

Tutorial for

Introduction to Computational Intelligence in Winter 2009/10

Günter Rudolph, Nicola Beume

http://ls11-www.cs.uni-dortmund.de/people/rudolph/teaching/lectures/CI/WS2009-10/lecture.jsp

Sheet 5, Block B

11.11.2009

Return: 18.11.2009, 10 a.m.

Exercise 5.1: Fuzzy Sets (5 Points)

Give membership functions that define the following fuzzy sets appropriately from your point of view:

- (a) A_1 : Young people, B_1 : middle-aged people, C_1 : old people.
- (b) A_2 : Slow car, B_2 : fast car, C_2 : too fast car.
- (c) A_3 : Great weather, B_3 : Nice weather, C_3 : bad weather.

To do this, first define a crisp set (domain, unit) over which the fuzzy sets are defined, respectively (e.g. the crisp set $X = \{x \in \mathbb{R} | x \in [0, 100]\}$ would be appropriate for fuzzy sets 'cold coffee; hot coffee' and the unit is temperature in o C). Give the membership functions for the triples of fuzzy sets as a (drawn/plotted) graphic with the appropriate domain on the horizontal axis and the degree of membership on the vertical axis, and as a formula.

Perform the operations $A_i^c, B_i^c, A_i \cup B_i, A_i \cap B_i$ for all $i = \{1, 2, 3\}$ and give the resulting sets by drawing/plotting their membership function, respectively.

Exercise 5.2: α -cuts (5 Points)

Let A and B be fuzzy sets over the crisp set X.

The α -cut $A^{\geq \alpha}$ of A is defined as $A^{\geq \alpha} := \{x \in X | A(x) \geq \alpha\}$.

Prove that the following statements are correct:

- (a) $A \subseteq B \Leftrightarrow \forall \alpha \in [0,1) : A^{\geq \alpha} \subseteq B^{\geq \alpha}$
- (b) $A = B \Leftrightarrow \forall \alpha \in [0,1) : A^{\geq \alpha} = B^{\geq \alpha}$