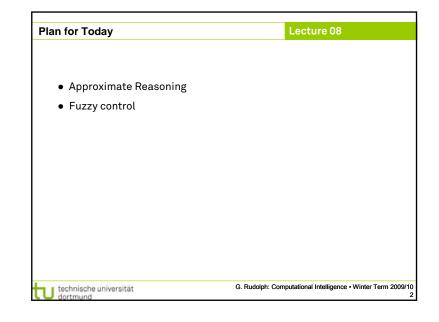
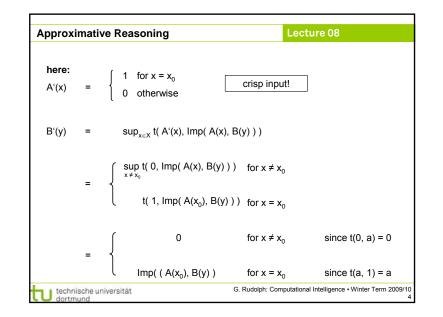
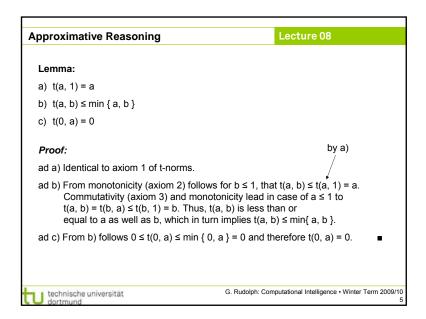
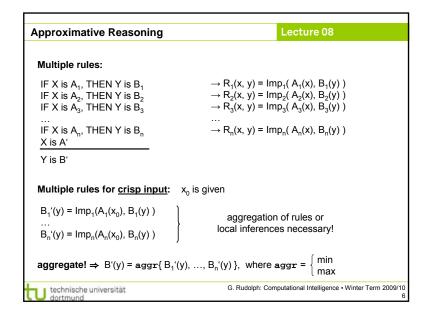
technische universität dortmund	
Computational Intelligence Winter Term 2009/10	
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik	
TU Dortmund	



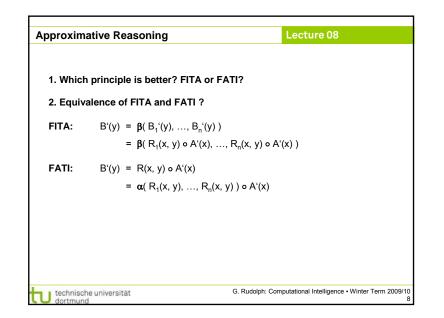
pproximative Reasoning	Lecture 08
So far:	
• p: IF X is A THEN Y is B	
$\rightarrow R(x, y) = Imp(A(x), B(y))$	rule as relation; fuzzy implication
• rule: IF X is A THEN Y is B fact: X is A' conclusion: Y is B'	
$\rightarrow B^{t}(y) = sup_{x \in X} \: t(\: A^{t}(x), \: R(x, \: y) \:)$	composition rule of inference
Thus:	
• B'(y) = sup _{x \in X} t(A'(x), Imp(A(x), B(y))))
technische universität	G. Rudolph: Computational Intelligence • Winter Term 200

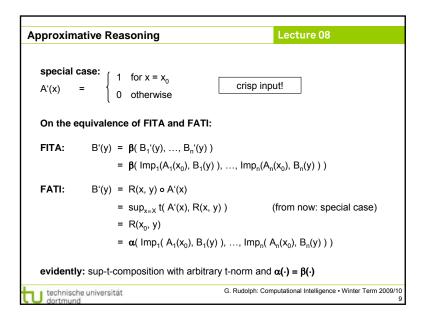




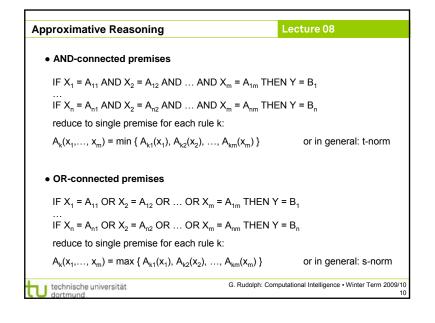


App	proximative Reasoning	Lecture 08
<u>FI</u>	TA: "First inference, then aggregate!"	-
1.	Each rule of the form IF X is A_k THE an appropriate fuzzy implication Imp $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.	
2.	Determine $B_k'(y) = R_k(x, y) \circ A'(x)$ for	r all k = 1,, n (locale inference).
3.	Aggregate to $B'(y) = \beta(B_1'(y),, B_1)$	"'(y)).
	TI: "First aggregate, then inference!" Each rule of the form IF X ist A_k THE an appropriate fuzzy implication Imp $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.	EN Y ist B _k must be transformed by
2.	Aggregate $R_1,, R_n$ to a superrela $R(x, y) = \alpha(R_1(x, y),, R_n(x, y)).$	tion with aggregating function $\alpha(\cdot)$:
3.	Determine $B'(y) = R(x, y) \circ A'(x) w.r$	t. superrelation (inference).
J	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2009/10 7

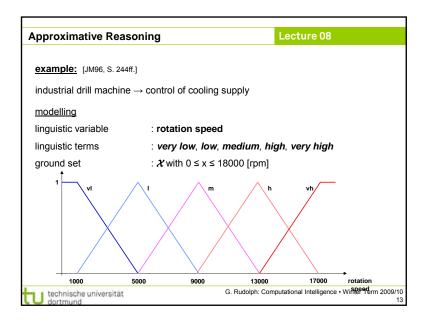




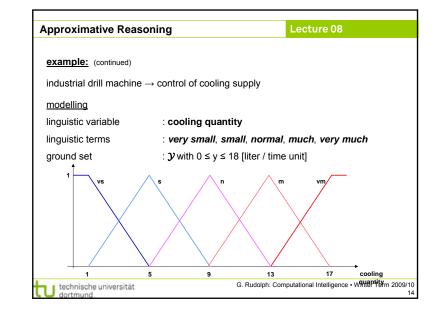
Approximative Reasoning		Lecture 08
important:		
• if rules of the form IF X is A THEN	Y is B interpreted	d as logical implication
$\Rightarrow R(x, y) = Imp(A(x), B(y)) make$	es sense	
• we obtain: $B'(y) = \sup_{x \in X} t(A'(x), F$	R(x, y))	
\Rightarrow the worse the match of premise A	(x), the larger is t	he fuzzy set B'(y)
\Rightarrow follows immediately from axiom 1:	$a \le b$ implies Imp	$p(a, z) \ge Imp(b, z)$
interpretation of output set B'(y):		
 B'(y) is the set of values that are st 	till possible	
each rule leads to an additional res	striction of the valu	ues that are still possible
\Rightarrow resulting fuzzy sets B ^{\cdot} _k (y) obtained	d from single rules	s must be mutually intersected!
\Rightarrow aggregation via B'(y) = min { B ₁	ʻ(y),, B _n ʻ(y) }	
technische universität	G. Rudolph: Co	mputational Intelligence • Winter Term 2009/10

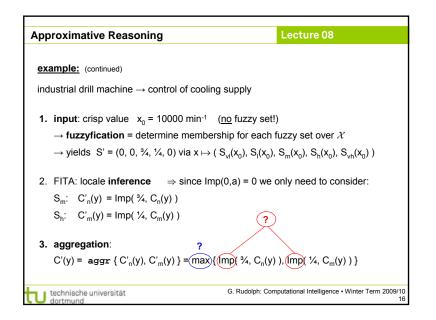


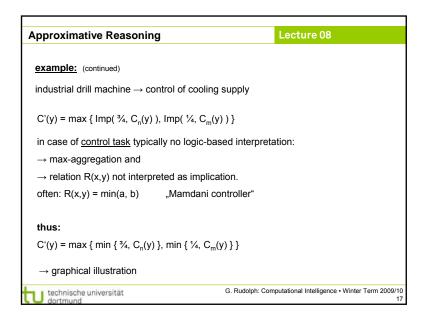
pproximative Reasoning	Lecture 08
important:	
• if rules of the form IF X is A THEN Y is implications, then the function Fct(·) in	B are <u>not</u> interpreted as <u>logical</u>
R(x, y) = Fct(A)	(x), B(y))
can be chosen as required for desired i	nterpretation.
• frequent choice (especially in fuzzy con	itrol):
- R(x, y) = min { A(x), B(x) }	Mamdami – "implication"
$- R(x, y) = A(x) \cdot B(x)$	Larsen – "implication"
\Rightarrow of course, they are no implications but	t special t-norms!
\Rightarrow thus, if <u>relation R(x, y) is given</u> , then the <i>composition rule of inference</i>	
$B'(y) = A'(x) \circ R(x, y) = sup$	o _{x∈X} min { A'(x), R(x, y) }
still can lead to a conclusion via fuzzy	logic.
technische universität	G. Rudolph: Computational Intelligence • Winter Term 200

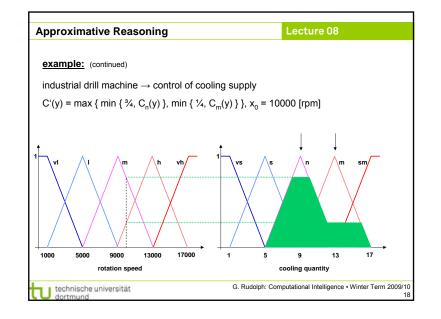


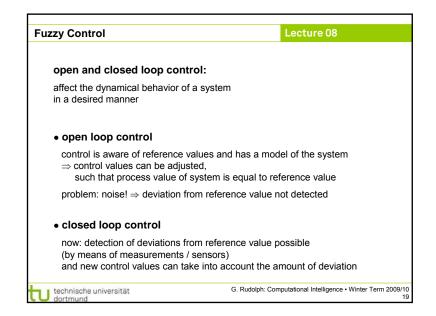
Approximative Rea	soning		Lecture 08	
example: (continued)				
industrial drill machin	$e \rightarrow control of cooling$	g supply		
rule base				
IF rotation speed I	s very low then coo	oling quantity	IS very small	
	low		small	
	medium		normal	
	high		much	
	very high		very much	
	ţ		Ţ	
sets	$S_{vl}, S_l, S_m, S_h, S_{vh}$	sets	C_{vs}, C_s, C_n, C_m, C	vm
	rotation <u>speed</u> "	" <u>c</u>	cooling quantity"	
U technische universität dortmund		G. Rudolph: Comp	utational Intelligence • Win	ter Term 200

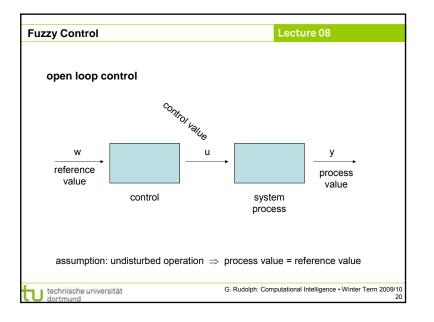


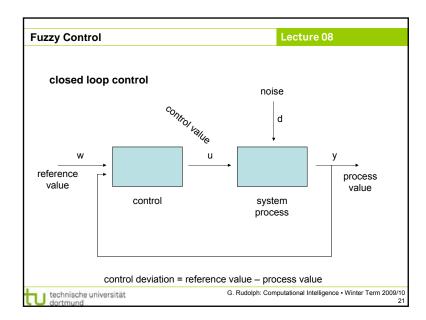




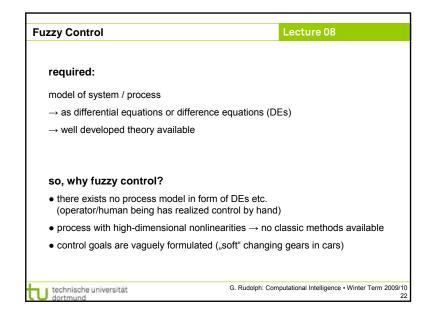


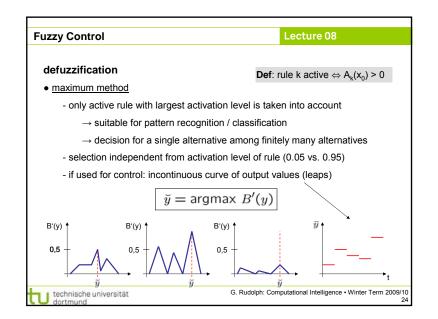


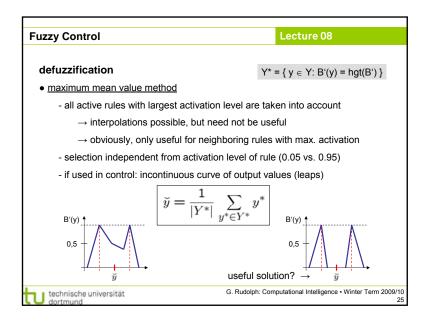




uzzy Control		Lecture 08
fuzzy description of contro	l behav	ior
IF X is A_1 , THEN Y is B_1 IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3 IF X is A_n , THEN Y is B_n X is A'		similar to approximative reasoning
Y is B'	J	
but fact A' is not a fuzzy set	but a cri	isp input
\rightarrow actually, it is the current p	rocess	value
fuzzy controller executes info \rightarrow yields fuzzy output set B'		step
but crisp control value requir	ed for th	ne process / system
\rightarrow defuzzification (= "conder	nse" fuzz	zy set to crisp value)
technische universität dortmund		G. Rudolph: Computational Intelligence • Winter Term 200







uzzy Control	Lecture 08
defuzzification	
Center of Gravity (COG)	
- all active rules are taken into acco	unt
ightarrow but numerically expensive	only valid for HW solution, today!
ightarrow borders cannot appear in ou	tput(∃ work-around)
- if only single active rule: independe	ent from activation level
- continuous curve for output values	
$\check{y} = \frac{\int y \cdot B}{\int B'(z)}$	$\frac{y'(y)dy}{y)dy}$
	G. Rudolph: Computational Intelligence • Winter Term 200

