

Computational Intelligence

Winter Term 2009/10

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Who are you? either studying "Automation and Robotics" (Master of Science) Module "Optimization" or studying "Informatik" - BA-Modul "Einführung in die Computational Intelligence" - Hauptdiplom-Wahlvorlesung (SPG 6 & 7)

Plan for Today Lecture 01 Organization (Lectures / Tutorials) Overview Cl Introduction to ANN McCulloch Pitts Neuron (MCP) Minsky / Papert Perceptron (MPP) technische universität G. Rudolph: Computational Intelligence ⋅ Winter Term 2009/10 2

ganizational Issues			Lecture 01			
Lectures	Wednesday	10:15-11:45	OH-14, R. E23			
Tutorials	Wednesday Thursday	16:15-17:00 16:15-17:00	OH-14, R. 304 OH-14, R. 304	group 1 group 2		
Tutor	Nicola Beume, LS11					
	l-www.cs.unido ectures/CI/WS20					
Slides Literature	see web see web					
Literature	See Wen					

Analogons			
Neurons	simple MISO processors (with parameters: e.g. threshold)		
Synapse	connection between neurons (with parameters: synaptic weight)		
Topology	interconnection structure of net		
Propagation	working phase of ANN → processes input to output		
Training / Learning	adaptation of ANN to certain data		

Introduction to Artificial Neural Networks McCulloch-Pitts-Neuron n binary input signals $x_1, ..., x_n$ threshold $\theta > 0$ in addition: m binary inhibitory signals $y_1, ..., y_m$ $\widetilde{f}(x_1, ..., x_n; y_1, ..., y_m) = f(x_1, ..., x_n) \cdot \prod_{j=1}^m (1-y_j)$ • if at least one $y_j = 1$, then output = 0 • otherwise: - sum of inputs \geq threshold, then output = 1 else output = 0

technische universität

Introduction to Artificial Neural Networks

Lecture 01

Proof: (by construction)

Every boolean function F can be transformed in disjunctive normal form

- ⇒ 2 layers (AND OR)
- Every clause gets a decoding neuron with θ = n
 output = 1 only if clause satisfied (AND gate)
- 2. All outputs of decoding neurons are inputs of a neuron with θ = 1 (OR gate)

q.e.d.

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Introduction to Artificial Neural Networks

Lecture 01

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^+$.

Proof:

Let
$$\sum_{i=1}^n rac{a_i}{b_i} x_i \geq rac{a_0}{b_0}$$
 with $a_i, b_i \in \mathbb{N}$

Multiplication with $\prod_{i=0}^n b_i$ yields inequality with coefficients in $\mathbb N$

Duplicate input x_i , such that we get $a_i b_1 b_2 \cdots b_{i-1} b_{i+1} \cdots b_n$ inputs.

Threshold $\theta = a_0 b_1 \cdots b_n$

"←"

Set all weights to 1.

q.e.d.

technische universität

a universität G. Rudolph: Computational Intelligence • Winter Term 2009/10

Introduction to Artificial Neural Networks

Lecture 01

Conclusion for MCP nets

- + feed-forward: able to compute any Boolean function
- + recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

technische universität dortmund

Introduction to Artificial Neural Networks

Lecture 01

Perceptron (Rosenblatt 1958)

- \rightarrow complex model \rightarrow reduced by Minsky & Papert to what is "necessary"
- → Minsky-Papert perceptron (MPP), 1969

What can a single MPP do?

isolation of x₂ yields:

$$x_2 \ge \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1 \qquad \bigvee_{N = 0}^{J} \quad 0$$

Example:

$$0,9x_1+0,8x_2 \ge 0,6$$

technische universität

separating line

separates \mathbb{R}^2

in 2 classes

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Introduction to Artificial Neural Networks

Lecture 01

1969: Marvin Minsky / Seymor Papert

- book *Perceptrons* → analysis math. properties of perceptrons
- disillusioning result: perceptions fail to solve a number of trivial problems!
 - XOR-Problem
 - Parity-Problem
 - Connectivity-Problem
- "conclusion": All artificial neurons have this kind of weakness!
- ⇒ research in this field is a scientific dead end!
- consequence: research funding for ANN cut down extremely (~ 15 years)

Introduction to Artificial Neural Networks

Lecture 01

How to obtain weights w_i and threshold θ ?

as yet: by construction

example: NAND-gate

X ₁	X ₂	NAND	
0	0	1	$\Rightarrow 0 \ge \theta$
0	1	1	\Rightarrow $W_2 \ge \theta$
1	0	1	$\Rightarrow w_1 \ge \theta$
1	1	0	\Rightarrow w ₁ + w ₂ <

requires solution of a system of linear inequalities (∈ P)

(e.g.: $w_1 = w_2 = -2$, $\theta = -3$)

now: by "learning" / training

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Introduction to Artificial Neural Networks

Lecture 01

I/O correct!

let w'x \leq 0. should be > 0!

let w'x > 0, should be \leq 0!

(w-x)'x = w'x - x'x < w'x

(w+x)'x = w'x + x'x > w'x

Perceptron Learning

P: set of positive examples N: set of negative examples

- 1. choose w_0 at random, t = 0
- 2. choose arbitrary $x \in P \cup N$
- 3. if $x \in P$ and w_t 'x > 0 then goto 2 if $x \in N$ and $w_t, x \le 0$ then goto 2
- 4. if $x \in P$ and $w_t, x \le 0$ then $W_{t+1} = W_t + x$; t++; goto 2
- 5. if $x \in N$ and w_t 'x > 0 then $W_{t+1} = W_t - X$; t++; goto 2
- 6. stop? If I/O correct for all examples!

remark: algorithm converges, is finite, worst case: exponential runtime

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Introduction to Artificial Neural Networks

Lecture 01

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

- (1) choose initial weights in arbitrary manner
- (2) fed in test pattern
- (3) if output of perceptron wrong, then change weights
- (4) goto (2) until correct output for al test paterns

graphically:

→ translation and rotation of separating lines

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Introduction to Artificial Neural Networks

Example

$$P = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\} \bullet$$

$$N = \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \odot$$

threshold as a weight: $w = (\theta, w_1, w_2)$

$$\begin{array}{ccc}
1 & \xrightarrow{-\theta} \\
x_1 & \xrightarrow{w_1} \\
x_2 & \xrightarrow{w_2}
\end{array}$$

$$P = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$$

 $N = \left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$

suppose initial vector of weights is

 $W^{(0)} = (1, -1, 1)^{\circ}$

technische universität

Introduction to Artificial Neural Networks We know what a single MPP can do. What can be achieved with many MPPs? Single MPP \Rightarrow separates plane in two half planes Many MPPs in 2 layers \Rightarrow can identify convex sets 1. How? \Rightarrow 2 layers! \forall a,b \in X: \forall a + (1- \forall) b \in X for \forall c (0,1) technische universität G. Rudolph: Computational Intelligence • Winter Term 2009/10 29

