Computational Intelligence
Winter Term 2009/10

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund
Plan for Today

- Organization (Lectures / Tutorials)
- Overview CI
- Introduction to ANN
 - McCulloch Pitts Neuron (MCP)
 - Minsky / Papert Perceptron (MPP)
Organizational Issues

Lecture 01

Who are you?

either

studying “Automation and Robotics” (Master of Science)
Module “Optimization”
or

studying “Informatik”
- BA-Modul “Einführung in die Computational Intelligence”
- Hauptdiplom-Wahlvorlesung (SPG 6 & 7)
Organizational Issues

Who am I?

Günter Rudolph
Fakultät für Informatik, LS 11

Gunter.Rudolph@tu-dortmund.de ← best way to contact me
OH-14, R. 232 ← if you want to see me

office hours:
Tuesday, 10:30–11:30am
and by appointment
Organizational Issues

Lectures
- Wednesday 10:15-11:45 OH-14, R. E23

Tutorials
- Wednesday 16:15-17:00 OH-14, R. 304
- Thursday 16:15-17:00 OH-14, R. 304

Tutor
- Nicola Beume, LS11

Information

Slides
- see web

Literature
- see web
Prerequisites

Knowledge about

- mathematics,
- programming,
- logic

is helpful.

But what if something is unknown to me?

- covered in the lecture
- pointers to literature

... and don’t hesitate to ask!
What is CI?

⇒ umbrella term for computational methods inspired by nature

- artificial neural networks
- evolutionary algorithms
- fuzzy systems
- swarm intelligence
- artificial immune systems
- growth processes in trees
- ...

backbone

new developments
Overview “Computational Intelligence“

• term „computational intelligence“ coined by John Bezdek (FL, USA)
• originally intended as a demarcation line
 ⇒ establish border between artificial and computational intelligence
• nowadays: blurring border

our goals:
1. know what CI methods are good for!
2. know when refrain from CI methods!
3. know why they work at all!
4. know how to apply and adjust CI methods to your problem!
Biological Prototype

- Neuron
 - Information gathering (D)
 - Information processing (C)
 - Information propagation (A / S)

human being: 10^{12} neurons
electricity in mV range
speed: 120 m / s
Introduction to Artificial Neural Networks

Abstraction

dendrites → nucleus / cell body → axon

... → signal input → signal processing → signal output → synapse
Model

McCulloch-Pitts-Neuron 1943:

\[x_i \in \{0, 1\} =: \mathbb{B} \]

\[f: \mathbb{B}^n \rightarrow \mathbb{B} \]
1943: Warren McCulloch / Walter Pitts

- description of neurological networks
 → modell: McCulloch-Pitts-Neuron (MCP)

- basic idea:
 - neuron is either active or inactive
 - skills result from connecting neurons

- considered static networks
 (i.e. connections had been constructed and not learnt)
McCulloch-Pitts-Neuron

n binary input signals x_1, \ldots, x_n

threshold $\theta > 0$

$$f(x_1, \ldots, x_n) = \begin{cases} 1 \text{ if } \sum_{i=1}^{n} x_i \geq \theta \\ 0 \text{ else} \end{cases}$$

⇒ can be realized:

boolean OR

\[\begin{array}{c}
\Rightarrow \text{can be realized:} \\
\theta = 1 \\
\end{array} \]

boolean AND

\[\begin{array}{c}
\Rightarrow \text{can be realized:} \\
\theta = n \\
\end{array} \]
McCulloch-Pitts-Neuron

n binary input signals \(x_1, \ldots, x_n \)

threshold \(\theta > 0 \)

in addition: m binary inhibitory signals \(y_1, \ldots, y_m \)

\[
\tilde{f}(x_1, \ldots, x_n; y_1, \ldots, y_m) = f(x_1, \ldots, x_n) \cdot \prod_{j=1}^{m} (1 - y_j)
\]

- if at least one \(y_j = 1 \), then output = 0
- otherwise:
 - sum of inputs \(\geq \) threshold, then output = 1
 - else output = 0
Analogons

<table>
<thead>
<tr>
<th>Neurons</th>
<th>simple MISO processors (with parameters: e.g. threshold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synapse</td>
<td>connection between neurons (with parameters: synaptic weight)</td>
</tr>
<tr>
<td>Topology</td>
<td>interconnection structure of net</td>
</tr>
<tr>
<td>Propagation</td>
<td>working phase of ANN (\rightarrow) processes input to output</td>
</tr>
<tr>
<td>Training / Learning</td>
<td>adaptation of ANN to certain data</td>
</tr>
</tbody>
</table>
Assumption:
inputs also available in inverted form, i.e. \exists inverted inputs.

Theorem:
Every logical function $F : \mathbb{B}^n \rightarrow \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net.

Example:

\[
F(x) = x_1 x_2 \overline{x}_3 \lor \overline{x}_1 x_2 \overline{x}_3 \lor x_1 \overline{x}_4
\]
Proof: (by construction)

Every boolean function F can be transformed in disjunctive normal form

\Rightarrow 2 layers (AND - OR)

1. Every clause gets a decoding neuron with $\theta = n$
 \Rightarrow output = 1 only if clause satisfied (AND gate)

2. All outputs of decoding neurons
 are inputs of a neuron with $\theta = 1$ (OR gate)

q.e.d.
Generalization: inputs with weights

\[
0.2 \times x_1 + 0.4 \times x_2 + 0.3 \times x_3 \geq 0.7
\]

\[
2 \times x_1 + 4 \times x_2 + 3 \times x_3 \geq 7
\]

⇒ duplicate inputs!

⇒ equivalent!
Theorem:
Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^+$.

Proof:

\Rightarrow Let $\sum_{i=1}^{n} \frac{a_i}{b_i} x_i \geq \frac{a_0}{b_0}$ with $a_i, b_i \in \mathbb{N}$

Multiplication with $\prod_{i=0}^{n} b_i$ yields inequality with coefficients in \mathbb{N}

Duplicate input x_i, such that we get $a_i b_1 b_2 \cdots b_{i-1} b_{i+1} \cdots b_n$ inputs.

Threshold $\theta = a_0 b_1 \cdots b_n$

\Leftarrow

Set all weights to 1.

q.e.d.
Conclusion for MCP nets

- feed-forward: able to compute any Boolean function
- recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available
Perceptron (Rosenblatt 1958)

→ complex model → reduced by Minsky & Papert to what is „necessary“
→ Minsky-Papert perceptron (MPP), 1969

What can a single MPP do?

\[w_1 x_1 + w_2 x_2 \geq \theta \]

\[\begin{array}{c}
J \rightarrow 1 \\
N \rightarrow 0
\end{array} \]

Isolation of \(x_2 \) yields:

\[x_2 \geq \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1 \]

\[\begin{array}{c}
J \rightarrow 1 \\
N \rightarrow 0
\end{array} \]

Example:

\[0.9 x_1 + 0.8 x_2 \geq 0.6 \]

\[\Leftrightarrow x_2 \geq \frac{3}{4} - \frac{9}{8} x_1 \]

Separating line separates \(\mathbb{R}^2 \)
in 2 classes
Introduction to Artificial Neural Networks

Lecture 01

\[\text{AND} \quad \text{OR} \quad \text{NAND} \quad \text{NOR} \]

\[
\begin{array}{c|c|c}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

\[
x_1 \quad x_2 \quad \text{xor} \\
0 \quad 0 \quad 0 \\
0 \quad 1 \quad 1 \\
1 \quad 0 \quad 1 \\
1 \quad 1 \quad 0 \\
\]

\[w_1 x_1 + w_2 x_2 \geq \theta \]

\[\Rightarrow 0 < \theta \]
\[\Rightarrow w_2 \geq \theta \]
\[\Rightarrow w_1 \geq \theta \]
\[\Rightarrow w_1 + w_2 < \theta \]

\[w_1, w_2 \geq \theta > 0 \]
\[\Rightarrow w_1 + w_2 \geq 2\theta \]

contradiction!
1969: Marvin Minsky / Seymour Papert

- book *Perceptrons* → analysis math. properties of perceptrons

- disillusioning result: perceptions fail to solve a number of trivial problems!
 - XOR-Problem
 - Parity-Problem
 - Connectivity-Problem

- „conclusion“: All artificial neurons have this kind of weakness!
 ⇒ research in this field is a scientific dead end!

- consequence: research funding for ANN cut down extremely (~ 15 years)
Introduction to Artificial Neural Networks

Lecture 01

how to leave the „dead end“:

1. **Multilayer** Perceptrons:

 \[
 g(x_1, x_2) = 2x_1 + 2x_2 - 4x_1x_2 - 1 \quad \text{with} \quad \theta = 0
 \]

 \[
 \begin{align*}
 g(0,0) &= -1 \\
 g(0,1) &= +1 \\
 g(1,0) &= +1 \\
 g(1,1) &= -1
 \end{align*}
 \]

 \[\Rightarrow\text{realizes XOR}\]

2. **Nonlinear** separating functions:

 XOR

 \[
 g(x_1, x_2) = 2x_1 + 2x_2 - 4x_1x_2 - 1 \quad \text{with} \quad \theta = 0
 \]

 \[
 \begin{align*}
 g(0,0) &= -1 \\
 g(0,1) &= +1 \\
 g(1,0) &= +1 \\
 g(1,1) &= -1
 \end{align*}
 \]
How to obtain weights w_i and threshold θ?

as yet: by construction

example: NAND-gate

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$\Rightarrow 0 \geq \theta$
$\Rightarrow w_2 \geq \theta$
$\Rightarrow w_1 \geq \theta$
$\Rightarrow w_1 + w_2 < \theta$

requires solution of a system of linear inequalities ($\in P$)

(e.g.: $w_1 = w_2 = -2$, $\theta = -3$)

now: by „learning“ / training
Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:
(1) choose initial weights in arbitrary manner
(2) fed in test pattern
(3) if output of perceptron wrong, then change weights
(4) goto (2) until correct output for all test patterns

graphically:
→ translation and rotation of separating lines
Perceptron Learning

- P: set of positive examples
- N: set of negative examples

1. choose w_0 at random, $t = 0$
2. choose arbitrary $x \in P \cup N$
3. if $x \in P$ and $w_t'x > 0$ then goto 2
 - if $x \in N$ and $w_t'x \leq 0$ then goto 2
4. if $x \in P$ and $w_t'x \leq 0$ then
 - $w_{t+1} = w_t + x$; $t++$; goto 2
5. if $x \in N$ and $w_t'x > 0$ then
 - $w_{t+1} = w_t - x$; $t++$; goto 2
6. stop? If I/O correct for all examples!

I/O correct!
- let $w'x \leq 0$, should be > 0!
 - $(w+x)'x = w'x + x'x > w'x$
- let $w'x > 0$, should be ≤ 0!
 - $(w-x)'x = w'x - x'x < w'x$

remark: algorithm converges, is finite, worst case: exponential runtime
Introduction to Artificial Neural Networks

Example

\[P = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} \]

\[N = \left\{ \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \right\} \]

threshold as a weight: \(w = (\theta, w_1, w_2)^T \)

\[P = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} \]

suppose initial vector of weights is \(w^{(0)} = (1, -1, 1)^T \)

\[x_1 \quad x_2 \quad \begin{array}{c} \frac{w_1}{w_2} \end{array} \begin{array}{c} \geq 0 \end{array} \]
We know what a single MPP can do.

What can be achieved with many MPPs?

Single MPP ⇒ separates plane in two half planes
Many MPPs in 2 layers ⇒ can identify convex sets

∀ a,b ∈ X:
λ a + (1-λ) b ∈ X
for λ ∈ (0,1)
Single MPP \Rightarrow separates plane in two half planes
Many MPPs in 2 layers \Rightarrow can identify convex sets
Many MPPs in 3 layers \Rightarrow can identify arbitrary sets
Many MPPs in > 3 layers \Rightarrow not really necessary!

arbitrary sets:
1. partitioning of nonconvex set in several convex sets
2. two-layered subnet for each convex set
3. feed outputs of two-layered subnets in OR gate (third layer)