Introduction to Computational Intelligence

Winter 2010/11

Lecturer: Prof. Dr. Günter Rudolph

Stand-In: Nicola Beume

Computational Intelligence Group, LS11
Dept. of Computer Science
TU Dortmund

05.01.2011
Today’s Topics

1 Optimization Basics

2 Randomized Search Heuristics

3 Introduction to Evolutionary Algorithms
 EA Operators

4 Theory of Evolutionary Algorithms
 Motivation
 Method of Fitness-Based Partitions
 Application of FBP

5 Summary and Outlook
Optimization Basics

given:
objective function $f : X \rightarrow \mathbb{R}$
feasible region X (= nonempty set)

objective: find solution with minimal or maximal value!

optimization problem:
find $x^* \in X$ such that $f(x^*) = \min\{f(x) | x \in X\}$
x^* global solution (optimizer)
$f(x^*)$ global optimum (optimum)

note: $\max\{f(x) | x \in X\} = -\min\{-f(x) | x \in X\}$

local optimum
\(x_l \in X \) is a local solution if
\[\forall x \in N(x_l) : f(x_l) \leq f(x) \]
\(N(x_l) \) neighborhood of \(x_l \) (bounded subset of \(X \))
\(f(x_l) \) local optimum, local minimum

note:
each global optimum is also a local one
“Easy” Classes of Optimization Problems

linear problems
linear objective function, linear constraints
solvable by e.g. simplex algorithms

non-linear problems
objective function or constraints non-linear
solvable by classical methods, if
differentiable and
convex (convex function, convex domain)
without constraints
(more special cases...)

Nicola Beume (TU Dortmund)
“Hard” Classes of Optimization Problems

What makes a problem hard

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- non-smoothness (weak causality \Rightarrow strong causality needed!)
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)

Not solvable with conventional methods
\Rightarrow use computational intelligence: randomized search heuristics
Classical algorithms vs. Randomized Search Heuristics

When to apply which method:

classical algorithms
- problem known: explicitly specified
- problem well understood
- problem-specific solver available
- sufficient resources for designing algorithm affordable (time, experts)
- solution with proven quality required

rand. search heuristics
- problem unknown: given as black/gray box
- problem poorly understood
- no problem-specific solver available
- insufficient human resources for designing algorithm, but oodles of computation time
- solution with satisfactory quality sufficient

~⇒ **don’t** apply RSH ~⇒ **try** RSH
General Principles of Randomized Search Heuristics

View of Computer Science
- optimization problems are search problems
 - randomized
 decisions within algorithm performed probabilistically
 - search
 optimal solution in space of feasible solutions
 - heuristic
 strategy without proven quality
 - black-box optimization
 algorithm doesn’t know the problem to optimize
 gets evaluation of quality for search points (externally)
 specific behavior depends on history of search points, evaluation

We consider evolutionary algorithms in the following...
Optimization in every day life

every day life problem:
fastest way from home to university?

try any way.
measure time.

change way slightly
try and measure time
in case of shorter time:
 remember way as favorite
repeat until satisfied
Optimization in every day life

every day life problem: fastest way from home to university?

try any way.
measure time.

change way slightly
try and measure time
in case of shorter time:
 remember way as favorite
repeat until satisfied

optimization problem: minimize travel time

initialization
function evaluation
do:
 generate variation
 function evaluation
 selection
until stopping criterion fulfilled

this is an evolutionary algorithm!
Evolutionary Algorithms (EA)

inspired by biological evolution
considered as method of iterative improvements

Task
find $x \in S$ optimizing some $f : S \rightarrow \mathbb{R}$.

- S search space
 feasible solution $x \in S$
- f objective function used as fitness function, values/quality of solution

Often: $S = \mathbb{R}^n$ or $S = \mathbb{B}^n$ or $S = \mathbb{P}^n$ (permutations)
in this lecture today: $S = \mathbb{B}^n$
(Biological) Vocabulary

- genome (chromosome): search point, solution \(x = (x_1, \ldots, x_n) \)
 decision variable, object parameter \(x_i, i \in \{1, \ldots n\} \)
 objective/fitness function value \(y = f(x) \) of the optimization problem

- individual \(a = (x, y) \): information bundle of solution
 population \(P_t \): multiset of individuals in generation \(t \)

- genotype space: search space \(S \) of EA
 representation: encoding of genotype space \((\mathbb{R}^n, \mathbb{B}^n, \mathbb{P}^n) \)

- reproduction: generation of search points by variation

- parent: individual used for reproduction
 offspring: new individual

- variation: recombination and/or mutation
 mutation: slight alteration of parent
 recombination/crossover: merging of several parents

- selection: choosing individuals

- generation: 1 iteration of EA
Algorithmic framework

initialize population
 ↓
evaluation
 ↓
 parent selection
 ↓
 variation (yields offspring)
 ↓
evaluation (of offspring)
 ↓
 survival selection (yields new population)
 ↓
 stop?
 ↓
N
 output: best individual found
 Y
Simple Example: \((1+1)\)EA

t = 0
choose \(x_0 \in S\) uniformly at random
\(y_0 = f(x_0)\)

Do
\[x' = \text{mutation}(x_t)\]
\[y' = f(x')\]
if \(y' \leq y_t\)
\[x_{t+1} = x' ; y_{t+1} = y'\]
otherwise
\[x_{t+1} = x_t ; y_{t+1} = y_t\]
\(t = t + 1\)

stopping criterion fulfilled

generation counter \(t\)
initialization
evaluation

generation loop
variation: mutation
evaluation
selection (minimization)

subsequent population: solutions \(x_{t+1}\)

increase generation counter
stopping criterion
Selection

population $P = (x_1, x_2, \ldots, x_\mu)$ with μ individuals

selection at 2 steps of EA
- selection for reproduction: choose parents
- selection for survival: choose individuals for subsequent population

two approaches
1. repeatedly select individuals from population with replacement
2. rank individuals somehow and choose those with best ranks (no replacement)

uniform selection
- choose individual uniformly at random

truncation selection (deterministic)
- rank individuals according to fitness
- choose best individuals

plus-selection: choose from current population and offspring, ($\mu + \lambda$)
comma-selection: choose from offspring only, (μ, λ)
Mutation in search space \mathbb{B}^n

first: copy parent x to x'

standard bit mutation
invert (flip) each bit x'_i independently with probability p_m
- expected number of inverted bits $= p_m \cdot n$
- $p_m \in (0; 1/2]$ to favor small changes
- most often used mutation probability $p_m = 1/n$

k-bit mutation
choose randomly uniformly k different positions in x', and invert these bits
- k: often very small, most often $k = 1$
- easier to analyze than standard-bit-mutation
- behavior can vary greatly from standard-bit-mutation
Recombination/ Crossover in search space \mathbb{B}^n

discrete recombination
- copy values (unchanged) from parents

k-point-crossover
- choose 2 parents, choose k different positions uniformly at random
- copy parts from parents alternatingly
- most often k very small, usually $k = 2$ or $k = 1$

uniform crossover
- choose ρ parents,
- for every x'_i: choose uniformly at random among parents
 - which parent value $x_i^{(j)}$, $j \in \{1, \ldots, \rho\}$ to copy
- number of parent usually $\rho = 2$
Theory of Evolutionary Algorithms

What do we do if we design a problem-specific algorithm?

- prove its correctness (problem solved to optimality)
- analyze its performance: (expected) run time

What does this mean for optimization with evolutionary algorithms?

- prove that best function value in population converges to global optimum of problem f for generations $t \to \infty$
- analyze how long this takes on average: expected optimization time
- runtime measure: number of function evaluations
- black-box evaluation can afford huge resources (execute simulator, build machine, ...)
- making all other algorithmic steps of the EA marginal
Analysis of Evolutionary Algorithms

What kind of evolutionary algorithms do we want to analyze?

Clearly all kinds of evolutionary algorithms

More realistic very simple evolutionary algorithms at least as starting point

For what kind of problems do we want to do analyses?

Clearly all kinds of problems

More realistic very simple problems — “toy problems” at least as starting point
On “Toy Problems”

better term example problems

Why should we care?

- support analysis, help to develop analytical tools
- are easy to understand, are clearly structured
- present typical situations in a paradigmatic way
- make important aspects visible
- act as counter examples
- help to discover general properties
- are important tools for further design and analysis
Simple Scenario

EA: (1+1)EA
search space: \(\mathbb{B}^n \)

properties

- Hamming distance of 2 vectors: \# of differing bits
 \[H(x, x') = \sum_{i=1}^{n} (x_i + x'_i - 2x_i x'_i) \]

- standard bit mutation with \(p_m = 1/n \)
 typical probabilities:
 \[Pr(\text{specific bit flips}) = 1/n \]
 \[Pr(\text{specific bit doesn’t flip}) = 1 - 1/n \]
 \[E(\text{#mutating bits}) = n \cdot 1/n = 1 \]

- plus-selection elitistic: no worsenings

example function: \(\text{ONEMAX}(x) = \sum_{i=1}^{n} x_i \)

properties

- maximization, optimum: \(\text{ONEMAX}(1^n) = n \)
- 1 global optimum (no other local ones)
Fundamental Basics of Calculation with Probabilities

analyses by “puzzling” of good/bad basic events

event occurs with probability p
\Rightarrow counter event has probability $1 - p$

connection of events by “OR” \Rightarrow add probabilities
connection of events by “AND” \Rightarrow multiply probabilities

lower bound of probability: leave out probability of some “OR”-events
upper bound of probability: leave out probability of some “AND”-events

here: discrete probability space \Rightarrow combinatoric

number of combinations without order: binomial coefficient $\binom{n}{k}$
used in the following to count how many vector configurations fulfill a certain condition
example: # of possible vectors of length 10 with exactly 3 0-bits: $\binom{10}{3}$
Upper Bounds with Fitness-Based Partitions (FBP)

method of fitness-based partitions works well with plus-selection for upper bounds on runtime

- group search points with equal/similar fitness in partition
- rank partitions according to ascending fitness values
- all elements of highest partition optimal
- selection elitistic: leave partition only towards better one
- worst case perspective to gain upper bound: initialize in worst partition
- sum up time spend in each partition until highest reached

Definition

Let $f : \{0, 1\}^n \rightarrow \mathbb{R}$. A partition L_0, L_1, \ldots, L_k of $\{0, 1\}^n$ is called f-based partition iff the following holds.

1. $\forall i, j \in \{0, \ldots, k\} : \forall x \in L_i : \forall y \in L_j : (i < j \Rightarrow f(x) < f(y))$
2. $L_k = \{ x \in \{0, 1\}^n \mid f(x) = \max \{ f(y) \mid y \in \{0, 1\}^n \} \}$
Upper Bounds with Fitness-Based Partitions (FBP)

$Pr(\text{x mutates to } \text{x}') : p_m^{H(\text{x}, \text{x}')} \cdot (1 - p_m)^{n-H(\text{x}, \text{x}')}$

mutate $H(\text{x}, \text{x}')$ bits, do not mutate $n - H(\text{x}, \text{x}')$ bits

$s_i : \text{probability of leaving partition } L_i$

\[
s_i = \min_{x \in L_i} \sum_{i<j \leq k} \sum_{x' \in L_j} p_m^{H(\text{x}, \text{x}')} \cdot (1 - p_m)^{n-H(\text{x}, \text{x}')}\]

inner sum: all x' of higher partition L_j

outer sum: all higher partitions

min: worst x

expected optimization time: sum of duration per partition

duration = $1/ (\text{probability of leaving}) = s_i^{-1}$

lower bound of s_i leads to upper bound of s_i^{-1}

\[
E(T_{(1+1)EA,f}) \leq \sum_{0 \leq i < k} s_i^{-1}\]
Upper Bound for (1+1)EA on ONE\textsc{Max}

use trivial partition: 1 partition for each function value acc. to ONE\textsc{Max}

useful inequality: \((1 - 1/n)^n < 1/e < (1 - 1/n)^{n-1}\), \(e\): Euler’s number

vectors in partition \(L_i\): \(i\) 1-bits, \(n - i\) 0-bits

possible improvement: mutate one 0 \(\rightarrow\) 1, other bits unchanged

\(\Rightarrow\) function increased by 1 \(\Rightarrow\) partition left

\[
\Pr(0 \rightarrow 1) = \#0\text{-bits} \cdot p_m = \binom{n-i}{1} \cdot 1/n = (n - i)/n
\]

\[
\Pr(\text{other bits do not mutate}) = (1 - p_m)^{n-1} = (1 - 1/n)^{n-1} > 1/e
\]

lower bound for probability of leaving partition:

\[
s_i \geq \frac{n-i}{n} \cdot (1 - \frac{1}{n})^{n-1} \geq \frac{n-i}{n} \cdot \frac{1}{e} = \frac{n-i}{ne}
\]

\[
E(T_{(1+1)\text{EA,ONE\textsc{Max}}}) \leq \sum_{0 \leq i < n} s_i^{-1} \leq \sum_{0 \leq i < n} \frac{en}{n-i} = en \sum_{1 \leq i \leq n} \frac{1}{i}
\]

\[
= enH_n < en(\ln(n) + 1) = O(n \log n)
\]
Upper Bound: \((1+1)\) EA on LEADINGONES

LEADINGONES: \(\{0, 1\}^n \rightarrow \mathbb{R}\) with \(\text{LEADINGONES}(x) := \sum_{i=1}^{n} \prod_{j=1}^{i} x_j\)

use trivial partition: 1 partition for each function value acc. to LEADINGONES

improving step:
- to leave \(L_i\) by one mutation, flip exactly the leftmost 0-bit.

\[s_i \geq 1 \cdot \frac{1}{n} \cdot \left(1 - \frac{1}{n}\right)^{n-1} \geq \frac{1}{en}\]

\[
\mathbb{E} \left(T_{(1+1)\text{ EA,LEADINGONES}} \right) \leq \sum_{i=0}^{n-1} s_i^{-1} = \sum_{i=0}^{n-1} en = n \cdot en
\]

\[= O(n^2)\]
Summary and Outlook

Summary

• randomized search heuristics suitable tool for complex problems
• evolutionary algorithms (EA): basic operators
• simple example: (1+1)-EA
• theory possible

Upcoming topics, e.g.

• evolutionary algorithms with search space \mathbb{R}^n
• design principles of EA
• parameters

Acknowledgments:

lecture based on slides by Günter Rudolph, Thomas Jansen

Thanks!