
DEPLOYMENT SCENARIOS
OF PARALLELIZED CODE
IN STOCHASTIC OPTIMIZATION

Günter Rudolph
Universität Dortmund
Fachbereich Informatik
Lehrstuhl für Algorithm Engineering
44221 Dortmund / Germany
Guenter.Rudolph@uni-dortmund.de

Abstract The benefit of using parallel hardware in real-time environments is ob-
vious: For example, if it is necessary to solve some optimization task
periodically in a narrow time window a parallelized optimization algo-
rithm can possibly meet the time constraints. In case of deterministic
algorithms the situation is clear. But if we use randomized algorithms
some questions appear: As randomized algorithms must be run more
than once to get a reliable solution we can execute the sequential code
in parallel independently or we can execute the parallelized code si-
multaneously on the parallel hardware in a successive manner. Which
approach is better? We analyze several scenarios analytically and offer
conditions for deciding when to deploy the parallelized code and when
not.

Keywords: Parallel optimization, stochastic optimization, randomized algorithms

1. Introduction
The utility of a parallelized deterministic optimization algorithm is

evident: Since the deterministic algorithm is run only once, the parallel
version delivers the solution more rapidly. In case of randomized opti-
mization algorithms the situation changes. Typically, these randomized
algorithms (RAs) must be run several times to avoid bad results pro-
duced by some unlucky sequence of random variables used in the RA.
This observation raises the question if the burden of developing a parallel
randomized algorithm is worth the effort: Instead of running a paral-
lelized RA several times in sequence on the parallel hardware, one can

1

2

also run the original sequential code independently in parallel on several
processors. Which are the situations in which running the parallelized
code is advantageous? And when the recommendation should be the
other way round?

Here, we analyze some situations based on certain scenarios. Our
main assumption is that we have a periodically appearing optimization
task. Therefore it is reasonable to use the expectation of random vari-
ables for comparisons: If the expected runtime of successive runs of the
parallelized code is less than the expected runtime of parallel runs of
the sequential code, then and only then it is advisable to deploy the
parallelized RA.

This approach also has the appealing aspect that we can elude from
the ongoing discussion how to measure the performance of parallelized
RAs [1, 2] in terms of speedup, efficiency and related measures.

Here we extend and generalize our findings presented in [4]. For this
purpose, section 2 presents some mathematical results used in the se-
quel. Sections 3 & 4 present several scenarios and offer conditions for
deciding when to deploy the parallelized code and when not. Finally,
our conclusions can be found in section 5.

2. Mathematical Preliminaries
Let X1, X2, . . . , Xp be independent and identically distributed (i.i.d.)

random variables. Their minimum and maximum are denoted by X1:p =
min{X1, X2, . . . , Xp} and Xp:p = max{X1, X2, . . . , Xp}, respectively. For
certain distributions of the Xk the expectation of the minimum and max-
imum can be calculated analytically. For example [3, p. 35], if the Xk

are uniformly distributed in the interval [a, b] then

E[Xk] =
b− a

2
, V[Xk] =

(b− a)2

12
,

E[X1:p] = a + (b− a)
1

p + 1
and E[Xp:p] = a + (b− a)

p

p + 1
. (1)

Moreover, there exist numerous inequalities for the expectations, each
of them based on some assumptions. The most general inequality is
probably given in [3, p. 59 & 63] since it only assumes the existence of
the second moment.

Theorem 1
Let X, X1, X2, . . . , Xp be i.i.d. random variables with E[X2] < ∞. Then

E[X]− p− 1√
2 p− 1

D[X] ≤ E[X1:p] ≤ E[Xp:p] ≤ E[X] +
p− 1√
2 p− 1

D[X]

Deployment Scenarios of Parallelized Code in Stochastic Optimization 3

where D[X] denotes the standard deviation of X. ut

Another result that will be useful is known as Wald’s equation. A
proof can be found e.g. in [5, p. 166f].

Theorem 2
Let N be a positive, integer-valued random variable and X1, X2, . . . be
an i.i.d. sequence of random variables where N is also independent of the
Xk. Then the expectation and variance of the random sum consisting
of the first N members of the Xk are given by

E

[
N∑

k=1

Xk

]
= E[N] · E[X1] (2)

V

[
N∑

k=1

Xk

]
= E[N] · V[X1] + V[N] · E[X1]2 (3)

where V[·] denotes the variance. ut

3. Scenario: Run RA Multiple Times, Choose
Best Solution Found

In practice, nobody runs a randomized algorithm only once. Rather,
the RA is run multiple times and the best solution found within some
time limit is used. Figure 1 illustrates our two options how to use the
parallel hardware.

SEQ

6t

· · ·

1 2 3 . . . p

PAR

6t
...

1 2 3 . . . p

Figure 1. Left: The sequential code is run independently in parallel on p processors.
Right: The parallelized code is run on p processors simultaneously for p successive
runs.

4

3.1 Fixed Iteration Number

Let t be the running time of the sequential algorithm and tp = c t/p
the running time of the parallelized sequential algorithm, where c > 1
aggregates the communication and other overhead costs of the paral-
lelized version. Let n be the maximum number of times we can run the
RA before we must use the best solution found and assume that n = p
where p is the number of processors.

Then r = t is the total running time of running the sequential al-
gorithm on p processors in parallel. Since the total running time of p
sucessive runs of the parallelized version is rp = p × tp = c t we can
see easily that nothing is gained by a parallelization. Even worse, every
effort invested in this task is a waste of resources.

3.2 Random Iteration Number

The situation changes if the running time of the RA is a random
variable. For instance, this may be caused by some stopping rule that is
independent from the iteration counter. Let T be the random running
time of the sequential algorithm and Tp = c T/p the running time of the
parallelized sequential algorithm with c > 1. Again, assume n = p. Then
the random total running time R of running the sequential algorithm on
p processors in parallel is

R = max{T (1), T (2), . . . , T (p) } = Tp:p

where T (i) is the running time at processor i. Clearly, the T (i) are
independent and identically distributed. Assume that T (i) is normally
distributed with mean t > 0 and variance σ2. Then the expectation of
R can be approximated [3] via

E[R] = E[Tp:p] ≈ E[T] + D[T]
√

2 log p . (4)

The random total running time Rp of p sucessive runs of the parallelized
version is given by

Rp =
p∑

i=1

Tp(i) =
c

p

p∑
i=1

T (i)

with expectation
E[Rp] = c E[T] .

Thus, the parallelized version is faster if

E[Rp] < E[R] ⇔ c < 1 +
D[T]
E[T]

×
√

2 log p . (5)

Deployment Scenarios of Parallelized Code in Stochastic Optimization 5

In other words, the larger is the coefficient of variation ν = D[T]/E[T]
the larger the benefit achieved by the parallelization of the sequential al-
gorithm! As seen from this analysis, this scenario can be an appropriate
field of deployment of parallelized RAs.

One may object that the conclusions drawn from the relationship in
(5) are shaky since equation (4) is an approximation only. In order to
invalidate this objection we first consider an example for which the result
can be reproduced exactly in analytical manner. Next we generalize the
result by means of Theorem 1.

Assume that T (i) ∼ U(t − ε, t + ε) are uniformly distributed in the
interval [t− ε, t+ ε] for some t, ε > 0. For sake of brevity we shall write
T instead of T (i). Insertion in (1) yields

E[T] = t , V[T] =
ε2

3
, E[Tp:p] = t + ε

p− 1
p + 1

.

Thus, E[Rp] < E[R] if and only if c t ≤ t+ε (p−1)/(p+1) or equivalently

c < 1 +
ε

t
√

3
p− 1
p + 1

√
3 = 1 +

D[T]
E[T]

× p− 1
p + 1

√
3 . (6)

For example, if we use 9 processors and the running time is uniformly
distributed between 40 and 60 seconds then (6) yields c < 1 + 4/25 =
1.16. As a consequence, the efficiency 1/c of the parallelization must be
larger than 25/29 ≈ 86.2 %. Otherwise, one should run the sequential
code in parallel independently.

Next, we generalize our findings. Comparison of (5) and (6) reveals
the same pattern:

c < 1 +
D[T]
E[T]

× g(p) (7)

for some function g(·) depending on the number of processors p. In order
to derive condition (7) analytically recall that the condition originally
reads

E[Rp] < E[R] ⇔ cE[T] < E[Tp:p] ⇔ c <
E[Tp:p]
E[T]

.

Evidently, this condition is fulfilled if we bound E[Tp:p] from above via
Theorem 1, that is valid for arbitrary runtime distributions. We obtain

c <
E[Tp:p]
E[T]

≤
E[T] + D[T]× p−1√

2 p−1

E[T]
= 1 +

D[T]
E[T]

× p− 1√
2 p− 1

confirming that the pattern in (7) did not appear by chance. Moreover,
we have shown that

g(p) ≤ p− 1√
2 p− 1

6

regardless of the runtime distribution of T .

4. Scenario: Run Until Satisfactory Solution
Found

One might argue that the previous scenario is not always the case. For
example, if we need only a satisfactory solution then we can stop the
RA as soon as such a solution has been detected. In principle, this can
happen in a single run of the RA. Figure 2 illustrates our two options
how to use the parallel hardware.

SEQ

6t

· · ·

· · ·

...
...

...
...

1 2 3 . . . p

PAR

6t
...

1 2 3 . . . p

Figure 2. Left: The sequential code is run independently in parallel on p processors
until a satisfactory solution is found. Right: The parallelized code is run repeatedly
on p processors simultaneously until a satisfactory solution is found.

4.1 Fixed Iteration Number

As in the previous scenario let t be the running time of the sequential
algorithm and tp = c t/p the running time of the parallelized sequential
algorithm with c > 1. Suppose there exists a success probability s ∈
(0, 1) for each run of the RA such that the random variable G represents
the number of runs until a successful run occurs. The random variable
G has geometrical distribution with probability function

P{G = k } = s (1− s)k−1

for k = 1, 2, . . . and s ∈ (0, 1) with

E[G] =
1
s

and V[G] =
1− s

s2
.

The time until a successful run occurs on a single processor is S = t G.
Therefore, the random total running time R of running the sequential

Deployment Scenarios of Parallelized Code in Stochastic Optimization 7

algorithm on p processors in parallel is

R = min{S(1), S(2), . . . , S(p) } = S1:p = t G1:p

where G1:p denotes the minimum of p independent and identically dis-
tributed geometrical random variables. According to [6] we have

E[G1:p] =
1

1− (1− s)p
and V[G1:n] =

(1− s)n

[1− (1− s)n]2

such that
E[R] = t E[G1:p] =

t

1− (1− s)p
.

The random total running time Rp of p sucessive runs of the parallelized
version is given by

Rp = tp S =
c

p
t S

with expectation

E[Rp] =
c

p
t E[S] =

c t

s p
.

Since
E[Rp] < E[R] ⇐⇒ c <

s p

1− (1− s)p

there are constellations in which a parallelized version is useful. Figure
3 is intended to provide an impression about the interrelationships. For
small success probabilities s as one usually faces in optimizations task
in which RAs are used as last remedy, the effeciency of the parallel im-
plementation must be extremely high for recommending the deployment
of the parallelized code. Especially in real-time environments assumed
here it is unlikely to achieve such a high efficiency.

4.2 Random Iteration Number

Let T (i) be the random running time of run i. Then

S =
G∑

i=1

T (i)

is the random time until the first successful run on a single processor.
According to Theorem 2 we have E[S] = E[G]E[T]. As a consequence,
the random total running time R of running the sequential algorithm on
p processors in parallel is

R = min{S(1), S(2), . . . , S(p) } = S1:p

8

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

ef
fic

ie
nc

y
(1

/c
)

success probability

p = 3

p = 10

p = 2

p = 5

Figure 3. Success probability s versus efficiency 1/c of the parallel implementation
for some processor numbers.

with
E[R] = E[S1:p] < E[S] = E[T]E[G] .

The random total running time Rp of p sucessive runs of the parallelized
version is given by

Rp =
G∑

i=1

Tp(i) =
c

p

G∑
i=1

T (i)

with
E[Rp] =

c

p
E[T]E[G] =

c

p
E[S] =

c t

s p
.

Our condition reads

E[Rp] < E[R] ⇔ c

p
E[S] < E[S1:p] .

We can express E[S] in terms of E[T] and E[G] but there is a problem
for E[S1:p]: Although we can use the lower bound of Theorem 1 to
claim that there is a nonnegative-valued function h(·) with E[S1:p] =

Deployment Scenarios of Parallelized Code in Stochastic Optimization 9

E[S]−D[S]× h(p) and we can express D[S] in terms of moments of T
and G via Theorem 2, the resulting formula

c

p
E[S] < E[S]− D[S]× h(p) ⇔ c < p

(
1− D[S]

E[S]
× h(p)

)
does not yield much insight for analyzing the situation.

Therefore we take a look at our condition c
p E[S] < E[S1:p] again.

If each Ti has a minimum runtime a > 0 then E[S] ≥ aE[G] and
E[S1:p] ≥ aE[G]. Since

c

p
E[S] ≥ c

p
aE[G] → 0 as p →∞

whereas
E[S1:p] ≥ aE[G] > 0 regardless of p

we may conclude that there exists a processor number p0 such that
E[Rp] < E[R] for all p > p0. Thus, this scenario is well suited for
parallelized code if many processors are available.

5. Conclusions
We have shown that the recommendation for a deployment of paral-

lelized code depends on several constraints. If we have a fixed time slot
and a constant running time of the algorithm then the deployment of
parallelized code is a waste of resources. If we can wait until completion
of the randomized algorithm which has a random running time, then we
need a moderately efficient parallel implementation and a large varia-
tion in the running time to favor the parallelized code. If we are in the
situation to repeat the algorithm until it fulfills some criterion, then the
condition for deploying parallelized code demands a hardly achievable
efficiency of the code in case of constant running time. If the running
time is random then parallelized code may lead to shorter overall run-
ning time if many processors are available. The theory in its current
state, however, does not yet provide a condition to quantify the number
of processors that must be available. Nevertheless, the theory provides
some clues that random running times of the randomized algorithms
more often lead to recommendations for deploying parallelized code.

References
[1] J. Aczél and W. Ertel. A new formula for speedup and its characterization. Acta

Informatica, 34:637–652, 1997.

[2] E. Alba and A. Luque. Measuring the performance of parallel metaheuristics. In
E. Alba, editor, Parallel metaheuristics: A New Class of Algorithms, pages 43–62,
Hoboken (NJ), 2005. Wiley.

10

[3] H. A. David. Order Statistics. Wiley, New York, 2nd edition, 1981.

[4] G. Rudolph. Parallel evolution strategies. In E. Alba, editor, Parallel metaheuris-
tics: A New Class of Algorithms, pages 155–169, Hoboken (NJ), 2005. Wiley.

[5] K. D. Schmidt. Versicherungsmathematik. Springer, Berlin et al., 2002.

[6] D. H. Young. The order statistics of the negative binomial distribution. Bio-
metrika, 57(1):181–186, 1970.

