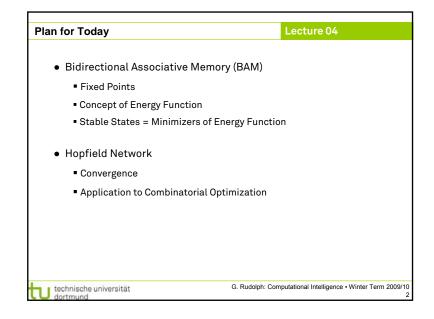
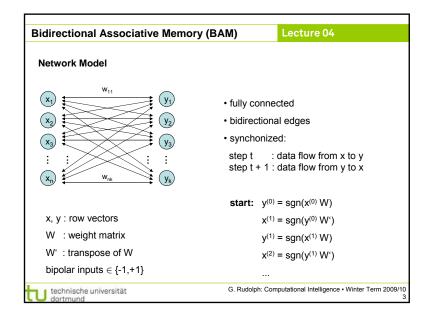
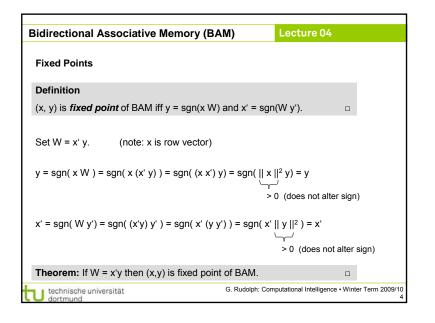
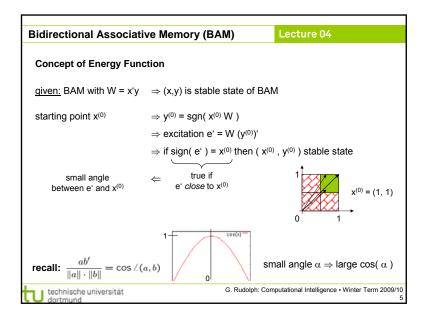
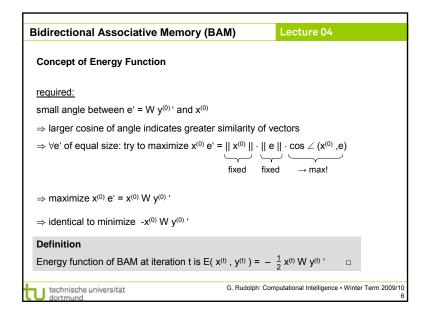
technische univ dortmund	ersität		
Computa Winter Term 20	tional Intelli ^{09/10}	gence	
Prof. Dr. Günter F Lehrstuhl für Alg	Rudolph orithm Engineering (Lt	S 11)	
Fakultät für Infor TU Dortmund	matik		

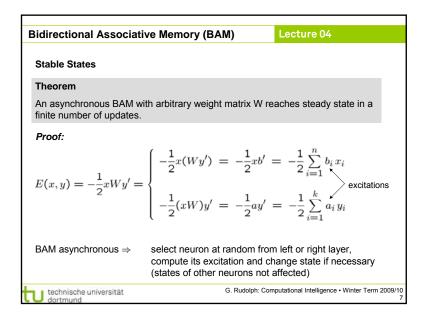


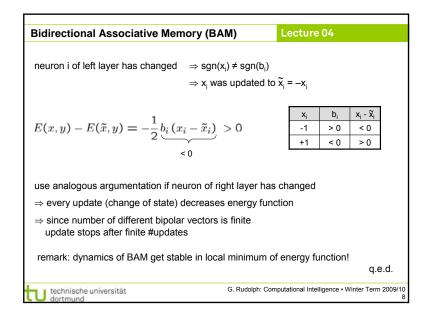


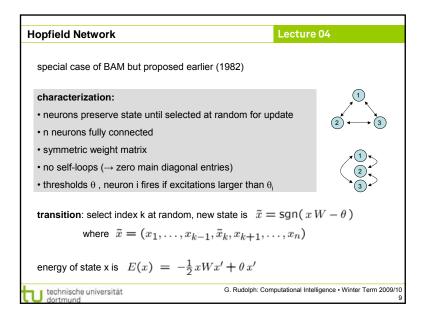












Hopfield Network	Lecture 04
$= -\frac{1}{2} \sum_{\substack{i=1\\i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{n} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{n} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{n} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{n} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{n} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{n} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{n} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N} w_{ij} x_j \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{j=1}^{N$	$\sum_{\substack{j=1\\ \neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$
$= -\frac{1}{2} \sum_{\substack{i=1\\i \neq k}}^{n} w_{ik} x_i (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j \neq k}}^{n} v_{ik} x_j (x_k -$	$w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$ (rename j to i, recall W = W', w _{kk} = 0)
$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k)$	$-\tilde{x}_k)$
$= -(x_k - \tilde{x}_k) \left[\underbrace{\sum_{i=1}^n w_{ik} x_i}_{\text{excitation } \mathbf{e}_k} - \theta_k \right]$	$\begin{array}{ccc} > 0 & \mbox{since:} & & \\ & \frac{x_k & x_k - \tilde{x}_k & e_k - \theta_k & \Delta E}{+1 & > 0 & < 0 & > 0} & \\ & -1 & < 0 & > 0 & > 0 & \\ & & \mbox{q.e.d.} \end{array}$
technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2009/10 11

Hopfield Network	Lecture 04
Theorem:	
Hopfield network converges to number of updates.	b local minimum of energy function after a finite $\hfill \Box$
Proof: assume that x _k has b	been updated $\Rightarrow ilde{x}_k = -x_k$ and $ ilde{x}_i = x_i$ for $i eq k$
$E(x) - E(\tilde{x}) = -\frac{1}{2}xW$	$Vx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$
$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j +$	$\sum_{i=1}^{n} \theta_{i} x_{i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_{i} \tilde{x}_{j} - \sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}$
$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j -$	$-\tilde{x}_i \tilde{x}_j) + \sum_{i=1}^n \theta_i \underbrace{(x_i - \tilde{x}_i)}_{= 0 \text{ if } i \neq k}$
$= -\frac{1}{2} \sum_{\substack{i=1\\i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j -$	$ \begin{split} \tilde{x}_i \tilde{x}_j) &- \frac{1}{2} \sum_{j=1}^n w_{kj} \left(x_k x_j - \tilde{x}_k \tilde{x}_j \right) + \theta_k \left(x_k - \tilde{x}_k \right) \\ & \underset{x_i}{\parallel} \underset{0 \text{ if } j = k}{\parallel} \underset{x_j \text{ if } j \neq k}{\parallel} \end{split} $
U technische universität	G. Rudolph: Computational Intelligence • Winter Term 2009/

Hopfield Network	Lecture 04
Application to Combinatorial Opti	imization
Idea:	
• transform combinatorial optimization	on problem as objective function with $x \in$ {-1,+1} n
• rearrange objective function to look	k like a Hopfield energy function
• extract weights W and thresholds (θ from this energy function
• initialize a Hopfield net with these	parameters W and θ
• run the Hopfield net until reaching	stable state (= local minimizer of energy function)
stable state is local minimizer of co	ombinatorial optimization problem
technische universität	G. Rudolph: Computational Intelligence • Winter Term 2009/