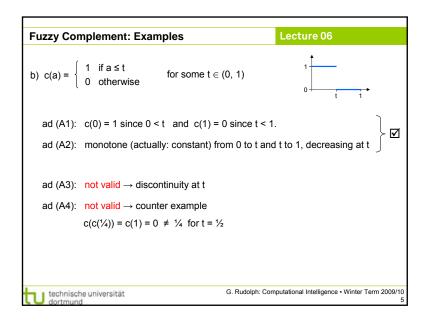
technische universität dortmund	
Computational Intelligence Winter Term 2009/10	
Prof. Dr. Günter Rudolph	
Lehrstuhl für Algorithm Engineering (LS 11)	
Fakultät für Informatik	
TU Dortmund	

Plan for Today	Lecture 06
 Fuzzy sets 	
 Axioms of fuzzy com 	nplement, t- and s-norms
 Generators 	
 Dual tripels 	
U technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2009

uzzy Sets	Lecture 06
Considered so far:	
Standard fuzzy operators	
• $A^{c}(x) = 1 - A(x)$	
 (A ∩ B)(x) = min { A(x), B(x) } 	
 (A ∪ B)(x) = max { A(x), B(x) } 	
⇒ Compatible with operators for conversion with membership functions with	•
\exists Non-standard operators? \Rightarrow Ye	es! Innumerable many!
 Defined via axioms. 	
Creation via generators.	
technische universität	G. Rudolph: Computational Intelligence • Winter Term 200

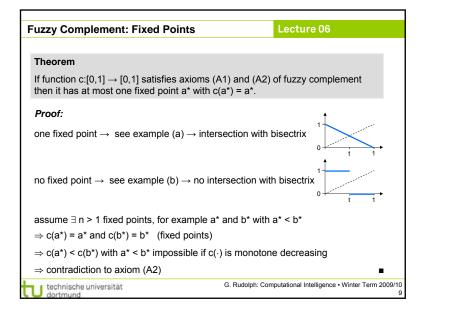
izzy C	Complement: Axioms	Lecture 06
Defini	tion	
A func	tion c: $[0,1] \rightarrow [0,1]$ is a <i>fuzzy complement</i>	iff
(A1)	c(0) = 1 and $c(1) = 0$.	
(A2)	$\forall a, b \in [0,1]: a \leq b \implies c(a) \geq c(b).$	monotone decreasing
'nice t	o have":	
(A3)	$c(\cdot)$ is continuous.	
(A4)	$\forall \ a \in [0,1]: c(c(a)) = a$	involutive
Exam	ples:	
a) sta	ndard fuzzy complement c(a) = 1 – a	
	(A1): $c(0) = 1 - 0 = 1$ and $c(1) = 1 - 1 = 0$ (A2): $c'(a) = -1 < 0$ (monotone decreasing)	ad (A3): ⊠ ad (A4): 1 – (1 – a) = a
techr	ische universität G. Rudolph	: Computational Intelligence • Winter Term 200



Fuzzy Comp	lement: Examples	Lecture 06
c) c(a) = 1+	$\frac{\cos(\pi a)}{2}$	
ad (A1): c	(0) = 1 and c(1) = 0	$\mathbf{\nabla}$
ad (A2): c	(a) = $-\frac{1}{2}\pi \sin(\pi a) < 0$	since sin(π a) > 0 for a \in (0,1) \int
ad (A3): is	continuous as a compos	ition of continuous functions
ad (A4): n	ot valid → counter examp	le
c	$\left(c\left(\frac{1}{3}\right)\right) = c\left(\frac{3}{4}\right) = \frac{1}{2}$	$\left(1 - \frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}$
U technische u	universität	G. Rudolph: Computational Intelligence • Winter Term 2009/10

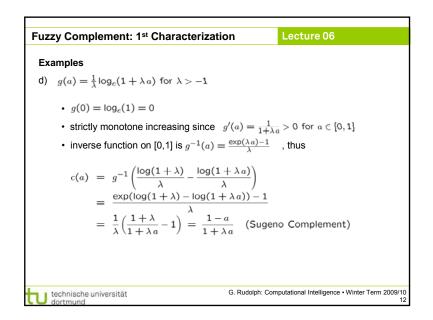
Fuzzy C01	nplement: Examples		Lecture 06	
d) c(a) = 1	$rac{1-a}{+\lambdaa}$ ifor $\lambda>-1$ S	Sugeno class		
ad (A1):	c(0) = 1 and c(1) = 0)
ad (A2):	$c(a) \ge c(b) \iff \frac{1-a}{1+\lambda a} \ge (1-a)(1+\lambda b) \ge (1-a)(1+\lambda b)(1+\lambda b) \ge (1-a)(1+\lambda b) \ge (1+a)(1+\lambda b) \ge (1+a)(1+a)(1+a)(1+a)(1+a)(1+a)(1+a)(1+a)$	- 1	>	
	$b(\lambda+1) \ge a(\lambda+1) \Leftrightarrow$	$b \geq a$		J
	is continuous as a compositi $c(c(a)) = c\left(\frac{1-a}{1+\lambda a}\right) = \frac{1}{2}$			}
. technisch	e universität	G. Rudolph: Com	putational Intelligence	• Winter Term 2009

Fuzzy Complement: Examples	Lecture 06
e) $c(a) = (1 - a^w)^{1/w}$ for $w > 0$ Yager cla	ass
ad (A1): $c(0) = 1$ and $c(1) = 0$ ad (A2): $(1 - a^w)^{1/w} \ge (1 - b^w)^{1/w} \Leftrightarrow 1 - a^w \ge a^w \le b^w \iff a \le b$	$1 - b^w \Leftrightarrow $
ad (A3): is continuous as a composition of co ad (A4): $c(c(a)) = c\left((1-a^w)^{\frac{1}{w}}\right) = (1)$ $= (1-(1-a^w))^{\frac{1}{w}} = (1)$	$-\left[(1-a^w)^{\frac{1}{w}}\right]^w$
technische universität G. Ru dortmund	udolph: Computational Intelligence • Winter Term 2009/10 8



uzzy Comple	ment: 1 st Charac	terization	Lecture 06
Theorem			
$c \colon [0,1] \to [0,1]$	is involutive fuzzy	complement iff	
∃ continuous fu	unction g: $[0,1] \rightarrow \mathbb{R}$	a with	
• g(0) = 0			defines an
	one increasing	~	increasing generator
	Ũ		
• $\forall a \in [0, 1]$: c	$(a) = g^{(-1)}(g(1) - g(a))$	a)). ∎)	g ⁽⁻¹⁾ (x) pseudo-inverse
Examples			
a) g(x) = x	\Rightarrow g ⁻¹ (x) = x	\Rightarrow c(a) = 1 – a	(Standard)
b) $q(x) = x^w$	$\rightarrow a^{-1}(\mathbf{x}) = \mathbf{x}^{1/w}$	\Rightarrow c(a) = (1 - a ^w) ^{1/w}	(Yager class, w > 0)
5) g(x) x		\rightarrow O(U) (1 U)	(ragor class, we by
c) $g(x) = \log(x)$	$(+1) \Rightarrow g^{-1}(x) = e^x - f^2$	$1 \Rightarrow c(a) = exp(log(2))$) – log(a+1)) – 1
		$=\frac{1-a}{1+a}$	(Sugeno class. $\lambda = 1$)
👔 👔 technische univ	ersität	G. Rudolph: Comp	utational Intelligence • Winter Term 2009/1

uzzy Complement:	Fixed Points	Lecture 06	
Theorem			
	1] satisfies axioms (A1) point a* with c(a*) = a*.	- (A3) of fuzzy complement the	en
Proof:			
Intermediate value theo	$prem \rightarrow$		
If c(·) continuous (A3)	and $c(0) \ge c(1)$ (A1/A2)		
then $\forall v \in [c(1), c(0)] =$	[0,1]:∃ a ∈ [0,1]: c(a) =	٧.	
\Rightarrow there must be an interview of the second secon	ersection with bisectrix		
\Rightarrow a fixed point exists a	nd by previous theorem	there are no other fixed points	s! =
Examples:			
(a) c(a) = 1 – a	\Rightarrow a = 1 – a	\Rightarrow a [*] = ¹ / ₂	
(b) c(a) = (1 − a ^w) ^{1/w}	\Rightarrow a = $(1 - a^w)^{1/w}$	\Rightarrow a [*] = (1/ ₂) ^{1/w}	



Fuzzy Complement: 2 nd Characterization	Lecture 06
Theorem	
c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement i	iff
\exists continuous function f: $[0,1] \rightarrow \mathbb{R}$ with	
• f(1) = 0	defines a
strictly monotone decreasing	decreasing generator
• $\forall a \in [0,1]$: $c(a) = f^{(-1)}(f(0) - f(a))$.	■ f ⁽⁻¹⁾ (x) pseudo-inverse
Examples	
a) $f(x) = -k - k \cdot x$ (k > 0) $f^{(-1)}(x) = 1 - x/k$ co	(a) = $1 - \frac{-k - (-k - ka)}{k} = 1 - a$
	ĸ
b) $f(x) = 1 - x^w$ $f^{(-1)}(x) = (1 - x)^{1/w}$ c	(a) = f ⁻¹ (a ^w) = (1 – a ^w) ^{1/w} (Yaqer)
G. R	udolph: Computational Intelligence • Winter Term 2009/1

uzzy Intersection: t-norm	Lecture 06
Definition	
A function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a <i>fuzzy inte</i>	rsection of t-norm in
(A1) $t(a, 1) = a$	
(A2) $b \le d \Rightarrow t(a, b) \le t(a, b)$	(monotonicity)
(A3) t(a,b) = t(b, a)	(commutative)
(A4) $t(a, t(b, d)) = t(t(a, b), d)$	(associative)
"nice to have"	
(A5) t(a, b) is continuous	(continuity)
(A6) t(a, a) < a	(subidempotent)
(A7) $a_1 \le a_2$ and $b_1 \le b_2 \implies t(a_1, b_1) \le t(a_2, b_2)$) (strict monotonicity)
Note: the only idempotent t-norm is the standa	ard fuzzy intersection
U technische universität G.	Rudolph: Computational Intelligence • Winter Term 200

Function	
t(a, b) = min { a, b }	
$t(a, b) = a \cdot b$	
t(a, b) = max { 0, a + b - 1 }	
$t(a, b) = \begin{cases} a \text{ if } b = 1 \\ b \text{ if } a = 1 \\ 0 \text{ otherwise} \end{cases}$	
norm? Check the 4 axioms!	
a $id (A3)$: t(a, b) = a · b = b · a = t(b, a)	\checkmark
$b \le d$ \square ad (A4): $a \cdot (b \cdot d) = (a \cdot b) \cdot d$	Ø
	$t(a, b) = \min \{ a, b \}$ $t(a, b) = a \cdot b$ $t(a, b) = \max \{ 0, a + b - 1 \}$ $t(a, b) = \begin{cases} a \text{ if } b = 1 \\ b \text{ if } a = 1 \\ 0 \text{ otherwise} \end{cases}$ norm? Check the 4 axioms! $a \qquad i d (A3): t(a, b) = a \cdot b = b \cdot a = t(b, a)$

uzzy Intersection: Characte	rization	Lecture 06	
Theorem			
Function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is	a t-norm ⇔		
\exists decreasing generator f:[0,1] \rightarrow	\mathbb{R} with t(a, b) = f ⁽⁻¹⁾	f(a) + f(b)).	
Example:			
f(x) = 1/x – 1 is decreasing gener	rator since		
 f(x) is continuous 	\square		
• f(1) = 1/1 - 1 = 0	\square		
• $f'(x) = -1/x^2 < 0$ (monotone dec	creasing) 🗹		
inverse function is $f^{-1}(x) = \frac{1}{x+1}$			
\Rightarrow t(a, b) = $f^{-1}\left(rac{1}{a}+rac{1}{b}-2 ight)$	$\frac{1}{\frac{1}{a} + \frac{1}{b} - 1} =$	$= \frac{ab}{a+b-ab}$	
technische universität	G. Rudolph:	Computational Intelligence • Winter	Term 2009

Fuzzy Union: s-norm	Lecture 06
Definition	
A function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a <i>fuzzy</i>	union or s-norm or t-conorm iff
(A1) s(a, 0) = a	
(A2) $b \le d \Rightarrow s(a, b) \le s(a, b)$	(monotonicity)
(A3) $s(a, b) = s(b, a)$	(commutative)
(A4) $s(a, s(b, d)) = s(s(a, b), d)$	(associative)
"nice to have"	
(A5) s(a, b) is continuous	(continuity)
(A6) s(a, a) > a	(superidempotent)
(A7) $a_1 \le a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) \le s(a_1, b_2)$	₂ , b ₂) (strict monotonicity)
Note: the only idempotent s-norm is the sta	andard fuzzy union
technische universität	G. Rudolph: Computational Intelligence • Winter Term 2009/10 17

uzzy Union: Characterization		Lecture 06
Theorem		
Function s: [0,1] \times [0,1] \rightarrow [0,1] is a s-norm	\Leftrightarrow	
$\exists \text{ increasing generator } g{:}[0,1] \rightarrow \mathbb{R} \text{ with } s(a$, b) = g ⁽⁻¹⁾ (g	(a) + g(b)). ■
Example:		
g(x) = -log(1 - a) is decreasing generator si	ince	
• g(x) is continuous	\square	
• $g(0) = -log(1 - 0) = 0$	\square	
• g'(x) = 1/(1-a) > 0 (monotone increasing)	\square	
inverse function is $g^{-1}(x) = 1 - \exp(-a)$		
$\Rightarrow s(a, b) = g^{-1}(-\log(1-a) - \log(1-a))$	(-b))	
$= 1 - \exp(\log(1-a) + \log(1-a))$	(1 - b))	
= 1 - (1 - a)(1 - b) = a	+ b - a b	(algebraic sum)
U technische universität	G. Rudolph: Cor	nputational Intelligence - Winter Term 2009/1

uzzy Union: s-norm	Lecture 06	
Examples:		
Name	Function	
Standard	s(a, b) = max { a, b }	
Algebraic Sum	$s(a, b) = a + b - a \cdot b$	
Bounded Sum	s(a, b) = min { 1, a + b }	
	$\int a \text{ if } b = 0$	
Drastic Union	s(a, b) =	
	1 otherwise	
Is algebraic sum a t-norr	m? Check the 4 axioms!	
ad (A1): $s(a, 0) = a + 0 - a \cdot 0 = a$		ad (A3):
ad (A2): $a + b - a \cdot b \le a$	$a + d - a \cdot d \Leftrightarrow b (1 - a) \le d (1 - a) \Leftrightarrow b \le d \square$	ad (A4):
technische universität	G. Rudolph: Computational Intelligence • V	Vinter Term 2009

Combination of Fuzz	y Operations		Lecture 06
Background from clas	ssical set theory:		
\cap and \cup operations are	dual w.r.t. complement	since the	ey obey DeMorgan's laws
Definition			Definition
A pair of t-norm $t(\cdot, \cdot)$ and s-norm $s(\cdot, \cdot)$ is said to <i>dual with regard to the fuzzy complement</i> $c(\cdot)$ • $c(t(a, b)) = s(c(a), c(b))$ • $c(s(a, b)) = t(c(a), c(b))$			Let (c, s, t) be a tripel of fuzzy complement $c(\cdot)$,
			s- and t-norm.
			If t and s are dual to c
for all a, $b \in [0,1]$.		-	then the tripel (c,s, t) is called a <i>dual tripel</i> . ■
Examples of dual trip	els		
t-norm	s-norm	с	omplement
min { a, b }	max { a, b }		– a
a⋅b	a+b−a · b		– a
max { 0, a + b – 1 }	min { 1, a + b }	1	– a
📲 👔 technische universität	G. I	Rudolph: Con	nputational Intelligence • Winter Term 2009