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Abstract�Probabilistic Incremental Learning �PBIL� has
been proposed as a model for binary coded evolutionary
algorithms where the population is represented by its mean
vector which is updated in an autoregressive manner�
In this paper we prove that under the PBIL update rule

each component of the population vector converges with
probability one to � ���� whenever a � ��� in the associated
bit consistently yields better �tness values than the oppo	
site setting� As a corollary� we obtain global convergence
of PBIL for linear pseudoboolean functions including the
commonly investigated Counting	Ones problem�

I� Introduction

Although the idea of population�based incremental learn�
ing �PBIL� was presented to a broader public only as re�
cently as ���� at a Machine Learning Conference ��� there
already exist applications to real�world optimization prob�
lems ��� At Siemens AG� PBIL has been hybridized with
gradient techniques to concurrently evolve optimal topolo�
gies and weights for neural networks in forecasting appli�
cations �	� Meanwhile� some theoretical claims regarding
a time�continuous model of PBIL are available ��� Unfor�
tunately� proofs are missing
Here� we formulate and investigate PBIL as a stochas�

tic time�discrete dynamical system In the course of the
analysis of the expected behaviour of PBIL� we prove con�
vergence for linear pseudoboolean functions and we illus�
trate the convergence behaviour on a particular nonlinear
problem While our results also provide insight into PBIL�s
behaviour on more complex applications� a formal investi�
gation of such settings is beyond the scope of this paper

II� Population�Based Incremental Learning

The concept of PBIL rests on the idea that a population
of admissible solutions of some minimization problem with
search space IB� � f�� �g� can be represented by the statis�
tics of its gene pool Assume that we have a �nitely large
population of � individuals in IB� that may be gathered in
the matrix

X �

�
BBB�

x�� x�� � � � x��
x�� x�� � � � x��





x�� x�� � � � x��

�
CCCA

where the row vector xi� � �xi� xi� � � � xi�� represents the
ith individual �i � �� � � � � �� whereas the column vector
x�j � �x�j x�j � � � x�j�� represents the gene pool of compo�
nent j � �� � � � � � In a usual evolutionary algorithm with

gene pool recombination ��� p ��
� an o�spring y would be
generated by choosing a gene at randomwith uniformprob�
ability ��� from each gene pool Evidently� this is equiva�
lent to the method to calculate the relative frequencies pj
of the �s in each gene pool and to generate an o�spring by
drawing component yj from a binomial distribution with
Pf yj � � g � pj and Pf yj � � g � �� pj for j � �� � � � � �

Thus� one only needs the vector p � �
� ��� � IR� of relative
frequencies to represent the population and to generate �
o�spring with � � � The � best o�spring are selected
and their gene pool serves to determine the new vector of
relative frequencies This method is a variant of an evolu�
tionary algorithm experimentally investigated in ���
To elucidate the di�erences between this method

and PBIL let us consider their update rules� Let
y���� y���� � � � � y��� denote the � sorted trial vectors with
f�y���� � f�y���� � � � � � f�y���� where f � IB

� � IR is the
objective function to be minimized With � � �
� �� and
t � IN� the update rules are given by

p�t��� �
�

�

�X
k��

y
�t�
k�� ���

p�t��� � ��� �� p�t� � �
�

�

�X
k��

y
�t�
k�� ���

where the initial setting is p
���
i � ��� for i � �� � � � � � Rule

��� is associated with the evolutionary algorithm employ�
ing gene pool recombination and truncation selection as
described above whereas rule ��� is associated with PBIL
Note that both update rules lead to stochastic algorithms

that can be modeled via Markov chains The state space of
the Markov chain associated with update rule ��� is �nite
with cardinality ������ and it is easy to see that p�t� can be
absorbed with nonzero probability by each vector p��� �
IB� regardless of the objective function As a consequence�
this algorithm may converge to each admissible solution�
regardless of optimality
In contrast to the algorithm above� PBIL does not seem

to have this property Note that the state space of the
Markov chain associated with update rule ��� is in�nite
but denumerable Since p�t� � �
� ��� for all t � 
� provided
that p��� � �
� ���� the process cannot be trapped in points
represented by the set IB� Nevertheless� it is still possible
that the process stochastically converges to a corner of the
hypercube In the best case the global solution of objective
function f��� is the only point to which the process will
stochastically converge Even if only local solutions �with



respect to Hamming distance� were candidates of such an
event� PBIL would be preferable to the EA associated with
update rule ���
It is our goal to investigate the convergence properties of

PBIL Following common practice ��� 	� will shall consider
PBIL�s update rule for the special case � � � leading to

p�t��� � ��� �� p�t� � �b�t� �	�

with b�t� �� y
�t�
��� Thus� only the best out of � trial vectors

is involved in updating the vector of probabilities

III� Theoretical Analysis

Since the stochastic sequence �p�t� � t � 
� is bounded in
�
� ��� we may interchange limit and expectation� ie� the
relation

lim
t��

E� p�t� � � E� lim
t��

p�t� �

is valid If we obtain the result lim
t��

E� p�t� � � x � IB� we

may conclude that the stochastic sequence �p�t� � t � 
�
converges in mean �and therefore in probability� to the
limitx � IB� Thus� we shall investigate the �deterministic�
sequence of expectations �E� p�t� � � t � 
� to identify points
in � 
� ��� to which PBIL�s stochastic process �p�t� � t � 
�
will eventually converge
The �rst step in the determination of the mean value

recursion of PBIL consists of taking conditional expecta�
tions with respect to p�t� on both sides of equation �	�
which leads to

E� p�t��� j p�t� � � ��� �� p�t� � �E� b�t� j p�t� � ���

where E� b�t� j p�t� � � F��p
�t�� is expressible as a function

F���� with argument p�t� Notice that the conditional ex�
pectation E� p�t��� j p�t� � above is a random vector repre�
senting the least�squares�best predictor of random vector
p�t��� Thus� we have to take expectations on both sides
of equation ��� Since E�E� p�t��� j p�t� � � � E� p�t��� � we
obtain

E� p�t��� � � ��� ��E� p�t� � � �E�F��p
�t�� � � ���

Unless F���� is a linear function we have E�F��p
�t�� � 	�

F��E� p
�t� �� in general Consequently� if the map G���

describes the true mean value recursion of PBIL via
E� p�t��� � � G�E� p�t� ��� we also obtain

G�q� 	� ��� �� q � �F��q�

in general In any case� a closer look at function F����
is necessary In the sequel we shall suppress the iteration
counter Since

E� b j p � �
X
x�IB�

x � Pf b � x g ���

we need the probability distribution of random vector b

Theorem � Let f � IB� � IR be a pseudoboolean func�
tion and let p � �
� ��� be the vector of probabilities pi �

Pf si � � g of the independent events to draw a � at posi�
tion i � �� � � � � � of random vector s and a � otherwise� If
� � � vectors s are drawn independently according to the
probabilities p then the probability Pf b � x g that x � IB�

is the vector with the least function value is given by

Pf b � x g �

Pf s � x g
���X
k��

Pf f�s� 	 f�x� gk �Pf f�s� � f�x� g����k�

Proof� Assume that the � independent and identically
distributed trial vectors are drawn sequentially so that they
are indexed by numbers from � to � If there is more than
one vector with the least objective function value the tie
is broken by choosing that vector with the smallest index
Let x � IB� be arbitrary but �xed and let Ak with k �

� � � � � �� � denote the following event�

� The �rst k trial vectors are worse than vector x
� The vector x is drawn in trial k � �
	 The last � � � � k trial vectors are not better than
vector x

Each of these events Ak leads to the assignment b �� x As
a consequence� the probability that some vector x � IB� is
the selected best one is given by

Pf b� � x g �
���X
k��

PfAk g �

���X
k��

Pf f�s� 	 f�x� gk � Pf s � x g �Pf f�s� � f�x� g����k

and the proof is completed �

Remark� Elementary transformations of the sum above
lead to the equivalent expression

Pf b� � x g �

Pf s � x g
Pf f�s� � f�x� g� � Pf f�s� 	 f�x� g�

Pf f�s� � f�x� g � Pf f�s� 	 f�x� g
� �

Since the probabilities of the events appearing in Theo�
rem � can be expressed in terms of p via

Pf s � x g �
�Y

i��

pxi

i ��� pi�
��xi

Pf f�s� � f�x� g �
X
y�IB�

f�y��f�x�

Pf s � y g

Pf f�s� 	 f�x� g �
X
y�IB�

f�y��f�x�

Pf s � y g

the expectation of the best vector b in equation ��� is given
by a nonlinear function of the probabilities gathered in vec�
tor p and the sample size �



To illustrate the line of thoughts appearing in the sub�
sequent proofs we shall explicitly elaborate the simplest
nontrivial case with � � � and � � � for the counting�ones
problem with objective function

f�x� �
�X

i��

xi �

Following the general approach presented in Theorem � we
straightforwardly obtain the probability distribution of b
and hence its expectation Since

P

�
b �

�
�

�

��
� �� �p� � p� � p� p��

�

P

�
b �

�
�

�

��
� ��� p�� p� �p� � p��

P

�
b �

�
�

�

��
� p� ��� p�� �p� � p��

P

�
b �

�
�

�

��
� �p� p��

�

the expectation of b conditioned by p is

E� b j p � � F��p� �

�
p� ��� p�� �p� � p�� � �p� p���

p� ��� p�� �p� � p�� � �p� p���

�
�

���
Figure � shows the vector �eld of the map F��p� The inter�
pretation is as follows� For given probabilities p the least�
squares�best prediction of the probabilities in the next iter�
ation is F��p� and the arrows represent the directions from
p to F��p�

Fig� �� Vector �eld of map F��p��

A closer look at Figure � provides evidence that the re�
lation F��p� � p could be valid In fact� this is true As a

consequence� equation ��� can be bounded via

E� p�t��� j p�t� � � ��� �� p�t� � �F��p
�t��

� ��� �� p�t� � �p�t� � p�t�

and we obtain

E�E� p�t��� j p�t� � � � E� p�t��� � � E� p�t� � �

We may conclude that E� p
�t�
i �� 
 as t�
 for i � �� �

This example shows that PBIL will converge in mean
to a point in IB� if the �ux of the conditional expectation
moves in only one direction for each dimension A more
formal and general statement of this fact is given below

Theorem � Let f � IB� � IR be some pseudoboolean func�
tion and �p�t� � t � 
� be the random sequence generated by
PBIL� Then

E� p
�t�
i �� x�i �

�

 if �p � �
� ��� � E� bi j p � � pi
� if �p � �
� ��� � E� bi j p � 	 pi

as t�
� �

It is clear that the condition of the theorem above
will not be ful�lled for arbitrary pseudoboolean functions
Moreover� the veri�cation of the conditions requires tedious
calculations Therefore it is useful to develop su cient cri�
teria that are much easier to check

Theorem � Let ei be the i�th unit vector with dimension
� and !ei its binary complement� If

Pf b � x � ei g

Pf s � x � ei g
�
Pf b � x  !ei g

Pf s � x  !ei g
���

for arbitrary x � IB�� p � �
� ���� and i � f�� � � � � �g then
E� bi j p � � pi� If the inequality sign in ��� is reversed one
obtains E� bi j p � 	 pi�

Proof� With ri�x� �
�Q

j��
j ��i

p
xj

j ��� pj�
��xj 	 
 one obtains

Pf s � x  !ei g � ��� pi� ri�x�
Pf s � x � ei g � pi ri�x�

�
���

Insertion of the identities ��� into inequality ��� and rear�
rangement leads to

Pf b � x�ei g � pi �Pf b � x!ei g�Pf b � x�ei g � � ��
�

The conditional expectation of bi can be bounded via

E� bi j p � �
X
x�IB�

xiPf b � x g

�
�

�

X
x�IB�

Pf b � x� ei g ����

�
�

�
pi
X
x�IB�

�Pf b � x  !ei g� Pf b � x � ei g�

�
�

�
pi
X
x�IB�

�Pf b � x g � pi



where inequality ��
� was inserted into ���� The proof for
reversed inequality sign in ��� is analogous and therefore
omitted �

Thanks to Theorem 	 we are exempted from the task
to determine explicit bounds on the conditional expecta�
tion As it is shown below� the conditions of Theorem 	
are ful�lled for linear pseudoboolean functions

Theorem � Let f�x� � c� � c�x be a linear function with
x � IB� and ci � IR n f
g for all i � 
� �� � � � � �� Then

Pf b � x � ei g

Pf s � x � ei g
�
Pf b � x  !ei g

Pf s � x  !ei g
if ci 	 
 and

Pf b � x � ei g

Pf s � x � ei g
	
Pf b � x  !ei g

Pf s � x  !ei g
if ci � 


for all i � �� � � � � � simultaneously if p � �
� ����

Proof� Owing to Theorem � we have

Pf b � x g

Pf s � x g

�
���X
k��

Pf f�s� 	 f�x� gk � Pf f�s� � f�x� g����k� ����

With fi�x� � c� �
�P

j��
j ��i

cj xj we obtain�

� If ci 	 
 then

f�x � ei� � ci � fi�x� 	 fi�x� � f�x  !ei�

and hence

Pf f�s�
���

� f�x�ei� g � Pf f�s�
���

� f�x!ei� g� ��	�

� If ci � 
 then

f�x � ei� � ci � fi�x� � fi�x� � f�x  !ei�

and hence

Pf f�s�
���

� f�x�ei� g 	 Pf f�s�
���

� f�x!ei� g� ����

Replacement of x by x� ei and x !ei� respectively� in ����
yields two �nite sums Taking into account the inequalities
��	� and ���� a pairwise comparison of the summands in
both sums leads to the desired result �

The corollary below o�ers a summary and a strengthen�
ing of the results�

Corollary � Let f�x� � c��c�x be a linear pseudoboolean
function with x � IB� and ci � IR n f
g for i � 
� �� � � �� ��
If �p�t� � t � 
� denotes the random sequence generated by

PBIL� then p
�t�
i � x�i for all i � �� � � � � � in mean and with

probability 	 as t � 
� where x� is the global solution of
the objective function f����

Proof� Theorem � implies that the conditions of Theorem
	 are ful�lled if PBIL is applied to linear pseudoboolean
functions Theorem 	 in turn satis�es the conditions of
Theorem � and we may conclude that p�t� � x� in mean
as t�

As for convergence with probability �� note that Theo�

rem 	 also implies that

E� kp�t��� � x�k j p�t� � � kp�t� � x�k ����

for all t � 
� where k � k denotes the ��norm �ie� sum of
absolute values� Inequality ���� reveals that the random
sequence �kp�t��x�k � t � 
� is a nonnegative supermartin�
gale ��� that converges with probability � to its �nite limit
v� say
Since both convergence in mean and convergence with

probability � implies convergence in probability� we obtain
the result that kp�t� � x�k converges in probability to zero
as well as to v But since the limits must be unique� we
may conclude that Pf v � 
 g � � �

Note that linear pseudoboolean functions have exactly
one local solution with respect to Hamming distance The
next example provides evidence that the behavior of PBIL
in case of nonlinear problems with more than one local
solution is di�erent from the linear case
Let f � IB� � IR represent a class of objective functions

obeying the relation f���� � f���� � f���� � f���� For
example� an instance of this class is the objective function
f�x�� x�� � 	x���x���x� x� Every instance of this class
is a nonlinear function with two local minima attained at
the positions x� � ��� ��� and x� � ��� ���
If the number of trial vectors is set to � � � the condi�

tional expectation of b is

E� b j p � � G��p� �

�
p� � p� � � p�� ��� p���

p� � p� � � p� ��� p���

�
����

where we have used the method presented previously to
obtain the probability distribution of b Figure � shows
the motion of the conditional expectation for given p
Evidently� PBIL will converge to both optima with a

certain probability depending on the initial setting of p���
Therefore PBIL will not stochastically converge to the
global solution in the general case

IV� Conclusions

We presented an analysis of the convergence behavior
of the PBIL algorithm It was proven that the simple
dynamics of PBIL�s update rule ensure convergence with
probability � to the global optimum in the case of linear
pseudoboolean functions
As for nonlinear problems� the behavior of PBIL becomes

more complex Based on a simple example we have shown
graphically that PBIL may be attracted by local �non�
global� solutions as well
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