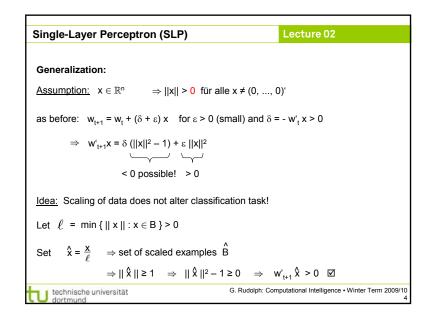
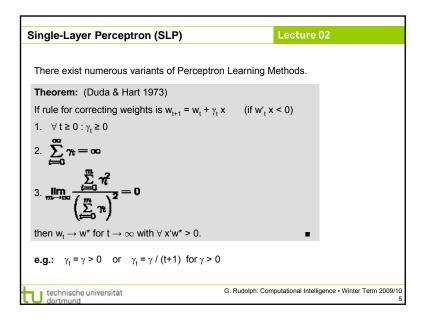
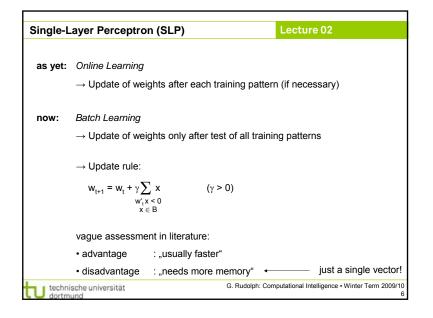


Single-La	ayer Perceptron (SLP)		Lecture 02	
Accelera	tion of Perceptron Learning	9		
Assumptio	<u>on:</u> x ∈ { 0, 1 } ⁿ \Rightarrow x ≥ 1 f	ür alle x ≠ (0,	, 0)'	
If classific	ation incorrect, then w'x < 0.			
Conseque	ently, size of error is just δ =	-w'x > 0.		
\Rightarrow w _{t+1} = v	$w_t + (\delta + \varepsilon) x$ for $\varepsilon > 0$ (small	ll) corrects en	or in a <u>single</u> step, since	
$w_{t+1}^{\prime}x$	= $(w_t + (\delta + \varepsilon) x)' x$			
	$= \underbrace{w'_t x}_t + (\delta + \varepsilon) x'x$			
	= $-\delta + \delta \mathbf{x} ^2 + \varepsilon \mathbf{x} ^2$			
	$= \delta (\mathbf{x} ^2 - 1) + \varepsilon \mathbf{x} ^2 > 0$) 🗹		
	≥ 0 > 0			
	che universität	C. Budah	h: Computational Intelligence • Winter Te	rm 2000

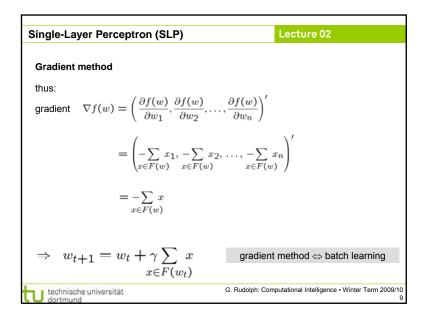


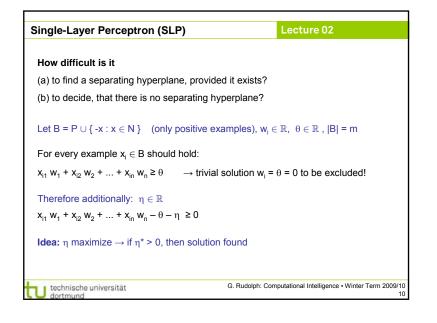


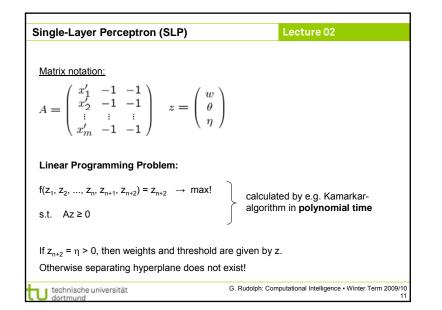


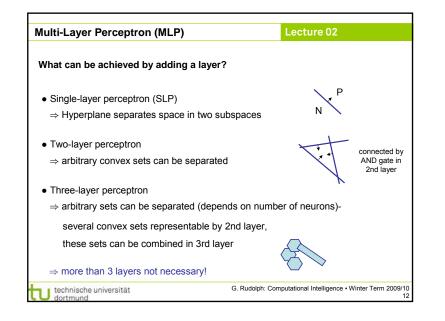
ingle-Layer Percept	ron (SLP)		Lecture 02
find weights by means	s of optimizat	ion	
Let $F(w) = \{ x \in B : w'x \}$	< 0 } be the s	et of patterns incor	rectly classified by weight
Objective function:	$f(w) = -\sum_{x \in F}$	$w^{t}x \rightarrow min!$	
Optimum:	f(w) = 0	iff F(w) is empty	
Possible approach: grad $w_{t+1} = w_t - \gamma \nabla f(w_t)$			converges to a <u>local</u> minimum (dep. on w _o)
U technische universität dortmund		G. Rudolph: Com	putational Intelligence • Winter Term 20

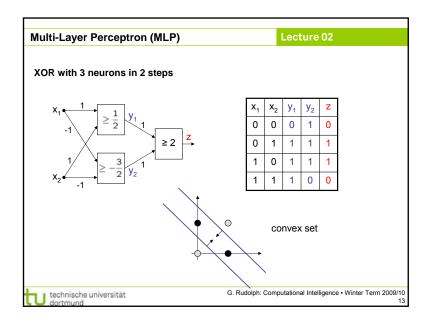
Single-Layer Perceptron (SLP)	Lecture 02
Gradient method	
$w_{t+1} = w_t - \gamma \nabla f(w_t)$	Gradient points in direction of steepest ascent of function $f(\cdot)$
Gradient $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}\right)$	$(w), \dots, \frac{\partial f(w)}{\partial w_n}$ Caution: Indices i of w _i here denote
$\frac{\partial f(w)}{\partial w_i} = -\frac{\partial}{\partial w_i} \sum_{x \in F(w)} w'x = -$	components of
$= -\sum_{x \in F(w)} \underbrace{\frac{\partial}{\partial w_i} \left(\sum_{j=1}^n w_j\right)}_{\sum_{i=1}^n w_i}$	$(\cdot x_j) = -\sum_{x \in F(w)} x_i$
technische universität	G. Rudolph: Computational Intelligence • Winter Term 200

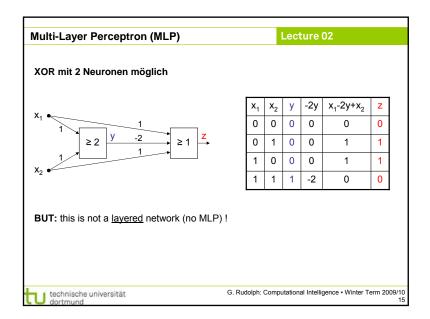


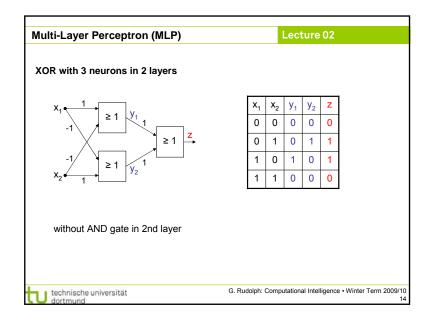




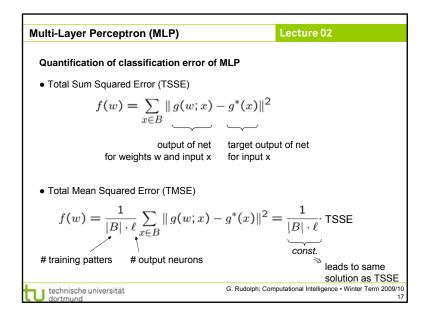


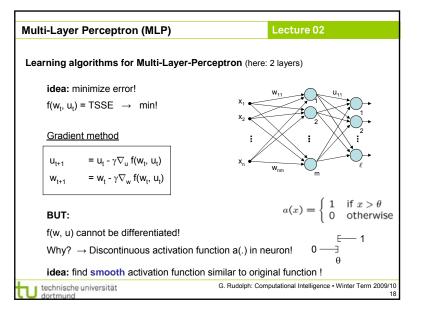


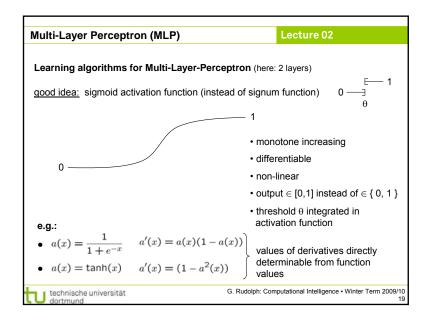


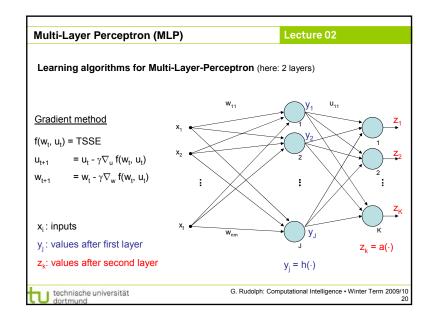


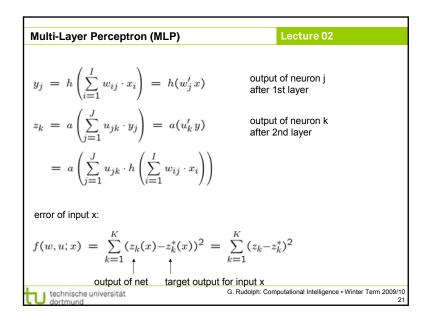
ulti-Layer Perceptron (MLP)	Lecture 02
Evidently:	
MLPs deployable for addressing sig	gnificantly more difficult problems than SLPs
But:	
How can we adjust all these weight	ts and thresholds?
Is there an efficient learning algorit	hm for MLPs?
History:	
Unavailability of efficient learning a	lgorithm for MLPs was a brake shoe
until Rumelhart, Hinton and Wi	Iliams (1986): Backpropagation
Actually proposed by Werbos (197	74)
but unknown to ANN researcher	rs (was PhD thesis)

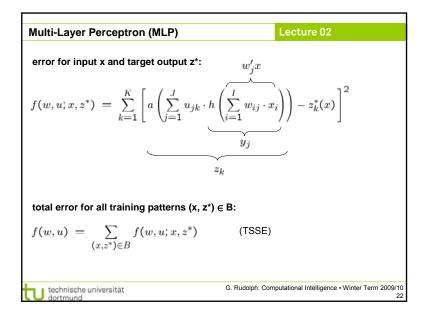


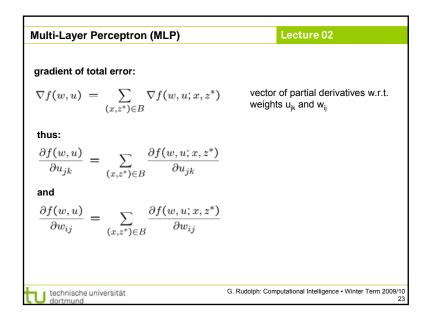












Multi-Laye	r Perceptron (MLP)	Lecture 02
assume:	$a(x) = \frac{1}{1 + e^{-x}} \Rightarrow \cdot$	$\frac{d a(x)}{dx} = a'(x) = a(x) \cdot (1 - a(x))$
and:	h(x) = a(x)	
obain rula	of differential calculus:	
chain ruie	of differential calculus:	
	[p(q(x))]' = p'(q(x))	$(x)) \cdot q'(x)$
	oute derivat	er inner tive derivative
	a universităt	G. Rudolph: Computational Intelligence • Winter Term 2009

