
A Multiobjective Approach for Finding Equivalent Inverse Images
of Pareto-optimal Objective Vectors

Günter Rudolph and Mike Preuss

Abstract— Supply bottlenecks or sudden changes in legal
regulations may lead to the situation that certain factor com-
binations for producing some commodity cannot be used any
longer. In this case it is important to know alternative factor
combinations leading to a product with identical characteristics
represented by a Pareto-optimal objective vector of a multi-
objective optimization problem. Here, we present a biobjective
approach that finds equivalent inverse images of a given Pareto-
optimal objective vector, provided they exist.

I. INTRODUCTION

Typically, evolutionary multiobjective algorithms (EMOA)

deliver a set of objective vectors representing an approxima-

tion of the Pareto front. Elements on the Pareto front are

characterized by the fact that an improvement with regard

to an arbitrary objective must deteriorate at least one of

the remaining objective values. Those elements in objective

space are important for the product designer as varied values

with regard to the objectives typify different products. The

inverse images of these objective vectors in decision space

determine the factor combinations for producing the com-

modity. Consequently, they are of interest for the product

engineer being responsible of the production process. Since

the mapping from decision space to objective space is not

injective in general, it may well happen that different factor

combinations may be used to produce equivalent commidities

with identical properties as selected by the product designer.

If the production is running short of a specific factor due to

supply bottlenecks or if new legal regulations prohibit the

usage of some factor, the product engineer needs to know

these alternative factor combinations to keep the production

running.

Unfortunately, standard versions of popular EMOAs typ-

ically maintain only a single inverse image per objective

vector. As a result, equivalent inverse images are not at the

product engineer’s disposal when they are needed. Therefore

we [1], [2] and others [3], [4] have had developed special

purpose EMOAs which do not only approximate the Pareto

front in objective space; rather, they were designed for

covering the Pareto set in decision space as completely as

possible. In this case we only need to enumerate the solutions

in decision space until we find an equivalent inverse image

(if it exists).

But actually it is not necessary to approximate the entire

Pareto set in decision space. As the product designer selects
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a single objective vector we only need to find all inverse im-

ages of this particular objective vector instead of the inverse

images of all objective vectors. This observeration leads to

an approach with drastically decreased computational effort.

Let x∗ ∈ X ⊆ R
n be a Pareto-optimal solution of a

multiobjective optimization problem

f(x) → min! for x ∈ X ⊆ R
n .

We are interested in solutions from decision space X that are

also Pareto-optimal but distinct from x∗, i.e., we are seeking

elements of the set {x ∈ X : f(x) = f(x∗)∧‖x−x∗‖ > ε}
for some ε > 0. Evidently, it is hopeless in general to seek

for different solutions x, y ∈ X with f(x) = f(y) if X is a

continuous subset of R
n. Therefore, we define two solutions

x, y ∈ X as equivalent if ‖f(x) − f(y)‖ < δ for some

arbitrary norm ‖ · ‖ and a prescribed δ > 0.

The basic concept of the method presented here relies on

the idea of seeking a solution in decision space that min-

imizes the distance to a given objective vector in objective

space and maximizes the distance to the known inverse image

in decision space. Thus, the problem of finding equivalent

inverse images will be addressed by a biobjective surrogate

problem.

In [5] this task was addressed by means of singleobjective

optimization using penalty functions: minimize the distance

in objective space and penalize the nearness to the original

inverse image. More formally,

F (x) = ‖f(x)− f(x∗)‖2 − S(‖x− x∗‖) → min!

for some strictly monotonic increasing S : R+ → R+ with

S(0) = 0. Once an alternative solution (inverse image) has

been detected in this manner, it is necessary to penalize

also the nearness to this inverse image just found. Thus,

we have to change the penalty function for each equivalent

inverse image that is found. All in all we get a sequence

of optimization problems. Numerical experience has shown

that this approach works passably if we succeed in making

appropriate design decisions for the shape of the penalty

function and in adjusting its parameters.

This approach of finding all local optima sequentially can

be traced back to the mid-1970s [6]. The idea was picked

up by the development of the filled function approach [7]

and the tunneling method [8] in the mid-1980s. Later it was

reinvented in the field of Evolutionary Computation [9].

The next section II presents our biobjective approach

along with a first empirical evaluation. In the last section

we summarize our findings and close with our prospects

regarding the extension of our method.

978-1-4244-2764-2/09/$25.00 ©2009 IEEE 74



II. BIOBJECTIVE APPROACH WITH CONSTRAINTS

A. Basic Concept of “Multi-Objectivization”

The notion of “multi-objectivization” of singleobjective

problems was coined by Knowles et al. [10]. The hypothesis

of this approach is that singleobjective problems can be

solved easier by adding additional objective functions. These

additional objective function can be interpreted as helper
functions [11]. Needless to say, it depends on the particular

choice of the helper function if it is actually helpful for a

multiobjective optimization method. It seems to be an open

question if such a helper function always exists. There are a

number of carefully constructed examples revealing in terms

of formal proofs that additional objective functions can be

helpful as well as harmful [12], [13], [14]. But these negative

examples are of course not an argument against the existence

and potential utility of helper functions: You simply have to

find them!

We argue that helper functions are useful if they encode

additional problem knowledge that can be exploited by by

the optimization method. In case of a real-world problem in

the field of thermodynamics [15] we were able to support

this point of view: our helper function enlarged the basins of

the local optima and it encoded implicitly which area of the

search space should be avoided. This course of action has

facilitated the detection of the desired optima significantly.

As a consequence, we shall follow the approach of encoding

additional knowledge in helper functions also for the problem

considered here.

B. Formulation of the Problem

In the scenario considered here we assume that some ap-

proximation of the Pareto front has been determined already

and that the product designer has chosen some objective

vector from this approximation. The optimization method

used for finding the approximation immediately delivers the

corresponding inverse image x∗ of the selected objective

vector f(x∗).
The product engineer now likes to know if there are

additional inverse images x ∈ X that are different from x∗

but map to the same objective vector f(x∗). A necessary

condition for such an inverse image x ∈ X is ‖f(x) −
f(x∗)‖ = 0 for some norm ‖ · ‖. This observation leads

to the first objective function

F1(x) = ‖f(x)− f(x∗)‖2 → min! (1)

If we deploy a multistart approach it might be possible to

identify additional equivalent inverse images by minimizing

objective (1). But the original solution will be found also

when proceeding in this manner. The original solution will be

found the more frequent the larger is the region of attraction

of the local optimum for the optimization method used. In

order to avoid repeated heading to the known optimum the

optimization method has to be “informed” appropriately that

it ought not to search in the vicinity of the known optimum.

This can be achieved by assigning worse objective function

values to solutions within the undesired region. We realized

this idea by distinguishing inverse images with identical

objective value in F1 in terms of distance to the known

solution x∗. Solutions with larger distance are preferred. This

can be modelled by maximizing ‖x− x∗‖2, or equivalently

F2(x) = −‖x− x∗‖2 → min! (2)

Evidently, Pareto front as well as Pareto set of unbounded

problems can be unbounded. Fortunately, there exists a

natural constraint that enforces the boundedness of the Pareto

front: As we are interested in inverse images whose images

should be as similar as possible it is reasonable to introduce a

maximum threshold θ > 0 with respect to objective function

(1):

g(x) = F1(x)− θ < 0 (3)

Finally, the biobjective surrogate problem has been specified

by (1), (2) and (3), where (2) takes the role of the helper

function: It encodes the knowledge that one should seek

solutions distant to x∗.

C. Algorithm

The method proposed here is a hybrid metaheuristic: At

first, we apply an evolutionary multiobjective optimization

algorithm (EMOA) to the surrogate problem (1) - (3). The

EMOA stops after a prescribed number of objective function

evaluations and provides an approximation of the Pareto

front. This set is sorted in ascending order with respect to

objective (1) and we select a prescribed number of best

solutions. Next, we run a singleobjective (local) optimizer

for each of the best solutions using the inverse images as

starting points and (1) as objective function. This second

step is necessary for

1) localizing the optimum more accurately and

2) diagnosing if we are heading to an optimum already

known.

For evaluating our approach we have used NSGA-II as

EMOA and HOOKE & JEEVES as (local) direct search

method. The strategy parameters of the NSGA-II were ηc =
15, ηm = 10, pc = 0.6 and pm = 1.0.

D. Results

1) Test Problem TWO-ON-ONE: TWO-ON-ONE stands

for the structurally simplest case of a multiobjective problem

with a Pareto front that is multiply covered by disjoint

parts of the Pareto set (see fig. 1). The multiple covering is

caused by symmetries and the multimodality of the objective

functions: a polynomial of 4th order and a simple paraboloid:

f1(x) = x4
1 + x4

2 − x2
1 + x2

2 − 10 x1 x2 + 20
f2(x) = x2

1 + x2
2 .

An empirical study in [1] revealed that all EMOAs tested

(NSGA-II, SPEA2, SMS-EMOA) were not capable of cov-

ering both distinct subsets of the Pareto set for which each

subset alone can represent the entire Pareto front in objective

space. Even though both subsets were detected initially there

was a rapid tendency to loose one of the subsets completely.
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Fig. 1. Top: Contours of both objective functions of TWO-ON-ONE in
decision space; the first function generates both outer peaks, the second
function the peak in the center. Bottom: The Pareto set consists of a left
and right “wing” which is actually a line. The areal impression is caused
by (algorithmic relevant) imprecision in the sampling process. Each “wing”
covers the Pareto front completely. The Pareto front is convex and resembles
the shape of the pareto front for problem SYM-PART shown in fig. 4.

Fig. 2 illustrates the outcome of a typical run of NSGA-

II with 100 individuals after 250 generations: The Pareto

front appears to be well covered so that the product designer

has sufficient information at his/her disposal for selecting

the objective vector. Suppose the product designer chooses

the objective vector f(x∗) = (−17.4765, 4.97609)′ with

inverse image x∗ = (−1.595774,−1.558715)′ from the

approximation shown here. As can be seen from fig. 1 and the

symmetry of the problem, the alternative equivalent inverse

image is not in the approximation of the Pareto set.

In order to find an equivalent inverse image we initiate
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Fig. 2. Result of a typical run of NSGA-II with 100 individuals after 250
generations. Top: Well covered Pareto front. Bottom: Incompletely covered
Pareto set.

a run of our hybrid method: At first, the NSGA-II with 20

individuals is run for 100 generations in the search set X =
[−5, 5]2 using maximum threshold of θ = 100. The result of

a typical run is given in fig. 3.

Next, we take a look at those 5 inverse images whose

images are best with respect to F1 (their objective vectors

are the leftmost points in the left picture in fig. 3. Table I

summarizes the results. Finally, we start HOOKE & JEEVES

for a more accurate localization and we recognize that all

starting points of table I converge to the same solution (dif-

ferent to the know solution). Evidently, only one equivalent

inverse image does exist for this problem. The test problem

in the subsequent subsection offers several equivalent inverse

images.

rank F1 F2 x1 x2

1 0.003433 -19.98722 1.705102 1.456486
2 1.326537 -21.57204 1.985328 1.398945
3 1.752043 -22.29680 1.502349 2.004770
4 3.937764 -23.40602 1.532254 2.132012
5 7.266334 -24.73223 1.594493 2.256312

TABLE I

THE 5 BEST SOLUTIONS OF THE SURROGATE PROBLEM FOR

TWO-ON-ONE. WHEN USING THE INVERSE IMAGES (x1, x2) FROM

THE TABLE AS STARTING POINTS OF A LOCAL OPTIMIZER OF F1 , WE

ALWAYS FIND THE SAME EQUIVALENT INVERSE IMAGE.
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Fig. 3. Typical run of the NSGA-II for the surrogate problem based on
TWO-ON-ONE. Top: Only the leftmost solutions in the figure are of interest
since the distance to the desired objective vector is too large for the remain-
ing solutions. Bottom: Corresponding inverse images of the surrogate prob-
lem. The solution with lowest F1-value is x = (1.705102, 1, 456496)′.

2) Test Problem SYMPART: This test problem is an ad-

vancement of TWO-ON-ONE, as the number of equivalent

inverse images of elements of the Pareto front is increased to

9 (see fig. 4). Moreover, both test functions are quadratic and

identical except for translation. The behavior of commonly

used EMOA for this type of problems was studied in [2] for

the first time. As expected, all standard EMOAs failed to find

and keep all 9 subsets.

This observation is not surprising as these EMOAs do not

have built-in mechanisms for addressing this special problem.

This problem has been included in the CEC 2007 contest [16]

with high-dimensional decision space. Neither of the EMOAs

participating in the contest was able to find more than one

subset on average.

Finally, we like to examine how the hybrid method per-

forms in case of multiple equivalent inverse images. Fig. 5

shows a typical run of the NSGA-II with 100 individuals after

250 generations in the region X = [−20, 20]2. The Pareto

front seems to be well represented; no wonder as each of the

9 Pareto subsets covers the entire Pareto front completely.

The approximation of the Pareto set, however, is incomplete.

If the NSGA-II is run for some additional generations then

the approximation of the 9 subsets becomes worse and worse

due to drift effects.

Suppose the product designer would select objective vector
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Fig. 4. Top: Pareto front of the SYMPART problem. Middle and bottom:
Schematic setup in decision space consisting of 9 symmetric “tiles”. Each
tile contains a part of the Pareto set that covers the Pareto front completely.
The Pareto front is generated by 2 simple quadratic objective functions. The
Pareto subsets have length 2a and the vertical of horizontal distance to the
next subset is characterized by the parameters b resp. c.

f(x∗) = (0.757702, 1.27587)′ with corresponding inverse

image x∗ = (9.870459,−10.00175)′. We run our hybrid

method with 100 individuals for a maximum number of 300

generations and θ = 0.5. The subsequent graphics in fig. (6)

yield an impression about the situation after 100, 200, and

300 iterations.

Initially the individuals are far away from the Pareto

front, but there are clear tendencies towards eqivalent inverse

images. If we would stop after 100 generation and start local

searches w.r.t. F1 the 8 equivalent inverse images would be

identified. The longer the NSGA-II runs the more equivalent

inverse images are getting lost. This behavior might be

explained to some extent by drift effects but more importantly

by the fact that in case of accurate approximations w.r.t. F1
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Fig. 5. Typical run of a NSGA-II with 100 individuals after 250 generations
in region X = [−20, 20]2. Top: Well covered Pareto front. Bottom:
Incompletely covered Pareto set.

individuals with smaller F2 dominate solutions that are closer

to the original inverse image x∗. This is a methodological

problem that we plan to attack with an archive that collects

individuals with good F1 value and sufficiently large F2

value. The size of the archive can be kept small by main-

taining only representative solutions (e.g. cluster centroids).

III. CONCLUSIONS

We have introduced an evolutionary hybrid method for

finding equivalent inverse images of Pareto-optimal objective

vectors. The problem is addressed by creating a surrogate

problem in terms of a constrained biobjective optimization

problem. It was empirically shown that this approach works

well for a single additional inverse image. If we need to find

all inverse images simultaneously, then we have a severe

problem that we plan to solve by an archiving strategy in

future. Of course we are aware that we have only described

a proof-of-principle, here. But we are convinced that the

approach, if completely elaborated, will save many resources

compared to special-purpose MOEAs that are designed to

approximate also the entire Pareto set: If the original problem

has d ≥ 2 objectives and n decision variables then the dimen-

sionality of the Pareto front can be as large as min{d−1, n}.
If d is large then a huge number of individuals is necessary

to approximate the Pareto front and one needs a multiple

of this number to approximate the entire Pareto set if there

are multiple Pareto subsets with images completely covering

the Pareto front. In contrast, our approach always leads to

a biobjective surrogate problem regardless of the number

of objectives of the original problem. As a consequence,

the complexity of the problem is reduced and much fewer

function evaluations are necessary to identify equivalent

inverse images of Pareto-optimal solutions.
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Fig. 6. Typical run of NSGA-II with 100 individuals after 100 (top), 200 (center) and 300 (bottom) generations in region X = [−20, 20]2. Left column:
Approximations of Pareto front of surrogate problem. Right column: Corresponding inverse image.
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