

Computational Intelligence

Winter Term 2009/10

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

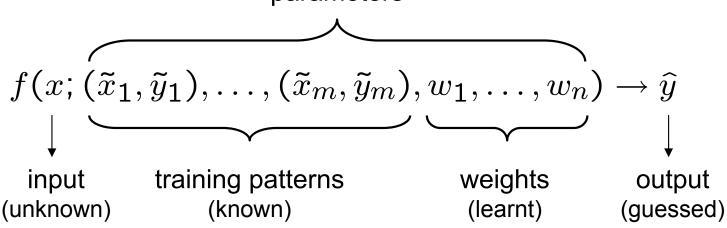
TU Dortmund

- Application Fields of ANNs
 - Classification
 - Prediction
 - Function Approximation
- Radial Basis Function Nets (RBF Nets)
 - Model
 - Training
- Recurrent MLP
 - Elman Nets
 - Jordan Nets

Classification

given: set of training patterns (input / output) output = label (e.g. class A, class B, ...) \widetilde{x}_i \widetilde{u}_i

parameters



phase I:

train network

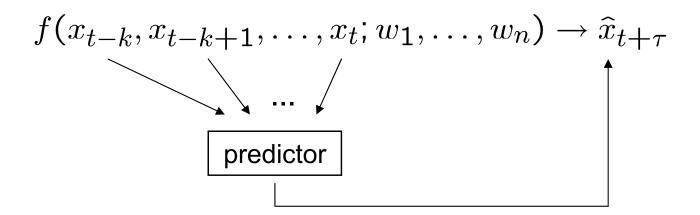
phase II:

apply network to unkown inputs for classification

Prediction of Time Series

time series x_1, x_2, x_3, \dots (e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future



training patterns:

historical data where true output is known;

error per pattern =
$$(\hat{x}_{t+\tau} - x_{t+\tau})^2$$

phase I:

train network

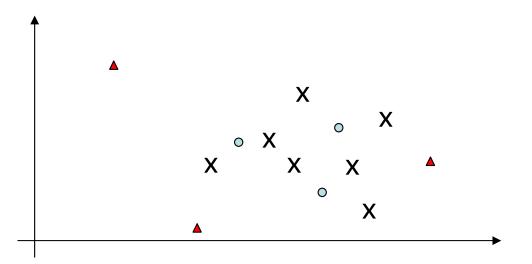
phase II:

apply network to historical inputs for predicting <u>unkown</u> outputs

Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

- → should give outputs close to true unknown function for arbitrary inputs
- values between training patterns are interpolated
- values outside convex hull of training patterns are extrapolated



- x: input training pattern
- input pattern where output to be interpolated
- ▲ : input pattern where output to be extrapolated

Radial Basis Function Nets (RBF Nets)

Lecture 03

Definition:

A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is termed **radial basis function**

iff
$$\exists \varphi : \mathbb{R} \to \mathbb{R} : \forall x \in \mathbb{R}^n : \phi(x; c) = \varphi(||x - c||)$$
. \Box

Definition:

RBF local iff

$$\varphi(r) \to 0 \text{ as } r \to \infty$$

typically, || x || denotes Euclidean norm of vector x

examples:

$$\varphi(r) = \exp\left(-\frac{r^2}{\sigma^2}\right)$$

Gaussian

unbounded

$$\varphi(r) = \frac{3}{4} (1 - r^2) \cdot 1_{\{r \le 1\}}$$

Epanechnikov

bounded

local

$$\varphi(r) = \frac{\pi}{4} \cos\left(\frac{\pi}{2}r\right) \cdot 1_{\{r \le 1\}}$$

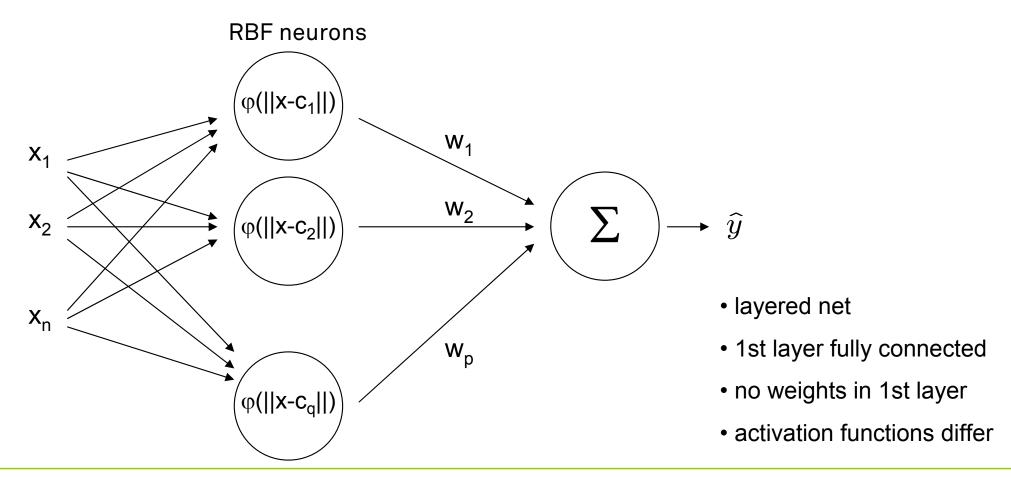
Cosine

bounded

Definition:

A function $f: \mathbb{R}^n \to \mathbb{R}$ is termed **radial basis function net (RBF net)**

iff
$$f(x) = w_1 \varphi(||x - c_1||) + w_2 \varphi(||x - c_2||) + ... + w_p \varphi(||x - c_q||)$$



given : N training patterns (x_i, y_i) and q RBF neurons

find : weights w₁, ..., w_q with minimal error

solution:

we know that $f(x_i) = y_i$ for i = 1, ..., N or equivalently

$$\sum_{k=1}^{q} w_k \cdot \varphi(\|x_i - c_k\|) = y_i$$
 unknown known value known value

$$\Rightarrow \sum_{k=1}^{q} w_k \cdot p_{ik} = y_i \qquad \Rightarrow \text{N linear equations with q unknowns}$$

Radial Basis Function Nets (RBF Nets)

Lecture 03

in matrix form: Pw = y

with $P = (p_{ik})$ and $P: N \times q$, $y: N \times 1$, $w: q \times 1$,

case N = q:

 $W = P^{-1} y$

if P has full rank

case N < q:

many solutions

but of no practical relevance

case N > q: $w = P^+ y$

where P⁺ is Moore-Penrose pseudo inverse

P w = y

P'Pw=P'y

 $(P'P)^{-1} P'P w = (P'P)^{-1} P' y$ unit matrix

P' from left hand side (P' is transpose of P)

 $|\cdot(P'P)^{-1}$ from left hand side

| simplify

complexity (naive)

$$w = (P'P)^{-1} P' y$$

P'P: N² q

inversion: q³

P'y: qN

multiplication: q²

 $O(N^2 q)$

remark: if N large then inaccuracies for P'P likely

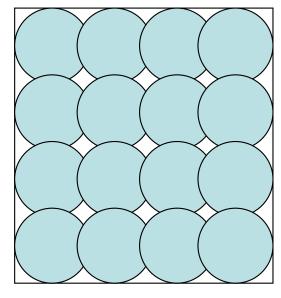
⇒ first analytic solution, then gradient descent starting from this solution

requires
differentiable
basis functions!

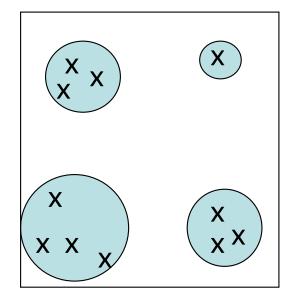
so far: tacitly assumed that RBF neurons are given

 \Rightarrow center c_k and radii σ considered given and known

how to choose c_k and σ ?



uniform covering



if training patterns inhomogenously distributed then first cluster analysis

choose center of basis function from each cluster, use cluster size for setting σ

advantages:

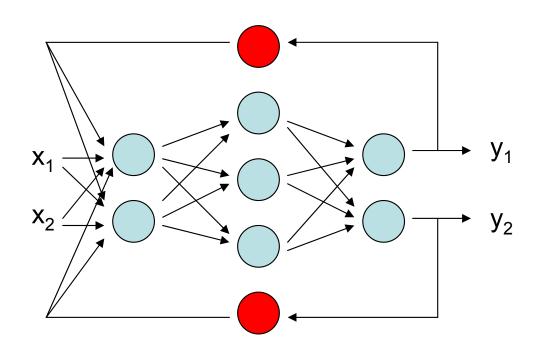
- additional training patterns → only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

Jordan nets (1986)

context neuron:
 reads output from some neuron at step t and feeds value into net at step t+1



Jordan net =

MLP + context neuron for each output, context neurons fully connected to input layer

Elman nets (1990)

Elman net =

MLP + context neuron for each neuron output of MLP, context neurons fully connected to associated MLP layer

Training?

- ⇒ unfolding in time ("loop unrolling")
- identical MLPs serially connected (finitely often)
- results in a large MLP with many hidden (inner) layers
- backpropagation may take a long time
- but reasonable if most recent past more important than layers far away

Why using backpropagation?

⇒ use *Evolutionary Algorithms* directly on recurrent MLP!

