technische universität dortmund	Plan for Today Lecture 03
	Application Fields of ANNs
	 Classification
Computational Intelligence	 Prediction
	 Function Approximation
Winter Term 2009/10	
	 Radial Basis Function Nets (RBF Nets)
	 Model
	 Training
Prof. Dr. Günter Rudolph	
Lehrstuhl für Algorithm Engineering (LS 11)	Recurrent MLP
Fakultät für Informatik	Elman Nets
TU Dortmund	 Jordan Nets
	G. Rudolph: Computational Intelligence • Winter Term 2009/11

adial Basis Function Ne	ts (RBF Nets)	Lecture 03	
Definition:		Definition:	
A function $\varphi:\mathbb{R}^n\to\mathbb{R}$ is term	ed radial basis functio	on RBF local iff	
$iff \exists \phi : \mathbb{R} \to \mathbb{R} : \forall \ x \in \mathbb{R}^{n} : \phi(x) \in \mathbb{R}^{n} : $	$(c, c) = \phi (x - c).$	$\label{eq:phi} \Box \qquad \phi(r) \to 0 \text{ as } r \to \infty$	
typically, x denotes Euclid	dean norm of vector x		
examples:		<u>`</u>	
$\varphi(r) = \exp\left(-\frac{r^2}{\sigma^2}\right)$	Gaussian	unbounded	
$\varphi(r) = \frac{3}{4}(1 - r^2) \cdot 1_{\{r \le 1\}}$	Epanechnikov	bounded	
$\varphi(r) = \frac{\pi}{4} \cos\left(\frac{\pi}{2}r\right) \cdot 1_{\{r \le 1\}}$	Cosine	bounded	
technische universität	G. Rudolph	n: Computational Intelligence • Winter Term 2	009

