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ABSTRACT
In this paper, we propose a new approach to thinking about
and implementing Computer Science curricula in secondary
education. The characteristic feature is to organize the items
to be taught into what we call “strands” which then can be
interlaced during the course. This naturally leads to a spiral
curriculum in secondary Computer Science education. In the
view of our proposed approach, we also comment on the role
of programming in secondary education.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Theory
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1. INTRODUCTION
In response to the diminishing or simply non-existent cur-

riculum credit for Computer Science in secondary education,
educators and researchers have developed transdisciplinary
or multidisciplinary approaches to introduce and teach Com-
puter Science concepts in Science or Arts classes [14, 15, 18].
The subject matter of such a course, e.g. Bioinformatics,
then provides a natural context in which Computer Science
concepts can be embedded.

Recently, a multi-year effort of a large group of German
educators and researchers resulted in “Educational Stan-
dards for Computer Science in Lower Secondary Education”
(see [4] for an overview). These standards were modeled af-
ter the National Council of Teachers of Mathematics’ stan-
dards for Mathematics [19] and describe the competence
standards that should have been reached at the end of tenth
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grade (assuming that Computer Science is taught at least
one session per week starting in fifth grade). An open re-
search and implementation issue, however, is to define con-
crete teaching units that can be used to achieve these goals.

Contexts.
The contributors to the above-mentioned German stan-

dards have suggested that teaching units should be context-
based: students should be able to see how the subject mat-
ter taught in class relates to everyday life. The contributors
suggest to follow the “Context-based Chemistry” approach
proposed for secondary Chemistry education [21]; a closer
look at these two fields shows, that Chemistry indeed is fac-
ing almost the same problems as Computer Science—see the
synopsis by Gilbert [12] who discusses four different concepts
of “context”.

It has been reported that contextualized courses on col-
lege level lead to an increasing motivation of the students
and effectiveness of the course—see, e.g., [1, 15, 25]. Un-
fortunately, Computer Science in secondary education can
also be implemented as an Information and Communication
Technology class (see [17] for a discussion of the implications
thereof), and thus a purely application-based context such
as word processing is not suited to foster the understanding
of Computer Science in the spirit of Computational Think-
ing [29]. What is needed is a concept that subsumes the
notion of “contexts” but prevents them (and thus Computer
Science) from being misinterpreted as a collection of isolated
applications of Information and Communication Technology.

Continuity.
One of the distinguishing features of Computer Science is

the breadth of the field which encompasses subject matters
close to Engineering as well as subject matters from (Dis-
crete) Mathematics. This breadth provides a rich source
of topics for secondary education and gives educators the
potential of reaching out to students with widely varying
interests and aptitudes. The lack of (sufficient) curriculum
credits, however, has actually turned this breadth into a ma-
jor impediment to implementing a curriculum that follows
the “spiral” approach advocated by Bruner [5]. In his sem-
inal work, Bruner elaborates on the hypothesis that “any
subject can be taught effectively in some intellectually hon-
est form to any child at any stage of development” [5, p. 33].
Consequently, this approach requires multiple iterations over
the subject to reach an understanding at adult level. The
philosophy behind Bruner’s approach is widely accepted and
has led to the identification of, e.g., fundamental ideas [24]



and - with some grain of salt - great principles [8] in Com-
puter Science—see [30] for a empirical determination of such
concepts present in Computer Science courses on university
level. If Computer Science is taught with little curriculum
credit or as an elective, there is little room for an educator to
visit subject matters more than once while at the same time
covering the variety of subject matters deemed “necessary”
by administrators, parents, and students.

The Role of Programming.
Programming has always been an integral part of Com-

puter Science up to the point that well-designed visual pro-
gramming languages and environments such as Alice, Logo,
Scratch, or Greenfoot are used as entry points to Computer
Science in primary and (lower) secondary education. Also,
open source software projects have been used to increase
interest and improve retention at college level [16].

In the general public’s view, however, Computer Science
often is misidentified with programming exclusively: In a
recent issue of the Communications of the ACM, Felleisen
and Krishnamurthi observed that a “large part of the [en-
rollment and acceptance] problem is due to how computing
is portrayed to schools, parents, the people who allocate the
education budgets, and the students” [9]. Freeman’s imme-
diate rebuke [10] of their viewpoint that “programming [. . . ]
is our field’s single most valuable skill” [9] (instead bringing
up the ability to abstract) clearly shows the differentiation
of programming and algorithmics and, in this respect, is ex-
emplary of several non-programming based approaches to
outreach and curriculum (re-)design—see, e.g., [3, 29]. In
passing, we note that a study undertaken in 1999 reported
on a significant decrease in the percentage of introductory
Computer Science courses for non-majors on college level
that actually taught programming [27]. Unfortunately, no
data more recently acquired is available.

In recent years, the main question related to program-
ming was not whether or not to teach programming but
when to teach programming and when to introduce object-
orientation; as an illustrative example, see [2]. Independent
of which answer to the above question a particular educator
prefers, he or she must judge any new suggestion for how
to implement a given Computer Science curriculum also by
how programming can be embedded in the resulting course.

2. STRANDS AND BRAIDED TEACHING

Definition.
The central concept of our approach is to organize the

subject matters to be taught in secondary education not
by topic but along what we call strands. This organiza-
tional concept is general enough to subsume the concept of
a context and, as we will demonstrate, allows for a smoother
linkage of different subject matters in class.

Definition 1. A strand is a sequence of items addressed
in class that satisfies the following criteria:

1. The items can be assigned to a well-defined subject
matter (by their structure or their content).

2. The subject matter is identifiable and recognizable to
the students throughout the sequence.
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Figure 1: Strands: Sequences of items assigned to a
subject matter by structure (left) or content (right).

3. The subject matter is being presented from more than
one point of view or embedded in more than one con-
text.

4. The sequence of items is addressed in more than one
teaching unit.

While the first criterion is of an objective nature, the re-
maining three criteria depend on structural and pedagogical
decisions made by the educator responsible for the course.
Most notably, the above definition does not impose any par-
ticular order on the items in the sequence. As the examples
given below will illustrate, the particular order of teaching
the items in a strand will be subject to external factors such
as curriculum design or personal preferences of the educator.

Another important aspect is that a strand is defined to
appear in more than one teaching unit. While, as we will
sketch below, one can construct a strand for a clearly de-
lineated subject matter such as operating systems, our ap-
proach forbids this subject matter to be taught en bloc and
thus isolated from other topics and concepts in Computer
Science. At first, this may seem overly restrictive; in prac-
tice, however, it provides the educator with more leeway to
present concepts from different viewpoints (or, in the termi-
nology of Denning’s Great Principles [8], through different
windows of computing mechanics) and thus to better reach
out to students with varying interests and aptitudes.

Braided teaching then aims at covering the contents in
a given curriculum by a collection of strands that are inter-
laced wherever appropriate. Interlacing the strands and pre-
senting the items embedded in more than one context has to
be planned carefully, since using too many context switches
will present a ragged, incoherent, and confusing image of
Computer Science. On the other hand, findings from the
“Chemistry in Context” project indicate that teaching units
that stay too long within a single context lead to a rapid
decline in the students’ interest [23]. Furthermore, staying
too long within a context may result in misidentifying the
concept taught with the context and thus counteract the
spiral curriculum’s intended effect of enabling transfers of
principles across contexts.

Examples.
As a first illustrative example, we present a strand that

contains items related to (semi-)structured data (Figure 1,
left). The structural concept behind all of these items, the
hierarchical or semi-structural organization of data is eas-
ily identifiable and recognizable; in fact, it represents the
fundamental idea of structured dissection [24]. Also, the
subject matter can be visited more than once and be taught
in increasing complexity from static and dynamic HTML to
queries on data represented in XML. Since the strand con-



tains scalable vector graphics and may be extended to also
address automata for validating XML documents according
to a given schema, it is not restricted to web data.

The occurrence of SVG in the strand on (semi-)structured
data illustrates another consequence of our approach: due
to the requirement that strands must not be taught en bloc,
the subject matters will be presented interlaced. Also, items
may be assigned to more than one strand. In the above
example, SVG may be a point where the strand on (semi-)
structured data can be linked with a strand on multimedia.

Another (content-based) strand which has been used by
one of the authors in class is organizing topics related to op-
erating systems (Figure 1, right). The details of this course
will be presented in Section 3.

Related Concepts.
It remains to discuss how the concept of strands relates

to other organizational concepts in Computer Science edu-
cation. Besides the canonical topic-by-topic sequence which
can be trivially distinguished from a strand, the two most
relevant concepts are contexts and fundamental ideas.

In the terminology of the Gilbert’s discussion [12], con-
texts as they are used (not only) in Computer Science on
college level and (higher) secondary education are mainly a
“reciprocity between concepts and applications” [12, p. 967]
whereas contexts in (lower) secondary education mainly re-
late to “topics and people’s activities that are considered
of importance to the lives of communities within the soci-
ety” [12, p. 969].

In the terminology of our approach, a context (or a much
larger project) can be defined as a sequence of items groups
by content. Since, in general, the presentation of these items
from multiple viewpoints and their distribution over more
than one teaching unit will introduce unpleasant continuity
breaks, we prefer to think of a context (in the traditional
sense) as a temporally coherent frame in which items from
one or more strands can be interleaved and related to appli-
cations or social circumstances.

A fundamental idea [5, 24] is a concept that is general
enough that its mastery allows for transfers of principles (as
opposed to transfers of instructions to activities). Funda-
mental ideas (such as modularity or verification) thus repre-
sent concepts of the underlying science and are exemplified
by well-chosen items; these items, just as the items in a
strand, can be arranged according to a spiral curriculum,
and in this respect, the strand on (semi-)structured data
has a close resemblance to exemplifications of a fundamental
idea. On the other hand, a strand (for instance the strand
on operating systems) may also be comprised of items that
belong to the same content, and thus not every strand re-
sembles a fundamental idea. The major difference, however,
between a strand and a fundamental idea is that by design a
fundamental idea organizes items exclusively from the per-
spective of an educator. To qualify as a strand in the sense
of Definition 1, the sequence of items must be arranged and
taught in a way that is identifiable and recognizable by the
students as well.

The concept of strands appears to be closely related to
the concept of threads that has been implemented, e.g., at
Georgia Tech [11]. In this system, students are given a
choice from a collection of sequences of courses to fulfill the
curriculum requirement and to prepare for their chosen ca-
reer path. The concepts are related in the sense that each

strand and thread has to fulfill the requirement that the
items taught have to be coherent and not restricted to a
single subject matter. Furthermore, the union of threads
as well as the union of strands is required to cover the re-
spective curriculum. In contrast to the concept presented
in [11], our approach does not provides means for assem-
bling a career-specific set of courses but is a concept for
educators that wish to (re-)organize items to be taught in
class according to a spiral curriculum, embedded into differ-
ent contexts and possibly interlaced. Due to the fact that
secondary education and education on university level are
organized quite differently, the final distinguishing feature
is that in a thread-based setting the choice which thread to
follow is made by the students, whereas the strands to be
used in teaching are selected by the educators.

3. PROGRAMMING AS A STRAND?
It may seem trivial to present any current programming

course as a strand encompassing, e.g., “Sequence”, “Control
Structures”, “Variables”, and “Object/Class”. A closer look,
however, at Definition 1 reveals several shortcomings of this
straightforward approach: the requirement that the com-
mon subject matter be identifiable and recognizable by the
students can only be fulfilled if both students and educators
are willing to accept programming as a higher-ranking con-
cept on its own. It will be hard if not impossible, to present,
say, control structures from more than one point of view.
Finally, most current courses known to the authors that in-
clude programming do so in a blocked fashion, either as an
entry point (see Section 1), as a programming-only course,
or as a hands-on teaching unit in which the (algorithmic)
concepts previously taught in class are being realized in a
programming language.

In these shortcomings, the following assessment of pro-
gramming (in contrast to algorithmics) made by the K–12
Computer Science curriculum task force is manifested:

“While programming is a central activity in com-
puter science, it is only a tool that provides a
window into a much richer academic and profes-
sional field.” [26, p. 6]

Interlacing Programming and Strands.
Especially in (lower) secondary education, students are

able experience the power of computers and software with-
out having to program themselves. Furthermore, the extent
to which the average student can realize programs is unlikely
to result in assignments that can compete (regarding their
attractiveness) with easy-to-access free software available on
the internet. In this respect, Astrachan’s Law (“Do not give
an assignment that computes something that is more eas-
ily figured out without a computer.” [22]) may have to be
phrased even more restrictive when applied to lower sec-
ondary education.

We propose to break with the traditional habit of teach-
ing programming en bloc and to treat programming as if
it were just another strand where the items are embedded
in more than one context. Admittedly, this still does not
provide us with multiple perspectives on if-statements; it
tremendously helps, however, with presenting programming
as a tool in the sense of the above assessment.
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Figure 2: Braided teaching: In the (abbreviated) example depicted here, the educator has decided to visit
various strands along the dashed line. Algorithmic concepts and items from “programming as a tool” are
interlaced with the items in bold face.

Example.
One of the authors has designed classes for grades 9 and 10

organized according to four major strands: operating sys-
tems, multimedia, (semi-)structured data, and networks (see
Figure 2; note, however, that the collection of items depicted
is reduced for ease of presentation and thus not comprehen-
sive. Most notable, the interlaced strand on algorithmics is
left out to unclutter the picture). In an introductory phase,
students learn how to use shell commands for working with
files and directories as well as for an exemplary installation
of a small software package. Elementary programming con-
cepts are introduced as means of automating certain tasks in
shell scripts. After a short switch to the multimedia strand,
a first visit is paid to (semi-)structured data strand where
students experience (X)HTML not only as means for en-
coding web pages but also for representing structured data.
The following teaching units obviously are located in the
networks strand.

In the next phase of the course, the students revisit the
(semi-)structured strand and learn how to use CGI for struc-
tured documents automatically and with dynamically vary-
ing content. These scripts then must be uploaded to servers.
Coming full circle to one of the initial parts of the course,
vector graphics and their structured representation using the
SVG format are discussed and used for again interlacing with
“programming as a tool”.

4. IMPLICATIONS
An intended side-effect of interlacing programming with

strands is that programming is put on the same level of im-
portance as all other strands and thus is no more (but also no
less) important than any specific strand. Consequently, the
question of which programming language to use (or whether
and when to introduce objects) is no more important than
which other strands to teach. If an educator wishes to do so,
he or she can actually choose a programming language such
that it supports the contexts in which items are embedded
and not vice versa.

Braided Teaching Using Tcl/Tk.
To illustrate the flexibility stated above, we point out that

an approach to braided teaching could be based, e.g., on the
Tcl/Tk programming language [20]. This particular choice
is not due to features of this language per se (but see War-
ren [28] advocating the use of scripting languages) but mo-
tivated by the fact that Tcl/Tk seamlessly integrates with
a shell. In the context of braided teaching, this is a ma-
jor advantage over other languages or microworld-based en-
vironments, since the student do not regard programming
as switching to a different environment. Furthermore, the

Tcl/Tk shell allows for an interpreter-based approach to
Logo-like graphics, thus providing the agreed-upon advan-
tages [6] of having direct interaction and visual feedback—
see also [13] for comments on how to reach out to students
with Tcl/Tk. We note in passing that even the answer to
whether and when to introduce object-orientation is not pre-
empted by our selection of the programming language.

As mentioned above, the collection of strands reflects a
pedagogical and sometimes personalized decision of the ed-
ucator (for example, to start from an operating systems
strand), and this is especially true for the choice of the pro-
gramming language. One could just as well imagine a collec-
tion of strands that naturally leads to a completely different
selection of a programming language. To some extent, the
development of Alice [7] can also be seen as the selection of
a programming language based upon the requirements of a
virtual worlds context.

5. CONCLUSIONS
In this paper, we have advocated what we call braided

teaching : a new way of thinking about the organization of
items when implementing a Computer Science curriculum
in secondary education. This approach relies on grouping
the items along strands, and its main conceptual advantage
is that it allows for an easier implementation of a spiral
curriculum while at the same time giving the educator more
leeway with didactical decisions. We have exemplified our
approach and observed that it allows for a more seamless
integration of programming giving it the role delineated in
the ACM K–12 Computer Science curriculum.

Our approach as formulated in this paper pertains to
(lower) secondary education, and thus two directions for fu-
ture research present themselves: The obvious task is to
demonstrate both in theory and in practice that braided
teaching can be instantiated with a reasonable collection of
strands and that the effects expected by following the spiral
curriculum can be observed as well. The first author’s expe-
rience with teaching along single strands leads us to believe
so. Also, it remains to investigate how this concept can be
extended to propaedeutic pre-college or freshman courses
and how it might be combined with existing organization
concepts on college level.
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