Appendix C

Programs

C.1 Contents of the Floppy Disk

The floppy disk that accompanies this book contains:

- Sources of FORTRAN subroutines of the following direct optimization procedures as described in the Chapters 3, 5, and 7 of the book.

 - FIBO Coordinate strategy with Fibonacci division
 fiboh (fiboh.f) calls subroutine fibo (fibo.f)
 - GOLD Coordinate strategy with Golden section
 goldh (goldh.f) calls subroutine gold (gold.f)
 - LAGR Coordinate strategy with Lagrangian interpolation
 lagrh (lagrh.f) calls subroutine lagr (lagr.f)
 - HOJE Strategy of Hooke and Jeeves (pattern search)
 hoje (hoje.f) calls subroutine hilf (hilf.f)
 - ROSE Strategy of Rosenbrock (rotating coordinates search)
 rose (rose.f) calls subroutine grsmr (grsmr.f)
 - DSCG Strategy of Davies, Swann, and Campey with Gram-Schmidt orthogonalization
 dscg (dscg.f) calls subroutine lineg (lineg.f)
 subroutine grsmd (grsmd.f)
 - DSCP Strategy of Davies, Swann, and Campey with Palmer orthogonalization
 dscp (dscp.f) calls subroutine linep (linep.f)
 subroutine palm (palm.f)
 - POWE Powell’s strategy of conjugate directions
 powe (powe.f) calls -
 - DFPS Davidon, Fletcher, Powell strategy (Variable metric)
 dfps (dfps.f) calls subroutine seth (seth.f)
 subroutine grad (grad.f)
 function updot (updot.f) calls dot (dot.f)
 function dot (dot.f)
- SIMP
 simp (simp.f) calls
 Simplex strategy of Nelder and Mead

- COMP
 comp (comp.f) calls
 Complex strategy of M. J. Box

- EVOL
 evol (evol.f) calls
 Two membered evolution strategy

- KORR
 korr2 (korr2.f) calls
 Multimembered evolution strategy

 function zulass (included in korr2.f)
 function gaussn (included in korr2.f)
 function bletal (included in korr2.f)
 subroutine pruefg (included in korr2.f)
 subroutine speich (included in korr2.f)
 subroutine mutati (included in korr2.f)
 subroutine umspei (included in korr2.f)
 subroutine minmax (included in korr2.f)
 subroutine gnpool (included in korr2.f)
 subroutine abscha (included in korr2.f)
 subroutine drehng (included in korr2.f)

Additionally, FORTRAN function sources of the 50 test problems are included:

- ZIELFU(N,X) one objective function with a computed GOTO for 50 entries.
- RESTRI(J,N,X) one constraints function with a computed GOTO for 50 entries
 and J as current number of the single restriction.

No runtime package is provided for this set, however.

- C sources for all strategies mentioned above and C sources for the 50 test problems
 (GRUP with option REKO is missing since it has become one special case within KORR).

- A set of simple interfaces to run 13 of the above mentioned optimization routines
 with the above mentioned 50 test problems on a PC or workstation.

C.2 About the Program Disk

The floppy disk contains both FORTRAN and C sources for each of the strategies
described in the book. All test problems presented in the catalogue of problems (see appendix A)
exist as C code. A set of simple interfaces, easy to understand and to expand,
combines the strategies and functions to OptimA, a ready for use program package.

The programs are designed to run on a minimally configured PC using a math-coprocessor
or having an 80486 CPU and running the DOS or LINUX operating system. To accomplish
semantic equivalence with the well tested original FORTRAN codes, all strategies
have been translated via f2c, a Fortran-to-C converter of AT&T Bell Laboratories. All
C codes can be compiled and linked via gcc (Gnu C compiler, version 2.4). Of course,
any other ANSI C compiler such as Borland C++ that supports 4-byte-integers should produce correct results as well.

LINUX and gcc are freely available under the conditions of the GNU General Public License. Information about ordering the Gnu C compiler in the United States is available through the Free Software Foundation by calling 617 876 3296.

All C programs should compile and run on any UNIX workstation having gcc or another ANSI C compiler installed.

C.3 Running the C Programs

The following instructions are appropriate for installing and running the C programs on your PC or workstation. Installation as well as compilation and linking can be carried out automatically.

C.3.1 How to Install OptimA on a PC Using LINUX or on a UNIX Workstation

First, enter the directory where you want OptimA to be installed. Then copy the installation file via mtools by typing the command:

```
mcopy a:install.sh .
```

If you don’t have mtools, copy wb-1p?.tar from floppy to workspace and untar it. The instruction

```
sh install.sh
```

will copy the whole tree of directories from the disk to your local directory. The following directories and subdirectories will be created:

```
fortran
funct
include
lib
rstrct
strat
util
```

To compile, link, and run OptimA go to the workbench directory and type

```
make
```

to start a recursive compilation and linking of all C sources.
C.3.2 How to Install OptimA on a PC Under DOS

First, enter the directory where you want OptimA to be installed. The instruction

a: INSTALL

or

b: INSTALLB

will copy the whole tree of directories from the disk to your local directory. The same
directories and subdirectories as mentioned above will be created. To compile, link, and
run OptimA go to the workbench directory and type

 mkOptimA

to start a recursive compilation and linking of all C sources. This will take a while,
depending on how fast your machine works.

C.3.3 Running OptimA

After the successful execution of make or mkOptimA, respectively, the executable file OptimA
is located in the subdirectory bin. Here you can run the program package by issuing the
command

 OptimA

First, the program will list the available strategies. After choosing a strategy by typing
its number, a list of test problems is displayed. Type a number or continue the listing
by hitting the return key. Depending on the method and the problem, the program will
ask for the parameters to configure the strategy. Please refer to Chapter 6 and Appendix
A to choose appropriate values. Of course, you are free to define your own parameter
values, but please remember that the behavior of each strategy strongly depends on its
parameter settings.

Warnings during the process will inform the user of inappropriate parameter definitions
or abnormal program behavior. For example, the message timeout reached warns the
user that the strategy may find a better result if the user defined maximal time were set
to a larger value. The strategies COMP, EVOL, and KORR will try at most five restarts after
the first timeout occurred.

If a strategy that can process unrestricted problems only is applied to a restricted problem,
a warning will be displayed, too. After the acknowledgement of this message by hitting
the return key, the user can choose another function.

C.4 Description of the Programs

The following pages briefly describe the programs on which this package is based. A short
description of how to incorporate self-defined problem functions to OptimA follows.
The directory **FORTRAN** lists all the original codes described in the book. The reader may write his own interfaces to these programs. For further information please refer to the C sources or to Schwefel (1980, 1981).

All C source codes of the strategies have been translated from FORTRAN to C via `f2c`. Some modifications in the C sources were done to gain higher portability and to achieve a homogeneous program behavior. For example, all strategies are minimizing, use standard output functions, and perform operations on the same data types. All modifications did not change the semantics of any strategy.

To each optimization method a dialogue interface has been added. Here the strategy’s specific parameter definition takes place. In the comments within the program listings the meaning and usage of each parameter is briefly described. All names of the dialogue interfaces end with the suffix “mod.c.” The strategies together with the interfaces are listed in the directory named `strat`.

The whole catalogue of problems (see Appendix A) has been coded as C functions. They are collected in the subdirectory `funct`.

The problems 2.29 to 2.50 (see Appendix A) are restricted. Therefore, constraints functions to these problems were written and listed in directory `rstrct`. Because in some problems the number of constraints to be applied depends on the dimension of the function to be optimized, this number has to be calculated. This task is performed by the programs with prefix “rsn_.” The evaluation of the constraint itself is done in the modules with prefix “rst_.” A restriction holds if its value is negative.

All strategies perform operations on vectors of varying dimensions. Therefore a set of tools to allocate and to define vectors is compiled in the package `vecutil` which is located in the subdirectory `util`. The procedures from this package are used only in the dialogue interfaces. All other programs perform operations on vectors as if they would use arrays of arbitrary but fixed length.

The main program “**OptimA.c**” performs only initialization tasks and runs the dialogue within which the user can choose a strategy and a function number.

The strategies and functions are listed in tables, namely “**func_tab.c**” and “**strt_tab.c**.” If the user wants to incorporate new problems to OptimA the table “func_tab.c” has to be extended. This task is relatively simple for a programmer with little C knowledge if he follows the next instructions carefully.

C.4.1 How to Incorporate New Functions

The following template is typical for every function definition:

```c
#include "f2c.h"
#include "math.h"

doublereal probl_2_18(int n,doubleal *x)
```

Description of the Programs

419
{
 return(0.26*(x[0]*x[0] + x[1]*x[1])-0.48*x[0]*x[1]);
}

Please add your own function into the directory funct. Here you will find the file “func_tab.c.” Include the formal description of your problem into this table. A typical template looks like:

```
{
    5,
    rs_nm_x_x,
    restr_x_x,
    "Problem x_x (restricted problem):
    x[1]+x[2]+... ",
    probl_x_x
}
```

with the data type definition:

```c
struct functions {
    long int    dim;  /* Problem’s dimension */
    long int    (*rs_num)();  /* Calculates the number */
    doublereal (*restrictions)();  /* Constraints function */
    char*     name;  /* Mathem. description */
    doublereal (*function)();  /* Objective function */
};
```

typedef struct functions funct_t;

- The first item denotes the number of dimensions of the problem. A problem with variable dimension will be denoted by a -1. In this case the program should inquire the dimension from the user.

- The second entry denotes the function that calculates the numbers of constraints to be applied to the problem. If no constraints are needed a NULL pointer has to be inserted.

- The next line will be displayed to the user during an OptimA session. This string provides a short description of the problem, typically in mathematical notation.

- The last item is a function-pointer to the objective function.

Please do not add a new formal problem description into the func_tab behind the last table entry. The latter denotes the end of the table and should not be displaced.
To inform all problems of the new function, its prototype must be included into the header file `funcnames.h`.

As a last step the `Makefile` has to be extended. The lists `FUNCTSRCs` and `FUNCTOBJs` denote the files that make up the list of problems. These lists have to be extended by the filename of your program code.

Now step back to the directory `C` and issue the command `make` or `mkOptimA`, respectively, to compile “OptimA.”

Restrictions can be incorporated into `OptimA` like functions. Every C code from the directory `rstruct` can be taken as template. The name of the constraints function and the name of the function that calculates the number of constraints has to be included in the formal problem description.

C.5 Examples

Here two examples of how `OptimA` works in real life will be presented. The first one describes an application of the multimembered evolution strategy KORR to the corridor model (problem 2.37, function number 32). The second example demonstrates a batch run. The batch mode enables the user to apply a set of methods to a set of functions in one task.

C.5.1 An Application of the Multimembered Evolution Strategy to the Corridor Model

After calling `OptimA` and choosing problem 2.37 by typing 32, a typical dialogue will look like:

```
Multimembered evolution strategy applied to function:

Problem 2.37 (Corridor model) (restricted problem):
Sum[-x[i],{i,1,n}]
```

Please enter the parameters for the algorithm:

- Dimension of the problem : 3
- Number of restrictions : 7
- Number of parents : 10
- Number of descendants : 100
- Plus (p) or the comma (c) strategy : c
- Should the ellipsoid be able to rotate (y/n) : y

You can choose under several recombination types:
1 No recombination
2 Discrete recombination of pairs of parents
3 Intermediary recombination of pairs of parents
4 Discrete recombination of all parents
5 Intermediary recombination of all parents in pairs

Recombination type for the parameter vector : 2
Recombination type for the sigma vector : 3
Recombination type for the alpha vector : 1
Check for convergence after how many generations (> 2*Dim.) : 10
Maximal computation time in sec. : 30
Lower bound to step sizes, absolute : 1e-6
Lower bound to step sizes, relative : 1e-7
Parameter in convergence test, absolute : 1e-6
Parameter in convergence test, relative : 1e-7
Common factor used in step-size changes (e.g. 1) : 1
Standard deviation for the angles of the mutation ellipsoid (degrees) : 5.0
Number of distinct step-sizes : 3
Initial values of the variables :
0
0
0
Initial step lengths :
1
1
1

Common factor used in step-size changes : 0.408248
Individual factor used in step-size changes : 0.537285

Starting at : F(x) = 0

Time elapsed : 18.099276

Minimum found : -300.000000
at point : 99.999992 100.000000 99.999992
Current best value of population: -300.000000

C.5.2 OptimA Working in Batch Mode

OptimA also supports a batch mode option. This option was introduced to enable a user to test the behavior of any strategy by varying parameter settings automatically. Of
course, any function or method may be changed during a run, as well. The batch file that
will be processed should contain the list of input data you would type in manually during
a whole session in non-batch mode. OptimA in batch mode suppresses the listing of the
strategies and functions. That reduces the output a lot and makes it better readable.

A typical batch run looks like:

 OptimA -b < bat_file > results

With a "bat_file" like:

 8
 1
 100.100
 0.98e-6
 0.0e+0
 5
 5
 1
 1
 0.8e-6
 0.8e-6
 0.111
 0.111

the file "results" may look like:

 Method # : 8
 Function # : 1

 DFPS strategy (Variable metric) applied to function:

 Problem 2.1 (Beale):
 (1.5-x*(1-y))^2 + (2.25-x*(1-y^2))^2 + (2.625-x*(1-y^3))^2
 Dimension of the problem : 2
 Maximal computation time in sec. : 100.100000
 Accuracy required : 9.8e-07
 Expected value of the objective function at the optimum : 0
 Initial values of the variables :
 5
 5
 Initial step lengths :
 1
 1
 Lower bounds of the step lengths :
Initial step lengths for construction of derivatives:
0.111
0.111

Starting at: \(F(x) = 403069 \)

Time elapsed: 0.033332

Minimum found: 0.000000
at point: 3.000000 0.500000

Both examples have been run on a SUN SPARC S10/40 workstation.

The floppy disk included into this book may not be copied, sold, or redistributed without the permission of John Wiley & Sons, Inc., New York.
Index

Aarts, E.H.I., 161
Abadie, J., 17, 24
Abe, K., 239
Ablay, P., 163
Absolute minimum, see global minimum
Accuracy of approximation, 26, 27, 29, 32, 38, 41, 70, 76, 78, 81, 91, 92, 94, 116, 146, 167, 168, 173, 175, 206–208, 213, 214, 235
Ackley, D.H., 152
Adachi, N., 77, 81, 82
Adams, R.J., 96
Adaptation, 5, 6, 9, 100, 102, 105, 142, 147, 152
Adaptive step size random search, 96, 97, 200
AESOP program package, 68
Ahrens, J.H., 116
AID program package, 68
Aizerman, M.A., 90
Akaike, H., 66, 67, 203
Alander, J.T., 152, 246
Alekseandrov, V.M., 95
Algebra, 5, 14, 41, 69, 75, 239
Alland, A., Jr., 244
Allen, P., 102
Allometry, 243
Allowed region, see feasible region
Altman, M., 68
Amann, H., 93
Analogue computers, 12, 15, 65, 68, 89, 99, 236
Analytic optimization, see indirect optimization
Anders, U., 246
Anderson, N., 35
Anderson, R.L., 91
Andrews, H.C., 5
Andreyev, V.O., 94
Animats, 103
Anscombe, F.J., 101
Antonov, G.E., 90
Aoki, M., 23, 93
Apostol, T.M., 17
Appelbaum, J., 48
Applications, 48, 53, 64, 68, 69, 99, 151, 245–246
Approximation problems, 5, 14, see also sum of squares minimization
Archer, D.H, 48
Arrow, K.J., 17, 18, 165
Artificial intelligence, 102, 103
Artificial life, 103
Asai, K., 94
Ashby, W.R., 9, 91, 100, 105
Atmar, J.W., 151
Automata, 6, 9, 44, 48, 94, 99, 102
Avriel, M., 29, 31, 33
Awdejewa, L.I., 18
Axelrod, R., 21
Azencott, R., 161
Bach, H., 23
Bäck, T., 118, 134, 147, 151, 155, 159, 245, 246, 248
Baer, R.M., 67
Balakrishnan, A.V., 11, 18
Balas, E., 18
Balinski, M.L., 19
Banach, S., 10
Bandler, J.W., 48, 115
Banzhaf, W., 103
Bard, Y., 78, 83, 205
Barnes, G.H., 233, 239
Barnes, J.G.P., 84
Barnes, J.L., 102
Barr, D.R., 241
Barrier penalty functions (barrier methods), 16, 107
Bass, R., 81
Bauer, F.L., 84
Bauer, W.F., 93
Beale, E.M.L., 18, 70, 84, 166, 327, 346
Beamer, J.H., 26, 29, 39
Beckman, F.S., 69
Beckmann, M., 19
Behnken, D.W., 65
Beier, W., 105
Beightler, C.S., 1, 23, 27, 32, 38, 87
Bekey, G.A., 12, 65, 89, 95, 96, 98, 99
Belew, R.K., 152
Bell, D.E., 20
Bell, M., 44, 178
Bellman, R.W., 11, 38, 102
Beltrami, E.J., 87
Bendin, F., 248
Berg, R.L., 101
Berlin, V.G., 90
Berman, G., 29, 39
Bernard, J.W., 48
Bernoulli, Joh., 2
Bertram, J.E., 20
Bessel function, 129, 130
Beveridge, G.S.G., 15, 23, 28, 32, 37, 64, 65
Beyer, H.-G., 118, 134, 149, 159
Biasing, 98, 156, 174
Biggs, M.C., 76
Binary optimization, 18, 247
Binomial distribution, 7, 108, 213
Bionics, 99, 102, 105, 238
Birkhoff, G., 48
Bisection method, 33, 34
Björck, Ä., 35
Blakemore, J.W., 23
Bledsoe, W.W., 239
Blind random search, see pure random search
Blum, J.R., 19, 20
Boas, A.H., 26
Bocharov, I.N., 89, 90
Boltjanski, W.G. (Boltjanskij, V.G.), 18
Boltzmann, L., 160
Bolzano method, 33, 34, 38
Booker, L.B., 152
Booth, A.D., 67, 329
Booth, R.S., 27
Boothroyd, J., 33, 77, 178
Born, J., 118, 149
Borowski, N., 98, 240
Bossert, W.H., 146
Bourgin, P., 103
Box, G.E.P., 6, 7, 65, 69, 89, 101, 115, see also EVOP method
Box, M.J., 17, 23, 28, 51, 56–58, 61, 68, 89, 115, 174, 332, see also complex strategy
Boxing in the minimum, 28, 29, 32, 36, 41, 56, 209
Brachistochrone problem, 11
Bracken, J., 348
Brajes, S.N., 102
Bram, J., 27
Branch and bound methods, 18
Brandl, V., 93
Branin, F.H., Jr., 88
Braverman, E.M., 90
Bremermann, H.J., 100, 101, 105, 238
Brent, R.P., 23, 27, 34, 35, 74, 84, 88, 89, 174
Brocker, D.H., 95, 98, 99
Broken rational programming, 20
Bromberg, N.S., 89
Brooks, S.H., 58, 87, 89, 91–95, 100, 174
Brown, K.M., 75, 81, 84
Brown, R.R., 66
Broyden, C.G., 14, 77, 81–84, 172, 205
Broyden-Fletcher-Shanno formula, 83
Brudermann, U., 246
Brughiera, P., 88
Bryson, A.E., Jr., 68
Budne, T.A., 101
Buehler, R.J., 67, 68
Bunny-hop search, 48
Burkard, R.E., 18
Burt, D.A., 48

Calculus of observations, see observational calculus
Campbell, D.T., 102
Campey, I.G., 54, see also DSC strategy
Campos, I., 248
Canon, M.D., 18
Cantrell, J.W., 70
Carroll, C.W., 16, 57, 115
Cartesian coordinates, 10
Casey, J.K., 68, 89
Casti, J., 239
Catalogue of problems, 110, 205, 325–366
Cauchy, A., 66
Causality, 237
Céa, J., 23, 47, 68
Cembrowicz, R.G., 246
Černy, V., 160
Chambliss, J.P., 81
Chandler, C.B., 48
Chandler, W.J., 239
Chang, S.S.L., 11, 90
Charalambous, C., 115
Chatterji, B.N. and Chatterjee, B., 99
Chazan, D., 239
Chernoff, H., 75
Chichinadze, V.K., 88, 91
χ² distribution, 108
Cholesky, matrix decomposition, 14, 75
Chromosome mutations, 106, 148
Circumferential distribution, 95–97, 109
Čížek, F., 106
Clayton, D.G., 54
Clegg, J.C., 11
Cochran, W.G., 7
Cockrell, L.D., 93, 99
Cohen, A.I., 70
Cohn, D.L., 100
Collatz, L., 5
Colville, A.R., 68, 174, 175, 339
Combinatorial optimization, 152
Computational intelligence, 152
Computer-aided design (CAD), 5, 6, 23
Computers, see analogue, digital, hybrid, parallel, and process computers
Concave, see convex
Conceptual algorithms, 167
Condition of a matrix, 67, 180, 203, 242, 326
Conjugate directions, 54, 69, 74, 82, 88, 170–172, 202, see also Powell strategy
Conjugate gradients, 38, 68, 69, 77, 81, 169–172, 204, 235, see also Fletcher-Reeves strategy
Conrad, M., 103
Constraints, 8, 12, 14–18, 24, 44, 48, 49, 57, 62, 87, 90–93, 105, 107, 115, 119, 134, 150, 176, 212–214, 216, 236
Constraints, active, 17, 44, 62, 116, 118, 213, 215
Constraints satisfaction problem (CSP), 91
Contour tangent method, 39
Control theory, 9, 11, 18, 23, 70, 88, 89, 99, 112
Convergence criterion, 113–114, 145–146, see also termination of the search
Converse, A.O., 23
Convex, 17, 34, 39, 47, 66, 101, 166, 169, 236, 239
Cooper, L., 23, 38, 48, 87
Index

Coordinate strategy, 41-44, 47, 48, 67, 87, 100, 164, 167, 172, 177, 200, 202-204, 207, 209, 228-230, 233, 327, 332, 339, 340, 362, 363, see also Fibonacci division, golden section, and Lagrangian interpolation

Coordinate transformation, 241

Cornick, D.E., 70

Correlation, 118, 240, 241, 243, 246

Corridor model objective function, 110, 116, 120, 123, 124, 134-142, 215, 231, 232, 351, 352, 361, 364, 365

Cost of computation, 12, 26, 29, 39, 4, 6, 74, 89, 90, 92, 168, 170, 179, 204, 230, 232, 234, see also rate of convergence

Cottrell, B.J., 67

Courant, R., 11, 66

Covariances, 155, 204, 240, 241

Cowdrey, D.R., 93

Cox, D.R., 7

Cox, G.M., 7

Cragg, E.E., 70

Created response surface technique, 16, 57

Creeping random search, 94, 95, 99, 100, 236, 237

Crippen, G.M., 89

Criterion of merit, 2, 7

Crockett, J.B., 75

Crossover, 154

Crowder, H., 70

Cryer, C.W., 43

Cubic interpolation, 34, 37, see also Lagrangian and Hermitian interpolation

Cullum, C.D., Jr., 18

Cullum, J., 83

Curry, H.B., 66, 67

Curse of dimensions, Bellman’s, 38

Curtis, A.R., 66

Curtiss, J.H., 93

Curve fitting, 35, 64, 84, 151, 246

Cybernetics, 9, 101, 102, 322

Dambrauskas, A.P., 58, 64

Daniel, J.W., 15, 23, 68, 70

Dantzig, G.B., 17, 57, 88, 166

Darwin, C., 106, 109, 214

Davidon, W.C., 77, 81, 82, 170

Davidon-Fletcher-Powell strategy, see DFP strategy

Davidor, Y., 152

Davies, D., 23, 28, 54, 56, 57, 76, 81, see also Davies-Swann-Campey strategy

Davies, M., 84

Davies, O.L., 7, 58, 68

Davies-Swann-Campey strategy, see DSC strategy

Davis, L., 152

Davis, R.H., 70

Davis, R.S., 66, 89

Davis, S.H., Jr., 23

Day, R.G., 97

Debye series, 130

Decision theory, 94

Decision tree methods, 18

De Graag, D.P., 95, 98

De Jong, K., 152

Dekker, T.J., 34

Demyanov, V.F., 11

Denn, M.M., 11

Dennis, J.E., Jr., 75, 81, 84

Derivative-free methods, 15, 40, 80, 83, 172, 174, see also direct search strategies

Derivatives, numerical evaluation of, 19, 23, 35, 66, 68, 71, 76, 78, 81, 83, 95, 97, 170-172

Descendants, number of, 126, 142-144

Descent, theory of, 100, 109

Design and analysis of experiments, 6, 58, 65, 89

D’Esopo, D.A., 41

DeVogelaere, R., 44, 178

DFP strategy, 77-78, 83, 97, 170-172, 243
DFP-Stewart strategy, 78–81, 177, 178, 184, 189, 195, 200, 201, 209, 210, 219, 228–231, 337, 341, 343, 363, 364

Diblock search, 33
Dichotomous search, 27, 29, 33, 39
Dickinson, A.W., 93, 98, 174
Dieter, U., 116
Differential calculus, 2, 11
Digital computers, 6, 10–12, 14, 15, 32, 33, 92, 99, 110, 173, 236
Dijkhuis, B., 37
Dinkelbach, W., 17
Diplody, see parameterization
Direct optimization, 13–15, 20
Direct search strategies, 40–65, 68, 90
Directed random search, 98
Discontinuity, 13, 23, 25, 42, 88, 91, 116, 176, 211, 214, 231, 236, 341, 349
Discovery, 2
Discrete distribution, 110, 243
Discrete optimization, 11, 18, 32, 39, 44, 64, 88, 91, 108, 152, 160, 243, 247
Discrete recombination, 148, 153, 156
Discretization, see parameterization
Divergence, 35, 76, 169
Dobzhansky, T., 101
Dominance and recessiveness, 101, 106, 148
Dowell, M., 35
Draper, N.R., 7, 65, 69
Drenick, R.F., 48
Drepper, F.R., 103, 246
Drucker, H., 61
Dubovitskii, A.Ya., 11
Dueck, G., 98, 164
Duffin, R.J., 14
Dunham, B., 102
Dvoretzky, A., 20

Dynamic optimization, 7, 9, 10, 48, 64, 89–91, 94, 99, 102, 245, 248
Dynamic programming, 11, 12, 18, 149

Ebeling, W., 102, 163
Edelbaum, T.N., 13
Edelman, G.B., 103
Effectivity of a method, see robustness
Efficiency of a method, see rate of convergence
Eigen, M., 101
Eigenvalue problems, 5
Eigenvalues of a matrix, 76, 83, 326
Eisenberg, M.A., 239
Eldredge, N., 148
Elimination methods, see interval division methods
Elitist strategy, 157
Elkin, R.M., 44, 66, 67
Elliott, D.F., 83
Ellipsoid method, 166
Emad, F.P., 98
Emery, F.E., 48, 87
Engelhardt, M., 20
Engeli, M., 43
Enumeration methods, see grid method
Epigenetic apparatus, 153, 154
Equation, differential, 15, 65, 68, 93, 216, 345, 346
Equations, system of, 5, 13, 14, 23, 39, 65, 66, 75, 83, 93, 172, 235, 336
Equidistant search, see grid method
Erlicki, M.S., 48
Ermakov, S., 19
Ermoliev, Yu., 19, 90
Errors, computational, 47, 174, 205, 209, 210, 212, 219, 228, 229, 236
Euclid of Alexandria, 32
Euclidean norm, 167, 335
Euclidean space, 10, 24, 49, 97
Euler, L., 2, 15
Even block search, 27
Evolution, cultural, 244
Evolution, organic, 1, 3, 100, 102, 105, 106, 109, 142, 153, 237, 238
Evolution strategy, asynchronous parallel, 248
Evolution strategy, parallel, 248
Evolution strategy (1/5 success rule), 110, 112, 114, 116, 118, 142, 200, 213–215, 237, 349, 361
Evolution strategy (1+1), 105–119, 125, 163, 177, 185, 191, 200, 203, 212, 213, 216, 217, 228, 231–233, 328, 349, 363
Evolution strategy (1+λ), 123, 134, 145
Evolution strategy (1/λ), 145
Evolution strategy (10,100), 177, 186, 191, 200, 203, 211–215, 217, 228, 231–233
Evolution strategy (μ+1), 119
Evolution strategy (μ+λ), 119
Evolution strategy (μ,λ), 119, 145, 148, 238, 244, 248
Evolution strategy (μ,κ,λ), 247
Evolution, synthetic theory, 106
Evolutionary algorithms, 151, 152, 161
Evolutionary computation, 152
Evolutionary operation, see EVOP method
Evolutionary principles, 3, 100, 106, 118, 146, 244
Evolutionary programming, 151
Evolutionism, 244
EVOP method, 6, 7, 9, 64, 68, 69, 89, 101
Experimental optimization, 6–9, 36, 44, 68, 89, 91, 92, 95, 110, 113, 245, 247, see also design and analysis of experiments
Expert system, 248
Extreme value controller, see optimizer
Extremum, see minimum

Faber, M.M., 18
Fabian, V., 20, 90
Factorial design, 38, 58, 65, 68, 246
Faddejew, D.K. and Faddejewa, W.N., 27, 67, 240
Fagiuoli, E., 96
Falkenhausen, K. von, 246
Favreau, R.F., 95, 96, 98, 100
Feasible region, 8, 9, 12, 16, 17, 25, 101
Feasible region, not connected, 217, 239, 360
Feasible starting point, search for, 62, 91, 115
Feistel, R., 102, 163
Feldbaum, A.A., 6, 9, 88–90, 99
Fend, F.A., 48
Fiacco, A.V., 16, 76, 81, 115, see also SUMT method
Fibonacci division, 29–32, 38, 177, 178, 181, 187, 192, 200, 202
Fielding, K., 83
Finiteness of a sequence of iterations, 68, 166, 172
Finkelstein, J.J., 18
Fisher, R.A., 7
Fletcher, R., 24, 38, 68–71, 74, 77, 80–84, 97, 170, 171, 204, 205, 335, 349
Fletcher-Powell strategy, see DFP strategy
Fletcher-Reeves strategy, 69, 70, 78, 170–172, 204, 233, see also conjugate gradients
Flood, M.M., 68, 89
Floudas, C.A., 91
Fogarty, L.E., 68
Fogel, D.B., 151
Fogel, L.J., 102, 105, 151
Forrest, S., 152
Forsythe, G.E., 34, 66, 67
Fox, R.L., 23, 34, 205
Frankhauser, P., 246
Franković, B., 9
Franks, R., 95, 96, 98, 100
Fraser, A.S., 152
Friedberg, R.M., 102, 152
Friedmann, M., 41
Fu, K.S., 94, 99
Function space, 10
Functional analysis theory, 11
Functional optimization, 10-12, 15, 23,
54, 68, 70, 85, 89, 90, 151, 174
Fürst, H., 98

Gaede, K.W., 8, 108, 144
Gaidukov, A.L., 98
Gal, S., 31
Galar, R., 102
Game theory, 5, 6, 20
Garfinkel, R.S., 18
Gauss, C.F., 41, 84
Gauss-Newton method, 84
Gauss-Seidel strategy, see coordinate
strategy
Gaussian approximation, see sum of
squares minimization
Gaussian distribution, see normal distri-
bution
Gaussian elimination, 14, 75, 172
Gaviano, M., 96
Gelatt, C.D., 160
Gelfand, I.M., 89
Gene duplication and deletion, 247
Gene pool, 146, 148
Generalized least squares, 84
Genetic algorithms, 151-160
Genetic code, 153, 154, 243
Genotype, 106, 152, 153, 157
Geoffrion, A.M., 24
Geometric programming, 14
Gérardin, I., 105
Gersht, A.M., 90
Gessner, P., 11
Gibson, J.F., 88, 90
Gilbert, E.G., 68, 89
Gilbert, H.D., 90, 98
Gilbert, P., 239
Gill, P.E., 81
Ginsburg, T., 43, 69

Girsanov, I.V., 11
Glass, H., 48, 87
Glaß, K., 105
Glatt, C.R., 68
Global convergence, 39, 88, 94, 96, 98,
117, 118, 149, 216, 217, 238, 239
Global minimum, 24-26, 90, 168, 329, 344,
348, 356, 357, 359, 360
Global optimization, 19, 29, 81, 88-91,
236, 244
Global penalty function, 16
Glover, F., 162, 163
Gnedenko, B.W., 137
Goldberg, D.E., 152, 154
Golden section, 32, 33, 177, 178, 181, 187,
192, 200, 202
Goldfarb, D., 81
Goldfeld, S.M., 76
Goldstein, A.A., 66, 67, 76, 81, 88
Goliński, J., 92
Goll, R., 244
Golub, G.H., 57, 84
Gomory, R.E., 18
Gonzalez, R.S., 95
Gorges-Schleuter, M., 159, 247
Gorvits, G.G., 174
GOSPEL program package, 68
Goto, K., 82
Gottfried, B.S., 23
Gould, S.J., 148
Gradient strategies, 6, 15, 19, 37, 40, 65-
69, 88-90, 94, 95, 98, 166, 167,
171, 172, 174, 235
Gradient strategies, second order, see
Newton strategies
Gradstein, I.S., 136
Gram-Schmidt orthogonalization, 48, 53,
54, 57, 69, 177, 178, 183, 188, 194,
201, 202, 209, 229, 230, 362
Gran, R., 88
Graphical methods, 20
Grassé, P.P., 243
Grassmann, P., 100
Grauer, M., 20
Graves, R.L., 23
Great deluge algorithm, 164
Greedy algorithm, 162, 218
Greenberg, H., 18
Greenberg, H.-J., 162
Greenstadt, J., 70, 76, 81, 83, 326
Grefenstette, J.J., 152
Grid method, 12, 26, 27, 32, 38, 39, 65, 92, 93, 100, 149, 168, 236
GROPE program package, 68
Guilfoyle, G., 38
Guin, J.A., 64
Gurin, I.S., 89, 97, 98

Hadamard, J., 66
Hadley, G., 12, 17, 166
Haeckel strategy, 163
Haefner, K., 103
Hague, D.S., 68
Haines, Y.Y., 10
Hamilton, P.A., 77
Hamilton, W.R., 15
Hammel, U., 245, 248
Hammer, P.L., 19
Hammersley, J.M., 93
Hamming cliffs, 154, 155
Hancock, H., 14
Handscomb, D.C., 93
Hansen, P.B., 239
Haploidy, 148
Harkins, A., 89
Harmonic division, 32
Hartmann, D., 151, 246
Haubrich, J.G.A., 68
Heckler, R., 246, 248
Heidemann, J.C., 70
Heinhold, J., 8, 108, 144
Hemstitching, 16
Henn, R., 20
Herdy, M., 164
Hermitian interpolation, 37, 38, 69, 77, 88
Herschel, R., 99
Hertel, H., 105

Hesse, R., 88
Hessian matrix (Hesse, L.O.), 13, 69, 75, 169, 170
Hestenes, M.R., 11, 14, 69, 70, 81, 172
Heuristic methods, 7, 18, 40, 88, 91, 98, 102, 162, 173
Heusener, G., 245
Hext, G.R., 57, 58, 64, 68, 89
Heydt, G.T., 93, 98, 99
Heynert, H., 105
Hilbert, D., 10, 11
Hildebrand, F.B., 66
Hill climbing strategies, 23ff, 85, 87
Hill, I.D., 33, 178
Hill, J.C., 88, 90
Hill, J.D., 94
Himmelblau, D.M., 23, 48, 81, 87, 174, 176, 229, 339
Himsworth, F.R., 57, 58, 64, 68, 89
History vector method, 98
Hit-or-miss method, 93
Ho, Y.C., 68
Hock, W., 174
Hodáňová, D., 106
Hoffmann, U., 23, 74
Hoffmeister, F., 151, 234, 246, 248
Höfler, A., 151, 246
Hofmann, H., 23, 74
Holland, J.H., 105, 152, 154
Hollstien, R.B., 152
Holst, W.R., 67
Homeostat, 9, 91, 100
Hoo, S.K., 88
Hooke, R., 44, 87, 90, 92
Hooke-Jeeves strategy, 44–48, 87, 90, 177, 178, 182, 188, 193, 200, 202, 210, 228, 230, 233, 332, 339
Hopper, M.J., 178
Horner, computational scheme of, 14
Horst, R., 91
Hoshino, S., 57, 81
Hotelling, H., 36
House, F.R., 77
Householder, A.S., 27, 75
Householder method, 57
Houston, B.F., 48
Howe, R.M., 68
Hu, T.C., 18
Huang, H.Y., 70, 78, 81, 82
Huberman, B.A., 103
Huelsman, L.P., 68
Huffman, R.A., 48
Hull, T.E., 93
Human brain, 6, 102
Humphrey, W.E., 67
Hunter, J.S., 65
Hupfer, P., 92, 94, 98
Hurwicz, L., 17, 18, 165
Hutchinson, D., 61
Hwang, C.L., 20
Hybrid computers, 12, 15, 68, 89, 99, 236
Hybrid methods, 38, 162-164, 169
Hyperplane annealing, 162
Hyslop, J., 206
Idelsohn, J.M., 93, 94
Illiac IV, 239
Imamura, H., 89
Indirect optimization, 13-15, 27, 35, 75, 170, 235
Indusi, J.P., 87
Infimum, 9
Information theory, 5
Integer optimization, 18, 247
Interior point method, 166
Intermediary recombination, 148, 153, 156
Interpolation methods, 14, 27, 33-38
Interval division methods, 27, 29-33, 41
Invention, 2
Inverse Hessian matrix, 77, 78
Inversion of a matrix, 76, 170, 175
Isolation, 106, 244
Iterative methods, 11, 13
Ivakhnenko, A.G., 102
Jacob, C.G.J., 15
Jacobi method, 65, 326
Jacobian matrix, 16, 84
Jacobson, D.H., 12
Jacoby, S.I.S., 23, 67, 174
James, F.D., 33, 178
Janáč, K., 90
Jarrett, P., 34, 35, 84
Jarvis, R.A., 91, 93, 94, 99
Jeeves, T.A., 44, 84, 87, 90, 92, see also Hooke-Jeeves strategy
Johannsen, G., 99
John, F., 166
John, P.W.M., 7
Jöhnk, M.D., 115
Johnson, I., 38
Johnson, M.P., 81
Johnson, S.M., 31, 32
Jones, A., 84
Jones, D.S., 81
Jordan, P., 109
Kamya, A., 100
Kammerer, W.J., 70
Kantorovich, L.V., 66, 67
Kaplan, J.I., 64
Kaplinskii, A.I., 90
Kappler, H., 18, 166
Karmarkar, N., 166, 167
Karnopp, D.C., 93, 94, 96
Karp, R.M., 239
Karplus, W.I., 12, 89
Karr, C.L., 160
Karreman, H.F., 11
Karumidze, G.V., 94
Katkovnik, V.Ya., 88, 90
Kaupe, A.F., Jr., 39, 44, 178
Kavanaugh, W.P., 95, 98, 99
Kawamura, K., 70
Keeney, R.E., 20
Kelley, H.J., 15, 68, 70, 81
Kempthorne, O., 7, 67, 68
Kenworthy, I.C., 69
Kesten, H., 20
Kettler, P.C., 82, 83
Khachiyan, L.G., 166, 167
Khovanov, N.V., 96, 102
Index

Khourgin, Ya.I., 89
Kiefer, J., 19, 29, 31, 32, 178
Kimura, M., 239
King, R.F., 35
Kirkpatrick, S., 160
Kitajima, S., 94
Kivelidi, V.Kh., 89
Kiwiel, K.C., 19
Kjellström, G., 98
Klerer, M., 24
Klessig, R., 15, 70
Klimenko, E.S., 94
Klingman, W.R., 48, 87
Klockgether, J., 7, 245
Klötzler, R., 11
Kobelt, D., 246
Koch, H.W., 244
Kopp, R.E., 18
Korbut, A.A., 18
Korn, G.A., 12, 24, 89, 93, 99
Korn, T.M., 12, 89
Korst, J., 161
Kosako, H., 99
Kovács, Z., 80, 179
Kowalik, J.S., 23, 42, 67–69, 84, 174, 334, 335, 345
Koza, J., 152
Krallmann, H., 246
Krasnushkin, E.V., 99
Krasovskii, A.A., 89
Krasulina, T.P., 20
Krauter, G.E., 246
Kregting, J., 93
Krelle, W., 17, 18, 166
Krolak, P.D., 38
Kuester, J.L., 18, 58, 179
Kuhn, H.W., 17, 166
Kuhn-Tucker theorem, 17, 166
Kulchitskii, O.Yu., 90
Kumar, K.K., 160
Künzi, H.P., 17, 18, 20, 166
Kursawe, F., 102, 148, 245, 248
Kushner, H.J., 20, 90
Kussul, E., 101
Kwakernaaak, H., 89
Kwasnicka, H. and Kwasnicki, W., 102
Kwatny, H.G., 90
Laarhoven, P.J.M. van, 161
Lagrange multipliers, 15, 17
Lagrange, J.L., 2, 15
Lagrangian interpolation, 27, 35–37, 41, 56, 64, 73, 80, 89, 101, 177, 182, 187, 193, 200, 202
Lam, L.S.-B., 100
Lance, G.M., 54
Land, A.H., 18
Lange-Nielsen, T., 54
Langguth, V., 89
Langton, C.G., 103
Lapidus, L., 68
Larichev, O.I., 174
Larson, R.E., 239
Lasdon, L.S., 70
Lattice search, see grid method
Laußermair, T., 162
Lavi, A., 23, 48, 93
Lawler, E.L., 160
Lawrence, J.P., 87, 98
Learning (and forgetting), 9, 54, 70, 78, 98, 101, 103, 162, 236
Least squares method, see sum of squares minimization
LeCam, L.M., 102
Lee, R.C.K., 11
Lehner, K., 218
Leibniz, G.W., 1
Leitmann, G., 11, 18
Lemarechal, C., 19
Leon, A., 68, 89, 174, 337, 356
Leonardo of Pisa, 29
Lerner, A.Ja., 11
Leśniak, Z.K., 92
Lethal mutation, 115, 136, 137, 158
Levenberg, K., 66, 84
Levenberg-Marquardt method, 84
Levine, L., 65
Levine, M.D., 10
Levy, A.V., 70, 78, 81
Lew, A.Y., 96
Lew, H.S., 100
Lewallen, J.M., 174
Lewandowski, A., 20
Leyfner, U., 151, 246
Lilienthal, O., 238
Lill, S.A., 80, 178, 179
Lindenmayer, A., 103
Line search, 25–38, 42, 54, 66, 70, 71, 77, 89, 101, 167, 170, 171, 173, 180, 214, 228, see also interval division and interpolation methods
Linear convergence, 34, 168, 169, 172, 173, 236, 365
Linear model objective function, 96, 124–127
Linear programming, 17, 57, 88, 100, 101, 151, 166, 212, 235, 353
Little, W.D., 93, 244
Lobac, V.P., 89
Local minimum, 13, 23–26, 88, 90, 329
Locker, A., 102
Log-normal distribution, 143, 144, 150
Loginov, N.V., 90
Lohmann, R., 164
Long step methods, 66
Longest step procedure, 66
Lootsma, F.A., 24, 81, 174
Lowe, C.W., 69, 101
Lucas, E., 32
Luce, A.D., 21
Luenberger, D.G., 18
Luk, A., 101
Lyvers, H.I., 16
MacDonald, J.R., 84
MacDonald, P.A., 48
Machura, M., 54, 179
MacLane, S., 48
MacLaurin, C., 13
Madsen, K., 35
Mamen, R., 81
Manderick, B., 152
Mandischer, M., 160
Mangasarian, O.L., 18, 24
Männer, R., 152
Mafeld, A.F., 6
Markwich, P., 246
Marquardt, D.W., 84
Marti, K., 118
Masters, C.O., 61
Masud, A.S.M., 20
Mathematical biosciences, 102
Mathematical optimization, 6–9
Mathematical programming, 15–17, 23, 85, see also linear, quadratic, and non-linear programming
Mathematization, 102
Matthews, A., 76, 81
Matyas, J., 97–99, 240, 338
Maximum likelihood method, 8
Maximum, see minimum
Maybach, R.L., 97
Mayne, D.Q., 12, 81
Maze method, 44
McArthur, D.S., 92, 94, 98
McCormick, G.P., 16, 67, 70, 76, 78, 81, 82, 88, 115, 348, see also SUMT method
McGhee, R.B., 65, 68, 89, 93
McGlade, J.M., 102
McGrew, D.R., 10
McGuire, M.R., 239
McMillan, C., Jr., 18
McMurtry, G.J., 94, 99
Mead, R., 58, 84, 97, see also simplex strategy
Medvedev, G.A., 89, 99
Meerkov, S.M., 94
Meissinger, H.F., 99
Meliorization, 1
Memory gradient method, 70
Meredith, D.L., 160
Merzenich, W., 101
Metropolis, N., 160
Meyer, J.-A., 103
Michalewicz, Z., 152, 159
Michel, A.N., 70
Michie, D., 102
Mickey, M.R., 58, 89, 95
Midpoint method, 33
Miele, A., 68, 70
Mifflin, R., 19
Migration, 106, 248
Miller, R.E., 239
Millstein, R.E., 239
Milyutin, A.A., 11
Minima and maxima, theory of, see optimality conditions
Minimax concept, 26, 27, 31, 34, 92
Minimum, 8, 13, 16, 24, 36
Minimum χ^2 method, 8
Minot, O.N., 102
Minsky, M., 102
Miranker, W.L., 233, 239
Missing links, 1
Mitchell, B.A., Jr., 99
Mitchell, R.A., 64
Mixed integer optimization, 18, 164, 243
Mize, J.H., 18
Mlynski, D., 69, 89
Mockus, J.B., see Motskus, I.B.
Model, internal (of a strategy), 9, 10, 28, 38, 41, 90, 169, 204, 231, 235–237
Model, mathematical (of a system), 7, 8, 65, 68, 160, 235
Modified Newton methods, 76
Moler, C., 87
Moment rosetta search, 48
Monro, S., 19
Monte-Carlo methods, 92–94, 109, 149, 160, 168
Moran, P.A.P., 101
Moré, J.J., 81, 179
Morgenstern, O., 6
Morrison, D.D., 84
Morrison, J.F., 334
Motskus, I.B., 88, 94
Motzkin, T.S., 67
Movshovich, S.M., 96
Mufti, I.H., 18
Mugele, R.A., 44
Mühlbein, H., 163
Mulawa, A., 54, 179
Muller, M.E., 115
Müller, P.H., 98
Müller-Merbach, H., 17, 166
Multicellular individuals, 247
Multidimensional optimization, 2, 38ff, 85
Multimembered evolution strategy, 101, 103, 118–151, 153, 158, 235–248, 329, 333, 335, 344, 347, 355–357, 359, 360, 362, 363, 365, 366, 375, 413, see also evolution strategy (μ, λ) and $(\mu+\lambda)$
Multimodality, 12, 24, 85, 88, 157, 159, 239, 245, 248
Multiple criteria decision making (MCDM), 2, 20, 148, 245
Munson, J.K., 95
Murata, T., 44
Murray, W., 24, 76, 81, 82
Murtagh, B.A., 78, 82
Mutation, 3, 100–102, 106–108, 154, 155, 237
Mutation rate, 100, 101, 154, 237
Mutator genes, 142, 238
Mutseniyeks, V.A., 99
Myers, G.E., 70, 78, 81
Nabla operator, 13
Nachtigall, W., 105
Nag, A., 58
Nake, F., 49
Narendra, K.S., 94
Nashed, M.Z., 70
Neave, H.R., 116
Neighborhood model, 247
Nelder, J.A., 58, 84, 97
Nelder-Mead strategy, see simplex strategy
Nemhauser, G.L., 18
Nenonen, L.K., 70
Network planning, 20
Neumann, J. von, 6
Neustadt, L.W., 11, 18
Newman, D.J., 39
Newton, I., 2, 14
Newton direction, 70, 75–77, 84
Newtonian interpolation, 27, 35
Newton-Raphson method, 35, 75, 76, 97, 167, 169–171
Newton strategies, 40, 71, 74–85, 89, 171, 235
Neyman, J., 102
Niching, 100, 106, 238, 248
Nicholls, R.L., 23
Nickel, K., 168
Niederreiter, H., 115
Niemann, H., 5
Nikolić, Ž.J., 94
Nissen, V., 103
Nollau, V., 98
Non-linear programming, 17, 18, 166
Non-smooth or non-differentiable optimization, 19
Nonstationary optimum, 248
Norkin, K.B., 88
North, J.H., 102
North, M., 246
Numerical mathematics, 5, 27, 239
Numerical optimization, see direct optimization
Nurminski, E.A., 19
Objective function, 2, 8
Observational calculus, 5, 7
Odd block search, 27
Odell, P.L., 20
Oettli, W., 18, 167
O’Hagan, M., 48, 87
Oi, K., 82
Oldenburger, R., 9
Oliver, L.T., 31
One dimensional optimization, 25–38, see also line search
One step methods, see relaxation methods
O’Neill, R., 58, 179
Ontogenetic learning, 163
Opačić, J., 88
Operations research, 5, 17, 20
Optimal control, see control theory
Optimality conditions, 2, 13–15, 23, 167ff, 235
Optimality of organic systems, 99, 100, 105
Optimization, prerequisites for, 1
Optimization problem, 2, 5–8, 14, 20, 24
Optimizer, 9, 10, 48, 99, 248
Optimum, see minimum
Optimum, maintaining (and hunting), see dynamic optimization
Optimum gradient method, 66
Optimum principle of Bellman, 11, 12
Oren, S.S., 82
Ortega, J.M., 5, 27, 41, 42, 82, 84
Orthogonalization, see Gram-Schmidt and Palmer orthogonalization
Osborne, M.R., 23, 42, 68, 69, 84, 174, 335, 345
Osche, G., 106, 119
Ostermeier, A., 118
Ostrowski, A.M., 34, 66
Overadaptation, 148
Overholt, K.J., 31–33, 178
Overrelaxation and underrelaxation, 43, 67
Owens, A.J., 102, 105, 151
Page, S.E., 155
Pagurek, B., 70
Palmer, J.R., 57, 178
Palmer orthogonalization, 57, 177, 178, 183, 188, 194, 202, 209, 230
Papageorgiou, M., 23
Papenten, F., 102
Parallel computers, 161, 163, 234, 239, 243, 245, 247, 248
Parameter optimization, 6, 8, 10–13, 15, 16, 20, 23, 105
Parameterization, 15, 151, 346
Pardalos, P.M., 91
Pareto-optimal, 20, 245
Parkinson, J.M., 61
Partan (parallel tangents) method, 67–69
Pask, G., 101
Path-oriented strategies, 98, 160, 236, 248
Patrick, M.L., 239
Pattern recognition, 5
Pattern search, see Hooke-Jeeves strategy
Paviani, D.A., 87
Pearson, J.D., 38, 70, 76, 78, 81, 82, 205
Peckham, G., 84
Penalty function, 15, 16, 48, 49, 57, 207
Perceptron, 102
Peschel, M., 20
Peters, E., 163, 218
Peterson, E.L., 14
Phenotype, 106, 153–155, 157, 158
Pierre, D.A., 23, 48, 68, 95
Pierson, B.L., 82
Pike, M.C., 33, 44, 178
Pincus, M., 93
Pinkham, R.S., 93
Pinkser, I.Sh., 44
Pixner, J., 33, 178
Pizzo, J.T., 23, 67, 174
Plane, D.R., 18
Plaschko, P., 151, 246
Pleiotropy, 243
Pluznikov, L.N., 94
Polak, E., 15, 18, 70, 76, 77, 167, 169
Policy, 11
Polyak, B.T., 70
Polygeny, 243
Polyhedron strategies, see simplex and complex strategies
Ponstein, J., 17
Pontrjagin, L.S., 18
Poor man’s optimizer, 44
Population principle, 101, 119, 238
Posynomes, 14
Powell, D.R., 84
Powell, M.J.D., 57, 70, 71, 74, 77, 82, 84, 88, 97, 170, 202, 205, 335, 337, 349, see also DFP, DFP-Stewart, and Powell strategies
Powell, S., 18
Poznyak, A.S., 90
Practical algorithms, 167
Predator-prey model, 247
Press, W.H., 115
Price, J.F., 76, 81, 88
Probabilistic automaton, 94
Problem catalogue, see catalogue of problems
Process computers, 10
Projected gradient method, 57, 70
Proofs of convergence, 42, 47, 66, 77, 97, 167, 168
Propoi, A.I., 90
Prusinkiewicz, P., 103
Pseudo-random numbers, see random number generation
Pugachev, V.N., 95
Pugh, E.L., 89
Pun, L., 23
Punctuated equilibrium, 148
Pure random search, 91, 92, 100, 237
Q-properties, 169, 170, 172, 179, 243
Quadratic convergence, 68, 69, 74, 76, 78, 81–83, 168, 169, 200, 202, 236
Quadratic interpolation, see Lagrangian and Hermitian interpolation
Quadratic programming, 166, 233, 235
Quandt, R.E., 76
Quasi-Newton method, 37, 70, 76, 83, 89, 170, 172, 205, 233, 235, see also DFP and DFP-Stewart strategies
Rabinowitz, P., 84
Raiffa, H., 20, 21
Rajtora, S.G., 82
Ralston, A., 27
Random direction, 20, 88, 90, 98, 101, 202
Random evolutionary operation, see REVOP method
Random exchange step, 88, 166
Random number generation, 115, 150, 210, 212, 217, 237
Random sequence, 87, 93
Random step length, 95, 96, 108
Random strategies, 3, 12, 19, 87–103, 105, 240
Random walk, 247
Randomness, 87, 91, 93, 237
Rank one methods, 82, 83, 172
Raphson, J., see Newton-Raphson method
Rappl, G., 118
Raster method, see grid method
Rastrigin, L.A., 93, 95, 96, 98, 99
Rate of convergence, 7, 38, 39, 64, 66, 67, 69, 90, 94–98, 101, 110, 118, 120–141, 167–169, 197–204, 217–232, 234, 236, 239, 240, 242, see also linear and quadratic convergence
Rauch, S.W., 82
Rawlins, G.J.E., 152
Rayleigh-Ritz method, 15
Razor search, 48
Rechenberg, I., 6, 7, 97, 100, 105, 107, 118–120, 130, 142, 149, 164, 168, 172, 179, 231, 238, 245, 352
Recognition processes, 102
Reeves, C.M., 38, 69, 93, 170, 201, see also Fletcher-Reeves strategy
References, 249–323
Regression, 8, 19, 84, 235, 246
Regression, non-linear, 84
Regula falsi (falsorum), 27, 34, 35, 39
Reid, J.K., 66
Rein, H., 100
Reinsch, C., 14
Relative minimum, 38, 42, 43, 66, 209
Relaxation methods, 14, 20, 41, 172, see also coordinate strategy
Reliability, see robustness
Repair enzymes, 142, 238
Replicator algorithm, 163
Restart of a search, 61, 67, 70, 71, 88, 89, 169, 201, 202, 205, 210, 219, 228–230, 362, 364
REVOP method, 101
Reynolds, O., 238
Rhead, D.G., 74
Rheinboldt, W.C., 5, 27, 41, 42, 82, 84
Ribière, G., 70, 82
Rice, J.R., 57
Richardson, D.W., 155
Richardson, J.A., 58, 179
Richardson, M., 239
Riding the constraints, 16
Riedl, R., 102, 153
Ritter, K., 24, 70, 82, 88, 168
Rivlin, L., 48
Robbins, H., 19
Roberts, P.D., 70
Roberts, S.M., 16
Robots, 6, 9, 103
Robustness, 3, 13, 34, 37–39, 53, 61, 64, 70, 90, 94, 118, 178, 204–217, 236, 238
Rockoff, M.L., 41
Rodloff, R.K., 246
Rogson, M., 100
Roitblat, H., 103
Rosen, J.B., 18, 24, 57, 91, 352
Rosen, R., 100
Rosenblatt, F., 102
Rosenbrock, H.H., 23, 29, 48, 50, 54, 343, 349
Rosenbrock strategy, 16, 48–54, 64, 177, 179, 184, 190, 196, 201, 202, 207, 209, 212, 213, 216, 228, 230–232, 357, 363, 365, 366
Rosenman, E.A., 11
Ross, G.J.S., 84
Rotating coordinates method, see Rosenbrock and DSC strategies
Rothe, R., 25
Roughgarden, J.W., 102
Rounding error, see accuracy of computation
Rozonoer, L.I., 90
Rozvany, G., 247
Ruban, A.I., 99
Rubin, A.I., 95
Rubinov, A.M., 11
Rudd, D.F., 98, 356
Rudelson, L.Ye., 102
Rudolph, G., 91, 118, 134, 151, 154, 161, 162, 241, 243, 248
Rustay, R.C., 68, 89
Rutishauser, H., 5, 41, 43, 48, 65, 75, 172, 326
Rybashov, M.V., 68
Ryshik, I.M., 136
Saaty, T.L., 20, 27, 166
Sacks, J., 20
Saddle point, 13, 14, 17, 23, 25, 35, 36, 39, 66, 76, 88, 168, 176, 209, 211, 345
Salaff, S., 100
Sameh, A.H., 239
Samuel, A.I., 102
Sargen, R.W.H., 78, 82
Saridis, G.N., 90, 98
Satterthwaite, F.E., 98, 101
Saunders, M.A., 57
Savage, J.M., 119
Savage, L.J., 41
Sawaragi, Y., 48
Sayama, H., 82
Scaling of the variables, 7, 44, 54, 58, 74, 146-148, 232, 239
Schaffer, J.D., 152
Schechter, R.S., 15, 23, 28, 32, 37, 41-43, 64, 65
Scheffer, L., 14
Scheel, A., 118
Schema theorem, 154
Scheraga, H.A., 89
Scheuer, E.M., 241
Scheuer, T., 98, 164
Schinzinger, R., 67
Schittkowski, K., 174
Schley, C.H., Jr., 70
Schlierkamp-Voosen, D., 163
Schmalhausen, I.I., 101
Schmetterer, L., 90
Schmidt, E., see Gram-Schmidt orthogonalization
Schmidt, J.W., 35, 39
Schmitt, E., 20, 90
Schmutz, M., 103
Schneider, G., 246
Schneider, M., 100
Schrack, G., 98, 240
Schumer, M.A., 89, 93, 96-99, 101, 200, 240
Schuster, P., 101
Schwarz, H.R., 5, 41, 65, 75, 172, 326
Schwefel, D., 246
Schwefel, H.-P., 7, 102, 103, 118, 134, 148, 151, 152, 155, 163, 204, 234, 239, 242, 245-248
Schwetlick, H., 39
Scott, E.L., 102
Sebald, A.V., 151
Sebastian, D.J., 82
Sebastian, H.-J., 24
Secant method, 34, 39, 84
Second order gradient strategies, see Newton strategies
Sectioning algorithms, 14
Seidel, P.L., 41, see also coordinate strategy
Selection, 3, 100-102, 106, 142, 153, 157
Sensitivity analysis, 17
Separable objective function, 12, 42
Sequential methods, 27ff, 38ff, 88, 237
Sequential unconstrained minimization technique, see SUMT method
Sergiyevskiy, G.M., 69
Sexual propagation, 3, 101, 106, 146, 147
Shah, B.V., 67, 68
Shanno, D.F., 76, 82–84
Shapiro, I.J., 94
Shedler, G.S., 239
Shemenev, V.V., 95
Shimelevich, L.L., 88
Shimizu, T., 92
Shindo, A., 64
Short step methods, 66
Shrinkage random search, 94
Shubert, B.O., 29
Sigmund, K., 21
Silverman, G., 84
Simplex method, see linear programming
Simplex strategy, 57–61, 64, 84, 89, 97, 177, 179, 184, 190, 196, 201, 202, 208, 210, 228–231, 341, 361–364
Simplex, 17, 58, 353
Simulated annealing, 160–162
Simulation, 13, 93, 102, 103, 152, 245, 246
Simultaneous methods, 26–27, 92, 168, 237
Singer, E., 44
Single step methods, see relaxation methods
Singularity, 70, 74, 78, 82, 205, 209
Sirisena, H.R., 15
Slagle, J.R., 102
Slezak, N.L., 241
Smith, C.S., 54, 71, 74
Smith, D.E., 174
Smith, F.B., Jr., 84
Smith, J. Maynard, 21, 102
Smith, L.B., 44, 178
Smith, N.H., 98, 356
Soeder, C.-J., 103
Somatic mutations, 247
Sondak, N.E., 66, 89
Sonderquist, F.J., 48
Sorenson, H.W., 68, 70
Southwell, R.V., 20, 41, 43, 65
Spang, H.A., 93, 174
Späth, H., 84
Spears, W., 152
Spedicato, E., 82
Spendley, W., 57, 58, 61, 64, 68, 84, 89
Speyer, J.L., 70
Sphere model objective function, 110, 117, 120, 123, 124, 127–134, 142, 173, 179, 203, 215, 325, 338
Spider method, 48
Sprave, J., 247, 248
Spremann, K., 11
Stagnation, 47, 58, 61, 64, 67, 87, 88, 100, 157, 201, 205, 238, 341
Standard deviation, see variance
Stanton, E.L., 34
Stark, R.M., 23
Static optimization, 9, 10
Stebbins, G.L., 106
Steepest descent/ascent, 66–68, 166, 169, 235
Steiglitz, K., 87, 96, 98, 99, 101, 200, 240
Stein, M.L., 14, 67
Steinberg, D., 23
Steinbuch, K., 6
Stender, J., 152
Step length control, 110–113, 142–145, 168, 172, 237, see also evolution strategy, 1/5 success rule
Steuer, R.E., 20
Stewart, E.C., 95, 98, 99
Stewart, G.W., 78, 84, see also DFP-Stewart strategy
Stiefel, E., 5, 41, 43, 65, 67, 69, 75, 172, 326
Stochastic approximation, 19, 20, 64, 83, 90, 94, 99, 236
Stochastic optimization, 18
Stochastic perturbations, 9, 20, 36, 58, 68, 69, 89, 91, 92, 94, 95, 97, 99, 236, 245
Stoer, J., 18
Stoller, D.S., 241
Stolz, O., 14
Stone, H.S., 239
Storage requirement, 47, 53, 57, 180, 232–234, 236
Storey, C., 23, 50, 54
Strategy, 2, 6, 100
Strategy comparison, 57, 64, 68, 71, 78, 80, 83, 84, 92, 97, 165–234
Strategy parameter, 144, 204, 238, 240–242
Stratonovich, R.L., 90
Strong minimum, 24, 328, 333
Strongin, R.G., 94
Structural optimization, 247
Struggle for existence, 100, 106
Suboptimum, 15
Subpopulations, 248
Success/failure routine, 29
Suchowitzki, S.I., 18
Sugie, N., 38
Sum of squares minimization, 5, 83, 331, 335, 346
SUMT method, 16
Supremum, 9
Sutti, C., 88
Suzuki, S., 352
Svechinskii, V.B. (Svečinskij, V.B.), 90, 102
Swann, W.H., 23, 28, 54, 56, 57, see also DSC strategy
Sweschnikow, A.A., 137
Swörder, D.D., 83
Sydow, A., 68
Sylvester, criterion of, 240
Synge, J.L., 44
Sysoyev, V.V., 95
Szegö, G.P., 21, 70, 88

Tabak, D., 18, 78, 82
Tabu search, 162–164
Tabulation method, see grid method
Takamatsu, T., 82
Talkin, A.I., 68
Tammer, K., 24
Tan, S.T., 17
Tapley, B.D., 174
Taran, V.A., 94
Taylor, G., 84
Taylor series (Taylor, B.), 75, 84
Tazaki, E., 64
Tchebycheff approximation (Tschebyschow, P.L.), 5, 331, 370
Termination of the search, 35, 38, 49, 51, 59, 64, 67, 71, 96, 113, 114, 117, 145, 146, 150, 167, 168, 175, 176, 180, 212, 238
Ter-Saakov, A.P., 69
Theodicee, 1
Theory of maxima and minima, 11
Thom, R., 102
Thomas, M.E., 20
Three point scheme, 29
Threshold strategy, 98, 164
Tietze, J.L., 70
Timofejew-Ressowski, N.W., 101
Todd, J., 326
Togawa, T., 100
Tokumaru, H., 82
Tolle, H., 18, 68
Tomlin, F.K., 44, 178
Törn, A., 91
Total step procedure, 65
Toystuchta, T.I., 89
Trabattoni, L., 88
Trajectory optimization, see functional optimization
Traub, J.F., 14, 27
Travelling salesman problem (TSP), 159, 161
Treccani, G., 70, 88
Trial and error, 13, 41
Trial polynomial, 27, 33–35, 37, 68, 235
Trinkaus, H.F., 35
Trotter, H.F., 76
Tschebyschow, P.L., see Tchebycheff approximation
Tse, E., 239
Tseitlin, B.M., 44
Tsetlin, M.I., 89
Tsypkin, Ya.Z., 6, 9, 89, 90
Tucker, A.W., 17, 166
Tui, H., 88
Turning point, see saddle point
Two membered evolution strategy, 97, 101, 105–118, 172, 238, 329, 352, 357, 359, 363, 366, 367, 374, see also evolution strategy (1+1)
Tzschach, H.G., 18

Ueing, U., 88, 358, 359
Umeda, T., 64
Unbehauen, H., 18
Uncertainty, interval of, 26–28, 32, 39, 92, 180
Uniform distribution, 91, 92, 95, 115
Unimodality, 24, 27, 28, 39, 168, 236
Uzawa, H., 18

Vagin, V.N., 102
Vajda, S., 7, 18
Vanderplaats, G.N., 23
VanNice, R.I., 44
VanNorton, R., 41
Varah, J.M., 68
Varela, F.J., 103
Varga, J., 18
Varga, R.S., 43
Variable metric, 70, 77, 83, 169–172, 178, 233, 242, 243, 246, see also DFP and DFP-Stewart strategies
Variables, 2, 8, 11
Variance analysis, 8
Variance ellipse, 109
Variance methods, 82
Variational calculus, 2, 11, 15, 66
Vaysbord, E.M., 90, 94, 99
Vecchi, M.P., 160
Venter, J.H., 20
Vetters, K., 39
Vilis, T., 10
Viswanathan, R., 94
Vitale, P., 84
Vogelsang, R., 5
Vogl, T.P., 24, 48, 93
Voigt, H.-M., 163
Voltaire, F.M., 1
Volume-oriented strategies, 98, 160, 236, 248
Volz, R.A., 12, 70

Wacker, H., 12
Waddington, C.H., 102
Wagner, K., 151, 246
Wald, A., 7, 89
Walford, R.B., 93
Wallack, P., 68
Walsh, J., 27
Walsh, M.J., 102, 105, 151
Ward, L., 58
Wasan, M.T., 19
Wasscher, E.J., 68, 76
Weak minimum, 24, 25, 113, 328, 332, 333
Weber, H.H., 17
Wegge, L., 76
Weierstrass, K., theorem of, 25
Weinberg, F., 18, 91
Weisman, J., 23, 47, 89
Weiss, E.A., 48
Wells, M., 77
Werner, J., 82
Wets, R.J.-B., 19
Wetterling, W., 5
Wheatley, P., 38
Wheeling, R.F., 95, 98
White, L.J., 97
White, R.C., Jr., 93, 95
Whitley, L.D., 152, 155
Whittley, V.W., 76
Whitting, I.J., 84
Whittle, P., 18
Wiedemann, J., 151
Wiener, N., 6
Wierzbicki, A.P., 20
Wilde, D.J., 1, 20, 23, 26, 27, 29, 31–33, 38, 39, 87
Wilf, H.S., 27
Wilkinson, J.H., 14, 75
Wilson, E.O., 146
Wilson, K.B., 6, 65, 68, 89
Index

Wilson, S.W., 103
Witt, U., 103
Witte, B.F.W., 67
Witten, I.H., 94
Witzgall, C., 18
Wolfe, P., 19, 23, 39, 66, 70, 82, 84, 166, 360
Wolff, W., 103
Wolfowitz, J., 19
Wood, C.F., 47, 48, 89
Woodside, C.M., 70
Wright, S.J., 179

Yates, F., 7
Youden, W.J., 101
Yudin, D.B., 90, 94, 99
Yvon, J.P., 96

Zach, F., 9
Zadeh, N., 41
Zahradnik, R.L., 23
Zakharov, V.V., 94
Zangwill, W.I., 18, 41, 66, 71, 74, 170, 202
Zehnder, C.A., 18, 91
Zeleznik, F.J., 84
Zellnik, H.E., 66, 89
Zener, C., 14
Zerbst, E.W., 105

Zero-one optimization, see binary optimization
Zettl, G., 344, 348
Zhigljavsky, A.A., 91
Zigangirov, K.S., 89
Žilinskas, A., 91
Zoutendijk, G., 18, 70
Zurmühl, R., 27, 35, 172
Zwart, P.B., 88
Zypkin, Ja.S., see Tsypkin, Ya.Z.