special reaction mechanisms used for this contribution, namely
the AND reaction and the automata reaction.
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Figure 1: Automaton, resulting by folding s1. It carries out the reaction s1+s2 =) s3. s1
is written into the operator register and speci�es the program. The IO register
is initialized with s2 and contains the result s3 after running the program.

3.1 AND reaction

The AND-Reaction is simply the bitwise logic AND of strings s1 and s2.

8i 2 f0; 31g : s
(i)
3 = s

(i)
1 ^ s

(i)
2

where s(i) 2 f0; 1g denotes the i-th bit of string s. This reaction is used for test and reference,
because its behavior can be easily described and understood.

3.2 Automata reaction

The automata reaction is based on a �nite state automaton which is a mixture of a Turing-
machine and a register machine. It has also been inspired by the Typogenetics of Hofstadter
[?].

The automata reaction instantiates a deterministic reaction s1 + s2 =) s3, where s1; s2; s3 2
f0; 1g32. In order to calculate the product s3, string s1 is folded into an automaton As1 , which
gets s2 as an input. The construction of As1 ensures that the automaton will halt after a bounded
�nite number of steps. Because As1 is a deterministic �nite automaton, the automata reaction
de�nes a functions f0; 1g32� f0; 1g32 �! f0; 1g32.

Figure 2 shows the structure of the automaton. It contains two 32-bit registers, the IO register

and the operator register. At the beginning operator string s1 is written into the operator
register and operand s2 into the IO register. The program is generated from s1 by simply
mapping successive 4-bit segments into instructions. Note that two slightly di�erent mappings
are used (Figure 2 , right). The resulting program is executed sequentially, starting with the
�rst instruction. There are no control statements for loops or jumps in the instruction set.

Each 32-bit register has a pointer, refering to a bit location. The IO pointer, refering to a bit
b0 in the IO register and the operator pointer, refering to a bit b in the operator register. Bit



6 4 INVESTIGATION AND VISUALISATION OF SYSTEM BEHAVIOR

s1 command comment
1011 EXOR The exclusive-or product of b0 (refered to by the IO pointer) and

b (refered to by the operator pointer) is written at the position of
b
0. Therefore, the 0. bit of the IO register becomes 0. Then both
pointers are moved one bit position to the left.

0010 0110 SETP 0110 The pattern register is set to 0110. If the pattern is set, a subse-
quent MOV operation will move the pointers until the pattern is
found in the operator register (max. 32 steps).

0110 CPON The copy-mode is switched on. Every time the pointers are moved
the ALU operation is performed (here, EXOR).

1101 NOP No operation. The registers are not modi�ed.
0001 MOV The pointers are moved to the left until the pattern 0110 is found

in the operator register, which happens at the 8. bit position.
Because the copy-mode is activated (by CPON), the last ALU
operation (here: EXOR) is executed for every bit passed.

0000 ID The 8. bit of the operator register is copied into the IO register,
and both pointers are moved one step to the left.

0001 MOV Both pointer are moved to the next apearance of 0110, namely to
the 12. bit position. This time the ID operation is executed at
each step.

Table 1: Example for the automata reaction.

b and b0 are inputs to the ALU. The ALU result is stored at the IO pointers location, therefore
replacing b0.

Instead of going into more details now, an example will be presented. The Appendix contains
descriptions of the register con�guration and the instructions.

3.2.1 Example for the automata reaction

Table 1 shows the function of the automaton for the following example:

s1 = 0001 0000 0001 1101 0110 0110 0010 1011

s2 = 1100 1011 0101 1101 0101 1110 0010 1101

s3 = 1100 1011 0101 1101 0101 0110 0000 0110

In hex notation, this reads:

101d662b+ cb5d5c2d=) cb5d5606

4 Investigation and Visualisation of System Behavior

Designing a system that shows behavior of enormous complexity is surprisingly easy. But to
visualize and to explain in detail the behavior is much harder. The methods for investigation
can be divided into macroscopic, mesoscopic and microscopic ones.

A macroscopic method observes the whole system, by mapping its high-dimensional state
into a low-dimensional space, where every component of the system should be considered. An
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example from thermodynamics is the temperature. A mesoscopic method considers only a
small subset of the systems components. It still accumulates many microscopic events into low
dimensional values (e.g. the concentration of speci�c substance in a region). Microscopic
methods are visualizing elementary details of the system for instance the history of a speci�c
object or memory cell.

Here, we shall apply only macroscopic methods, which are explained in the following:

Diversity: Various measure for the diversity of a population exist. Most methods require a
grouping G of the individuals.

G : P ! IN; G(si) = gi

where P = fs1; : : : ; sMg is a population of genomes and gi is the number of the group si belongs
to. In ecology, diversity is often de�ned as the number of di�erent groups or taxa:

Div1(P ) = jfgj9s 2 P : G(s) = ggj (2)

The dynamic behavior of Div1 depends on the de�nition of the grouping G. A �ne grained
grouping results in a diversity 
uctuating over time. This is due to the fact that the number of
individuals belonging to one group is not considered in equation 2.

Here, we use a simple grouping, where every possible genotype forms a group. The resulting
(absolute) diversity Divabs then becomes the number of di�erent strings in P .

Divabs(P ) = jfsjs 2 Pgj

To get a relative value Div(P ) in the range 0 � 1 the absolute diversity is divided by the soup
size M . In the future, the term "diversity" refers to the relative diversity

Div(P ) =
Divabs(P )

M
.

Distance distribution complexity (DCC): One problem of the above diversity measure is
that the distance between di�erent groups is not taken into account. For example an ecology
with 10 horses and 10 zebras would have the same diversity as an ecology with 10 horses and 10
dolphins. The DDC, recently introduced by Kim [?], is able to distinguish these cases. Given
a discrete distance measure D : P � P ! IN the distance distribution is de�ned here as the
relative frequency of the distance value d 2 IN:

f(d) =
2

M(M � 1)
jf(si; sj)jsi; sj 2 P; i < j;D(si; sj) = dgj

[?]. The distance distribution complexity (DDC) is then de�ned as the Shannon entropy
of the distribution of distance values:

DDC(P ) := �
X
d

f(d) log(f(d))

For the following analysis D is de�ned as the Hamming-distance. This simple and fast measure
is su�cient, because no shifting and no insertion or deletion of bits is taking place. Note, a high
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DDC indicates a high diversity and vice versa, but the DDC can increase even if the diversity
decreases (e.g. Figure 3 ).

Productivity: The productivity is the probability, that a collision of two strings is reactive,
thus

Prod(P ) = p(a string is inserted into the soup in the next iteration of the reactor algorithm):

If the productivity is zero no new string is produced. To measure the productivity during a
simulation, the number of iterations in which a string s3 is inserted into the soup is counted for
M steps. The result is divided by M . If the soup size M is constant the productivity is equal
to the dilution 
ux.

Innovativity: The innovativity is the probability that a collision produces an object that is
new, with respect to a given time window [t1; t2]. Let Pt be the soup after the t-th iteration of
the reactor algorithm. Then the (total) innovativity is de�ned for the time window [0; t] as

Inn(Pt) = p(s3 is inserted into the soup and s3 =2

t[
t0=0

Pt0)

The total innovativity has been measured by counting the number of completly new strings that
are inserted into the soup during M iterations of the reactor algorithm. The result is divided
by M . There are more local measures of innovativity which consider a smaller time window of
constant size.

Reaction table: Given a set of objects A = fs1; : : : ; nag then the corresponding reaction table
RT : f1; : : : ; nag

2 ! f1; : : : ; na;�; �g is de�ned as:

RT (i; j) =

8><
>:
� if the collision of si; sj is elastic,

* if si + sj => sk and sk =2 A,

k if si + sj => sk and sk 2 A.

The term "the collision of si; sj is elastic" refers to step 2 of the reactor algorithm, where si; sj
are selected but no product is inserted into the soup.

For the reaction tables shown in this paper, the set of objects is sorted according to their
concentration:

8si; sj 2 A : [si] � [sj ]() i � j

5 Qualitative Types of Dynamic Self-Organization Phenomena

In this section we show some experimental results to discuss certain qualitative types of self-
oranization processes. In all experiments the objects are binary strings of �xed size 32 bit. The
soup is always initialized with random strings, resulting in a initial diversity of approximately
1.

The types will be illustrated by visualizing "typical" runs. If the behavior of a system is simple,
a series of runs with the same parameter but di�erent random numbers can be summarized in
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Figure 2: Example for extinction. Paramters: AND reaction, no �lter condition, M =
104. The diversity and the DDC drop to zero because the system is exploited
by the destructor 00000000 which remains as the only surviving string. Right:
Distance distribution for the generations 0-7.

one diagramm, by simply forming the avarage of the displayed values. But this makes very
little sense if the behavior of the system is complex. It is problematic, because experimentators
subjective ability of image processing is used to compare the runs.

5.1 Extinction

Figure 3 shows the behavior of the AND reaction. The diversity drops quickly to 1=M (only
one string type left) and the DDC to zero, indicating that the soup is exploited by a single type,
the lethal string 00000000. It is able to replicate with every other string and is furthermore
produced through many reaction pathways (e.g. f120000+ 0004711a =) 00000000).

At the outset the DDC increases, because intermediate products appear which are characterized
by a small number of ones (e.g. 00000200), resulting in a higher complexity of the distribution
of distances during generation 0-2 (Figure 3 , right).

5.2 Emergence of an organization

Figure 4 shows the emergence of a simple organization comprising four di�erent string types.
The diversity and innovativity drop continuously until a closed self-maintaining 4 organization
dominates the soup with only a few distinct objects. Through genetic drift [?] the diversity
of this organization is slowly reduced until an organization remains, which does not contain a
closed, self-maintaining subset.



10 5 QUALITATIVE TYPES OF DYNAMIC SELF-ORGANIZATION PHENOMENA

2 1

0 0 0

1 13

2

1 7240a7ea

No 1 3

1

03 3

0

1

20

0 7240a7ef

7240a7eb

7240a7ee

2

1

0

String

String Program
1111
1110
0111
1010
0000
0100
0010
0111

AND
ID
CPOFF
NOT
ID
TDIR
SETP 0111

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120 140

co
nc

en
tr

at
io

n

time in generations

1

2

3

0 20 40 60 80 100 120 140

D
D

C

0
0.25

0.5
0.75

1

0 20 40 60 80 100 120 140

In
n

0.25
0.5

0.75
1

0 20 40 60 80 100 120 140
D

iv Reaction table at generation 140

Figure 3: Emergence of an organization. Parameters: Automata reaction with code table
1, M = 100. no �lter condition, soup seeded with M random strings. For the
four surviving strings the reaction table and their concentration over time is
given.

0000
0100
0010
1010
1100
0001
1110
0001

CPON
SETP 1010

EXOR

ID
MOV

MOV
0

0.2

0.4

0 20 40 60 80 100 120 140

co
nc

en
tr

at
io

n

time in generations

1

2

3

0 20 40 60 80 100 120 140

D
D

C

0
0.25

0.5
0.75

1

0 20 40 60 80 100 120 140

In
n

0
0.25

0.5
0.75

1

0 20 40 60 80 100 120 140

D
iv

2

1

No 1 20

0

String

String Program

1e1ca260

1e1ca261

1e1ca264 2 2 2

1 1 1

0 0 0

1011a2617 7 7 7

7

2

1

0

7

ID

Reaction table at generation 280

Figure 4: Exploration and innovation. During the explorative phase (generation 2 - 40)
the diversity is constantly high and a lot of totaly new strings are produced. Pa-
rameters: soup sizeM = 104, automata reaction with table 1, no �lter condition
f , soup seeded with M random strings.



5.3 Exploration and innovation 11

5.3 Exploration and innovation

In Figure 5 a typical example of a punctuated equilibrium is shown. After a quick drop of
the diversity at the beginning (gen. 0-3) the system enters the explorative phase, which is
charactarized by high innovativity, productivity and diversity. Many new objects are generated
rather continously and there are no string types with exceptionally high concentrations.

The explorative phase comes to an end, when string types appear (gen. 40) that are replicating
with every other string, thus quickly dominating the soup.

The behavior can be termed a punctuated innovation which leads, in this case, to an end of the
explorative phase. The system becomes simple and enters a stable phase where the organization
structure is reduced only through genetic drift.

It is di�erent from the AND reaction, where the process leading to the �nal string is more
gradual and continuous.

5.4 Evolution

This section describes an experiment, that shows evolutionary behavior in the absence of external
variation operators (i.e. mutation) and the absence of explicit selection5. The following setup
has been used for the experiments in this section:

(a) Soup size M = 105 or M = 106. These large soup sizes are used to get an explorative
behavior and to reduce the e�ects of the non-deterministic components of the reactor
algorithm.

(b) Elastic collisions introduced through the �lter condition

f1(s1; s2; s3) = (s1 6= s3 ^ s2 6= s3).

By using this �lter condition the exact replication is disabled. Every collision that normally
produces a string identical to one of the reactands is considered to be elastic [?].

(c) Reaction mechanism: automata reaction with code table 2. Code table 2 does not contain
a NOT operation. Without a NOT operation it is harder to construct a self-maintaining
organization of strings under �lter condition f1.

(d) The soup is seeded with random strings from f0; 1g32, resulting in an initial diversity
approximately equal to one.

Figure 6 shows the short-time behavior6. As in Figure 5 an explorative phase with very high
diversity can be observed (generation 0 � 110). A lot of completely new strings are produced.
The productivity (fraction of collisions that are not elastic) is similar to the productivity of a
random soup.

4A set A of object species is closed if every interaction within A produces only objects already in A. A set
A of object species is self-maintaing if every object is produced by at least one interaction within A [?].

5The selection of two objects in the reactor algorithm is not selection in the sense of evolution theory. The
random selection simulates only random collisions among objects.

6Although this is called "short-time behavior", a rather long time is shown compared to Figure 3 .
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Figure 5: Short-time evolutionary behavior. Parameters: soup size M = 105, automata
reaction with table 2, �lter condition f1. soup seeded with M random strings.

This changes when a self-maintaining though not closed organization emerges (generation 110�
200). This does not happen as fast as in Figure 5 . Here the process takes a much longer time
and seems to be more complex. Many di�erent "species" are competing for space. Over a short
period of time new strings are generated which increase their concentrations and are replaced
by "better" ones. Figure 8 shows this early phase for some representative strings of a run with
soup size M = 106.

Figure 7 shows the long time behavior. After the �rst early evolutionary phase (gen 110 �
200) an organization has emerged whose gene diversity is massively reduced. It consists of
approximately 50000 di�erent string types where only about 3000 are present at a speci�c time.
This organization still generates completely new strings but at a much lower frequency than the
soup in the explorative phase (generation 0� 110).

The productivity in Figure 7 (generation 500� 7000) shows, that even this (over a long period
stable) organization is able to develop itself. The character of this evolutionary process is
di�erent from that shown in Figure 8 . There, evolution is taking place on the bitstring (better:
quasi-species) level. Here, the core set of strings is not changed. The organization is enhanced
by adding/absorbing "useful" new strings which are "invented" by it.

The phenomenon that long quasi-stable periods are interrupted by rapid changes is often referred
to as punctuated equilibrium [?]. It has been observed in natural as well as in arti�cial
systems (e.g. DNA world [?] and multi-agent systems [?]).

For a more detailed analysis of the organization structure the reaction table can be used. Figure
9 and 10 show a part of the reaction table of the 90 most frequent strings at di�erent stages of
the evolutionary process. They demonstrate how the coupling between strings becomes closer
and the amount of elastic collisions is reduced.

An interesting detail is, that a cross-over mechanism has emerged. Figure 11 shows an example
where 8 "cross-overing" strings form a closed organization. The organization is so small and
closed, because the cross-over is performed at a speci�c point.
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Figure 6: Long-time evolutionary behavior. Parameters: soup size M = 105, automata
reaction with table 2, �lter condition f1. soup seeded with M random strings.
Same run as in �gure 6
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14 5 QUALITATIVE TYPES OF DYNAMIC SELF-ORGANIZATION PHENOMENA

generation 75 generation 110

No. String 0 1 2 3 4 5 6 7 88 89 No. String 0 1 2 3 4 5 6 7 88 89

---------------------------------------------- ---------------------------------------------

0 8140b6fa 29 * * * * * * * * * 0 c11a260b - - - - - - - - - -

1 140da6e8 - - - - - - - - - - 1 011a2614 02 - - - - 02 02 02 02 02

2 a625ffb3 29 22 - * * - - * - - 2 011a2615 - - - 01 01 - - - - -

3 140ca6f2 - 14 - - 14 14 14 14 14 14 3 c11a260e - - - - - - - - - -

4 77ae526e - * * - - * * - * * 4 c11a260a - 00 - 00 00 - - - - -

5 c46b12a1 * * * * * * * * * * 5 8211e267 27 28 28 27 27 - 28 27 28 27

6 4a8c05c9 * * * * * * * * * * 6 1211e267 23 - - 23 23 23 - 23 - 23

7 223be8ae - - * - - * * - 82 * 7 d211e267 - 06 06 - - 23 - - * -

88 7ecbf629 * * * * * * * * * * 88 211a260d 49 - - 49 49 49 - 49 - 49

89 70507121 * - * * * - - * - - 89 c611e267 - * * - - * * - * -

Figure 8: Left:Reaction table during the explorative phase (genration 75, �gure 6 ). The
objects are loosely coupled. Many reaction pathways leave the reaction table
(denoted by "*"). Right: Reaction table shortly after the explorative phase (gen-
ration 110, �gure 6 ). The objects are coupled more closely. Still many reaction
pathways leave the reaction table. "-" means an ellastic collision (no reaction
product).

generation 3400

No. String 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 67 68 69

------------------------------------------------------------------------------

0 104e264b 01 - 03 02 05 04 07 06 01 - 03 02 01 - 02 - 03 - 64 65 -

1 104e264a - 00 03 02 05 04 07 06 - 00 03 02 - 00 02 00 03 00 64 65 00

2 104f264b 01 00 03 - 05 04 07 06 01 00 03 - 01 00 - 00 03 00 64 65 00

3 104f264a 01 00 - 02 05 04 07 06 01 00 - 02 01 00 02 00 - 00 64 65 00

4 140e264b - 00 - 02 - - - 06 00 00 02 02 00 00 02 00 02 00 - 65 00

5 140e264a 01 - 03 - - - 07 - 01 01 03 03 01 01 03 01 03 01 64 - 01

6 140f264b - 00 - 02 - 04 - - 00 00 02 02 00 00 02 00 02 00 - 65 00

7 140f264a 01 - 03 - 05 - - - 01 01 03 03 01 01 03 01 03 01 64 - 01

8 104e246b 09 - 11 10 30 24 31 28 09 - 11 10 09 - 10 - 11 - * * -

9 104e246a - 08 11 10 30 24 31 28 - 08 11 10 - 08 10 08 11 08 * * 08

10 104f246b 09 08 11 - 30 24 31 28 09 08 11 - 09 08 - 08 11 08 * * 08

11 104f246a 09 08 - 10 30 24 31 28 09 08 - 10 09 08 10 08 - 08 * * 08

12 104e206b - 00 - 02 00 00 02 02 - 08 - 10 - - 16 21 - 18 00 02 25

13 104e206a 01 - 03 - 01 01 03 03 09 - 11 - - - - - 14 - 01 03 23

14 104f206a 01 - 03 - 01 01 03 03 09 - 11 - 13 - - - - - 01 03 23

15 104e261a 01 - 03 - 01 01 03 03 09 - 11 - 13 - - - 14 - 01 03 23

16 104f206b - 00 - 02 00 00 02 02 - 08 - 10 - 12 - 21 - 18 00 02 25

17 104e260a 01 - 03 - 01 01 03 03 09 - 11 - 13 - - - 14 - 01 03 23

67 1046264b 01 00 03 02 05 04 07 06 * * * * * * * 00 * 00 64 65 00

68 10af264a 59 59 - - 59 59 - - * * * * * * * * * * 59 - *

69 104e265e 01 - 03 - 01 01 03 03 09 - 11 - 13 - - - 14 - 01 03 -

Figure 9: Reaction table of a converged soup (generation 3400, Figure 6 ). The objects
are coupled very closely. Only a few reaction pathways are leaving the reaction
table. The objects are very similar.
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6 Summary and Discussion

� We have extended the works mentioned above by introducing a reaction mechanism in-
spired by techniques of computer science. For exploring generalizations about evolving
systems, the high speed at which the reactions are carried out is helpful, because it al-
lows interactive and large experiments. the disadvantages are the (so far) �xed length of
strings and that the formalization of the reaction mechanism is more complicated than
using lambda-calculus [?] or matrix multiplication [?].

� It has been demonstrated, that the building blocks used in computer science to describe
hardware elements and functions can be easily used to construct self-organizing and even
evolving systems.

� Macroscopic monitoring techniques have been used. They are able to show qualitative
changes of the system's dynamics. But for answering detailed questions they are far from
su�cient. Design of visualisation techniques, expecially interactive ones, is needed for
future research.

� The experiments show that complex forms of evolution can take place in systems without
any explicit variation operator, like mutation or recombination, and without any explicit
(arti�cial) selection.

� The setup used here is one of the simplest ways of letting machines acting on each other.
We think that an important concept concerning natural evolution is, that the way evo-
lution is carried out is itself under the in
uence of evolution, a concept which is called
meta-evolution. Meta-evolution has long been applied in evolutionary algorithms. For
example, in evolution strategies (ES) parameters are used which determine the variance
and covariance of a generalized n-dimensional normal distribution for mutations. The
strategy parameters themselves are adapted during the optimization process. But the
operators used for adaptation are �xed.

Here, a variation of an object alters the way how other objects are modi�ed, and so on. We
can interpret such a system, as having many levels of meta-evolution, maybe a potentially
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in�nite number of levels.

� The complex behavior aquired here, results from a simple, ad hoc hand-written interaction
mechanism working on small objects in an environment with no spatial structure. Intro-
ducing larger, variable-length objects and topological strucures, allowing the formation of
niches, will result in an increase in complexity. Then we have to face the danger, that in
order to grasp a world we do not understand, we create a system we do not understand
[?, ?]. To circumvent this, powerfull analyzation and visualization methods are required,
that should be general (like the DDC), so that they can be applied to di�erent systems.

� Reaction systems { like the system discussed here { are able to perform computations
[?]. For example a chemical reaction system has been used to instantiate an arti�cial
neural network [?] or to solve a variant of the Hammilton-path problem [?]. So far, the
reaction pathways have been chosen carefully by hand. The integration of self-evolution
into molecular computing systems is promising and will be an aim of future research.
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APPENDIX

The Appendix contains a description for all registers and instructions of the automata reaction.

6.0.1 The control registers

In addition to the two 32 bit registers the automaton has 5 smaller control registers. The
control registers are initialized with the �rst value given in the following description:

direction rD rD 2 fleft; rightg
The direction register determines the direction the pointers are
moving. The operation TDIR toggles the direction.

move-mode rM rM 2 fboth; IOpointer; operator-pointerg
This register controls which pointer is moved in case of a pointer
movement. The operation TMM toggles the movement mode.

last-ALU-operation rALU rALU 2 fID;NOT;AND;OR;EXOR;EQg

This register stores the last ALU operation. If the copy mode is
switched on, the operation stored in rALU will be executed before
each movement step.

copy-mode rC rC 2 fo�; ong
If the copy mode is switched on, the last ALU operation stored in
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rALU is executed before each movement step of the IO pointer and
the operator-pointer.

pattern rP rP 2 fnoneg [ f0; 1g4

With "SETP p" this register will be set to the pattern p (p 2
f0; 1g4). The operation UNSETP clears the pattern by setting rP
to none. If the pattern is set, each MOV operation will move the
pointers unless the pattern is found in the porgramm register (max.
32 steps). If only the IO pointer is moved the pattern is searched
in the IO register. If rP = none the pointers are moved one step.

6.0.2 Arithmetic and logic instructions

During an arithmetic or logic operation bit b and b0 are processed by the ALU (Figure 2 ). The
result overwrites b0. Then the pointers are moved accordingly to the direction register rD (left
or right) and the the move-mode register rM (both, IO pointer only or operator pointer only).

ID identity: b0 := b, rALU := ID.

NOT negation: b0 := :b, rALU := NOT .

AND logic and: b0 := b^ b0, rALU := AND.

OR logic or: b0 := b _ b0, rALU := OR.

EXOR execlusive or: b0 := b 6= b0, rALU := EXOR.

EQ equality: b0 := b = b0, rALU := EQ.

After the execution of a logic instruction, register rALU is set to the operation executed. It
is used only during the execution of the MOV instruction, if the copy mode is switched on
(rC = on).

6.0.3 Movement and control instructions

MOV Moves the pointers accordingly to the move-mode, direction and pattern regis-
ter. If no pattern is set, (rP = none) the pointers are moved one step (one bit).
If a pattern is set, the pointers are moved unless the pattern is found (max. 32
steps). If rM = IOpointer the pattern is searched in the IO register, otherwise
in the program-register. Again, the direction of the movement is given by the
direction register rD.
If the copy-mode is switched on (rC := on) by CPON, the last ALU operation
is executed before each step.

CPON Switches the copy-mode on (rC := on).

CPOFF Switches the copy-mode o� (rC := o�).
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SETP p Sets the pattern p 2 f0; 1g4 for the move operation (rP := p).
This is the only operation with an argument.

UNSETP Clears the pattern (rP := none).

TDIR Toggles the move direction for the pointers.

rD :=

(
right if rD = left,

left if rD = right

TMM Toggles the move-mode:

rM :=

8><
>:
both if rM = operator-pointer ,

IOpointer if rM = both,

operator-pointer if rM = i�-pointer

NOP No operation.

STOP Stops the automaton before the whole program is executed.

For a precise formal speci�cation of the automata reaction the source code is available [?].


