

Computational Intelligence

Winter Term 2009/10

Prof. Dr. Günter Rudolph

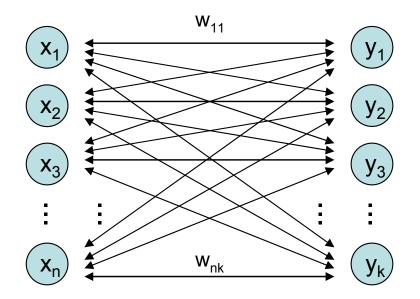
Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Bidirectional Associative Memory (BAM)
 - Fixed Points
 - Concept of Energy Function
 - Stable States = Minimizers of Energy Function
- Hopfield Network
 - Convergence
 - Application to Combinatorial Optimization

Network Model



x, y: row vectors

W: weight matrix

W': transpose of W

bipolar inputs $\in \{-1,+1\}$

- fully connected
- bidirectional edges
- synchonized:

start:
$$y^{(0)} = sgn(x^{(0)} W)$$

 $x^{(1)} = sgn(y^{(0)} W')$
 $y^{(1)} = sgn(x^{(1)} W)$
 $x^{(2)} = sgn(y^{(1)} W')$

Fixed Points

Definition

(x, y) is **fixed point** of BAM iff y = sgn(x W) and x' = sgn(W y').

Set W = x' y. (note: x is row vector)

$$y = sgn(x W) = sgn(x(x'y)) = sgn((x x') y) = sgn(||x||^2 y) = y$$

> 0 (does not alter sign)

$$x' = sgn(W y') = sgn((x'y) y') = sgn(x'(y y')) = sgn(x'||y||^2) = x'$$

> 0 (does not alter sign)

Theorem: If W = x'y then (x,y) is fixed point of BAM.

Concept of Energy Function

given: BAM with W = x'y \Rightarrow (x,y) is stable state of BAM

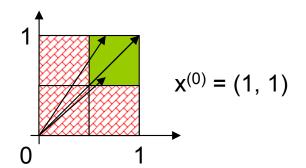
starting point $x^{(0)}$ $\Rightarrow y^{(0)} = sgn(x^{(0)} W)$

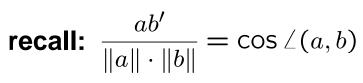
 \Rightarrow excitation e' = W (y⁽⁰⁾)'

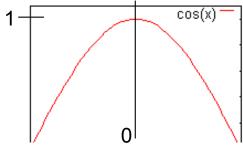
 \Rightarrow if sign(e') = $x^{(0)}$ then ($x^{(0)}$, $y^{(0)}$) stable state

small angle between e' and x⁽⁰⁾

 $\leftarrow true if$ $e' close to <math>x^{(0)}$







small angle $\alpha \Rightarrow$ large cos(α)

Concept of Energy Function

required:

small angle between e' = W $y^{(0)}$ ' and $x^{(0)}$

- ⇒ larger cosine of angle indicates greater similarity of vectors
- \Rightarrow \forall e' of equal size: try to maximize $x^{(0)}$ e' = $\|x^{(0)}\| \cdot \|e\| \cdot \cos \angle (x^{(0)}, e)$ fixed fixed \rightarrow max!
- \Rightarrow maximize $x^{(0)}$ e' = $x^{(0)}$ W $y^{(0)}$ '
- \Rightarrow identical to minimize $-x^{(0)}$ W $y^{(0)}$ '

Definition

Energy function of BAM at iteration t is E($x^{(t)}$, $y^{(t)}$) = $-\frac{1}{2}x^{(t)}$ W $y^{(t)}$

Stable States

Theorem

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a finite number of updates.

Proof:

$$E(x,y) = -\frac{1}{2}xWy' = \begin{cases} -\frac{1}{2}x(Wy') = -\frac{1}{2}xb' = -\frac{1}{2}\sum_{i=1}^{n}b_{i}x_{i} \\ -\frac{1}{2}(xW)y' = -\frac{1}{2}ay' = -\frac{1}{2}\sum_{i=1}^{k}a_{i}y_{i} \end{cases}$$
 excitations

BAM asynchronous ⇒

select neuron at random from left or right layer, compute its excitation and change state if necessary (states of other neurons not affected) neuron i of left layer has changed \Rightarrow sgn(x_i) \neq sgn(b_i) \Rightarrow x_i was updated to $\tilde{x}_i = -x_i$

$$E(x,y) - E(\tilde{x},y) = -\frac{1}{2} \underbrace{b_i (x_i - \tilde{x}_i)}_{<0} > 0$$

X _i	b _i	$x_i - \widetilde{x}_i$
-1	> 0	< 0
+1	< 0	> 0

use analogous argumentation if neuron of right layer has changed

- ⇒ every update (change of state) decreases energy function
- ⇒ since number of different bipolar vectors is finite update stops after finite #updates

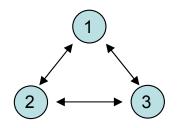
remark: dynamics of BAM get stable in local minimum of energy function!

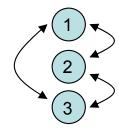
q.e.d.

special case of BAM but proposed earlier (1982)

characterization:

- neurons preserve state until selected at random for update
- n neurons fully connected
- symmetric weight matrix
- no self-loops (→ zero main diagonal entries)
- thresholds θ , neuron i fires if excitations larger than θ_{i}





transition: select index k at random, new state is $\tilde{x} = \text{sgn}(xW - \theta)$ where $\tilde{x} = (x_1, \dots, x_{k-1}, \tilde{x}_k, x_{k+1}, \dots, x_n)$

energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$

Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates.

Proof: assume that $\mathbf{x_k}$ has been updated $\Rightarrow \tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$

$$E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^{n} \theta_i \tilde{x}_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) + \sum_{i=1}^{n} \theta_i (x_i - \tilde{x}_i)$$

$$= -\frac{1}{2} \sum_{\substack{i=1 \ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$$

$$\downarrow i \neq k$$

$$x_i$$
0 if $j = k$

$$x_j$$
 if $j \neq k$

$$= -\frac{1}{2} \sum_{\substack{i=1 \ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{\substack{j=1 \ j \neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

$$= -\frac{1}{2} \sum_{\substack{i=1 \\ i \neq k}}^{n} w_{ik} \, x_i \, (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1 \\ j \neq k}}^{n} w_{kj} \, x_j \, (x_k - \tilde{x}_k) + \theta_k \, (x_k - \tilde{x}_k)$$

$$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

> 0 if $x_k < 0$ and vice versa

$$= -(x_k - \tilde{x}_k) \left[\underbrace{\sum_{i=1}^n w_{ik} \, x_i}_{\text{excitation } \mathbf{e}_k} - \theta_k \right] > 0 \qquad \text{since:} \\ \underbrace{\frac{x_k - \tilde{x}_k - \tilde{x}_k - \tilde{x}_k - \theta_k - \Phi_k - \Delta E}{+1}}_{\text{excitation } \mathbf{e}_k} - \mathbf{e}_k - \mathbf{e}_k$$

q.e.d.

Application to Combinatorial Optimization

Idea:

- transform combinatorial optimization problem as objective function with $x \in \{-1,+1\}$ n
- rearrange objective function to look like a Hopfield energy function
- extract weights W and thresholds θ from this energy function
- initialize a Hopfield net with these parameters W and θ
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem