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Plan for Today Lecture 08

e Approximate Reasoning

e Fuzzy control
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Approximative Reasoning

So far:
ep:IFXisATHEN Y isB

— R(X, y) = Imp( A(x), B(y) ) rule as relation; fuzzy implication
e rule: IF XisATHEN Y is B

fact: Xis A’

conclusion: Y is B’

— B'(y) = sup, .« t( A'(X), R(x, y)) composition rule of inference
Thus:

e B(y) = sup,x t( A‘(x), Imp( A(x), B(y) ) )
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Approximative Reasoning

here:

1 for x =X, S—
‘ = Crisp Input:
A ) 0 otherwise
B(y) = sup,.x t( A'(x), Imp( A(x), B(y) ) )
( sup 1( 0, Imp(A(x), B(y)))  for x # x,
= < ’
\ t( 1, Imp( A(xo), B(y) ) ) for x = x,
( 0 for x # x, since t(0,a) =0
= <
N Imp( ( A(xy), B(Y) ) for x = X, sincet(a, 1) =a
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Approximative Reasoning

Lemma:

a) t(a,1)=a

b) t(a,b)<min{a, b}

c) t(0,a)=0

Proof: by a)
ad a) ldentical to axiom 1 of t-norms. /

ad b) From monotonicity (axiom 2) follows for b < 1, that t(a, b) < t(a, 1) = a.
Commutativity (axiom 3) and monotonicity lead in case of a <1 to
t(a, b) =t(b, a) <t(b, 1) =b. Thus, t(a, b) is less than or
equal to a as well as b, which in turn implies t(a, b) <min{ a, b }.

ad c) From b) follows 0 <t(0, a) <min {0, a } = 0 and therefore t(0, a) = 0. u
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Approximative Reasoning

Multiple rules:

IF X is A, THEN Y is B,
IF X is A,, THEN Y is B,
IF X is A,, THEN Y is B,

IF Xis A, THEN Y is B,
X is A"

Y is B’

Multiple rules for crisp input:

B,'(y) = Imp,(A;(X,), B4(y))

B, (y) = IMP,(Ay(xo), Byy))

aggregate! = B'(y) =aggr{ B,(y), ..., B,(y) }, where aggr = {
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— Ry(x, y) = Imp,( A;(x), B4(y) )
— R,(X, y) = Imp,( Ay(x), B5(Y) )
— R5(X, y) = Imp5( Az(x), Bs(y) )

N R.(X, y) = Imp,(A.(x), B.(y))

Xo IS given

aggregation of rules or
local inferences necessary!

min
max
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Approximative Reasoning

FITA: “First inference, then aggregate!”

1.

Each rule of the form IF X'is A, THEN Y is B, must be transformed by
an appropriate fuzzy implication Imp,(-, -) to a relation R, :

Ri(%, y) = Imp, ( A(X), B(y) ).
Determine B, '(y) = R, (X, y) o A’(x) for allk =1, ..., n (locale inference).

Aggregate to B'(y) = B( B,'(y), ..., B, (¥) )

FATI: “First aggreqgate, then inference!”

1.

Each rule of the form IF Xist A, THEN Y ist B, must be transformed by
an appropriate fuzzy implication Imp,(-, -) to a relation R, :

Ri(%, y) = Imp,( Ay(x), Bi(y) ).

Aggregate R,, ..., R, to a superrelation with aggregating function a.(-):
R(x,y) = a( Ry(x, y), ..., Ry(x, ¥) ).

Determine B'(y) = R(x, y) o A'(x) w.r.t. superrelation (inference).
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Approximative Reasoning

1. Which principle is better? FITA or FATI?

2. Equivalence of FITA and FATI ?

FITA: B'(y) = B(B;(y), .... B,(Y))
= B(R4(X, y) o A(X), ..., R (X, y) o A(X) )

FATI: B'(y)

R(X, y) o Al(x)
= a( Ry(X, y), ..., Ry(X, y) ) o A'(X)
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Approximative Reasoning

special case:

1 forx=x
AK) = ° crisp input!
O otherwise

On the equivalence of FITA and FATI:

FITA: B'(y) = B(By(y), ..., By'(y))
= B(Imp,(A4(%), B4(y) ), -, Imp,(A(X5), Bn(y) ) )

FATI: B'(y) = R(X,y) o A'(x)
= sup,_x t( A'(x), R(x, y) ) (from now: special case)
= R(Xq, ¥)

= (X,( |mp1( A1(X0)a B1(Y) )’ R Impn( An(XO)’ Bn(y) ) )

evidently: sup-t-composition with arbitrary t-norm and o(-) = ()
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Approximative Reasoning

e AND-connected premises
IF X, =A,;,AND X,=A,,AND ... AND X_=A, THENY =B,

IF X, =A,,AND X, =A,AND ... AND X_=A__THENY =B,
reduce to single premise for each rule k:

A (Xqs-o X)) = min { A (Xq), Ao(Xs), - A(X) ) or in general: t-norm

e OR-connected premises
IF X, =A;;ORX,=A,0R...0ORX_ =A, THENY =B,

IFX,=A,,0ORX,=A,0R...ORX_=A_THENY =B_
reduce to single premise for each rule k:

A Xy X)) = max { A (Xq), Aa(Xy), - A (Xy) ) or in general: s-norm
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Approximative Reasoning

Important:

e if rules of the form IF X is A THEN Y is B interpreted as logical implication
= R(X, y) = Imp( A(x), B(y) ) makes sense

e we obtain: B'(y) = sup,_y t( A'(x), R(X, y) )

= the worse the match of premise A'(x), the larger is the fuzzy set B'(y)

= follows immediately from axiom 1: a < b implies Imp(a, z) > Imp(b, z)

interpretation of output set B'(y):
e B'(y) is the set of values that are still possible
e each rule leads to an additional restriction of the values that are still possible

= resulting fuzzy sets B',(y) obtained from single rules must be mutually intersected!

= aggregation via B(y) = min { B,'(y), ..., B,'(Y) }
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Approximative Reasoning

Important:

e if rules of the form IF X is A THEN Y is B are not interpreted as logical
implications, then the function Fct(:) in

R(x, y) = Fct( A(x), B(y) )
can be chosen as required for desired interpretation.
e frequent choice (especially in fuzzy control):
- R(x, y) = min { A(x), B(x) } Mamdami — “implication”
- R(x, y) = A(x) - B(x) Larsen — “implication”
= of course, they are no implications but special t-norms!

= thus, if relation R(x, y) is given,
then the composition rule of inference

B'(y) = A'(x) o R(x, y) = sup,x min { A'(x), R(x, y) }

still can lead to a conclusion via fuzzy logic.
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Approximative Reasoning

example: [JM96, S. 244ff.]

industrial drill machine — control of cooling supply

modelling
linguistic variable . rotation speed
linguistic terms :very low, low, medium, high, very high
ground set : X with 0 < x < 18000 [rpm]
A
1
vl m h vh
1000 5000 9000 13000 17000 rotation
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

modelling
linguistic variable : cooling quantity
linguistic terms : very small, small, normal, much, very much
ground set : Y with 0 <y < 18 [liter / time unit]
A
1
VS S n m vim
1 5 9 13 17 cooling
technische universitat G. Rudolph: Computational Intelligence = WHHBP$8m 2009/10

dortmund 14



Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

rule base

IF rotation speed 1S very low THEN cooling quantity 1S very small

low small
medium normal
high much
very high very much
I T
sets S, S, S,,,, S;, S, sets C,,, C,, C,,, C,., C,,
“rotation speed” “cooling quantity”
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

1.

input: crisp value x,=10000 min-' (no fuzzy set!)

— fuzzyfication = determine membership for each fuzzy set over X
— yields S'=(0, 0, %, %4, 0) via x > ( S,(X,), S(Xg), S(X0)s Sp(Xo)s Syn(Xo) )

FITA: locale inference = since Imp(0,a) = 0 we only need to consider:
Smi C'i(y) =Imp(%, C.(y))
Spi C'nly) = Imp( 7, C..(y))

aggregation:

2
C'y) = aggr { C'(y), C'y) } <(max){(mp( %, C.(y) ).
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

C'(y) = max { Imp( %, C (y) ), Imp( %4, C..(y) )}

in case of control task typically no logic-based interpretation:

— Mmax-aggregation and
— relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b) ,Mamdani controller”

thus:
C'(y) = max {min {7, C(y) }, min{ %, C.(y) } }

— graphical illustration
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Approximative Reasoning Lecture 08

example: (continued)

industrial drill machine — control of cooling supply

C'(y) = max { min { %, C_(y) }, min { ¥4, C_(y) } }, X, = 10000 [rpm]

1000 5000 9000 13000 17000 1 5 9 13 17

rotation speed cooling quantity
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Fuzzy Control

open and closed loop control:

affect the dynamical behavior of a system
in a desired manner

e Open loop control

control is aware of reference values and has a model of the system
= control values can be adjusted,
such that process value of system is equal to reference value

problem: noise! = deviation from reference value not detected

e closed loop control

now: detection of deviations from reference value possible
(by means of measurements / sensors)
and new control values can take into account the amount of deviation
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Fuzzy Control

open loop control

8
/)/;,O/k
6/(/@

W u y
reference ] process'
value value

control system

process

assumption: undisturbed operation = process value = reference value
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Fuzzy Control

closed loop control

noise
Q
o)
%)
/‘ro v, d
6/0@ v
W u y
value value

control system
process

control deviation = reference value — process value
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Fuzzy Control

required:

model of system / process
— as differential equations or difference equations (DESs)

— well developed theory available

so, why fuzzy control?

e there exists no process model in form of DEs etc.
(operator/human being has realized control by hand)

e process with high-dimensional nonlinearities — no classic methods available

e control goals are vaguely formulated (,soft* changing gears in cars)
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Fuzzy Control

fuzzy description of control behavior

IF X is A, THEN Y is B, )

IF Xis A,, THEN Y is B,
IF X'is A;, THEN Y is B,
> similar to approximative reasoning
IF Xis A, THEN Yis B,
Xis A’

Y is B’ J

but fact A' is not a fuzzy set but a crisp input

— actually, it is the current process value

fuzzy controller executes inference step

— Yyields fuzzy output set B'(y)

but crisp control value required for the process / system

— defuzzification (= “condense” fuzzy set to crisp value)
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Fuzzy Control

defuzzification

e maximum method

- only active rule with largest activation level is taken into account

— suitable for pattern recognition / classification

— decision for a single alternative among finitely many alternatives

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)

B'(y) t

o r/\/\

B'(y) |

0,5 -

|
~

Yy

y = argmax B'(y)

»
>
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B'(y) |

0,5 -

>

Def: rule k active < A,(X;) > 0
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Fuzzy Control

defuzzification Y*={y e Y: B(y) = hgt(B") }

e maximum mean value method

- all active rules with largest activation level are taken into account
— interpolations possible, but need not be useful

— obviously, only useful for neighboring rules with max. activation
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

> oy

Y*
B(y) 4 | yrey” B(y) 4
i
useful solution? — y
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Fuzzy Control

defuzzification Y*={y e Y: B(y) = hgt(B") }
e center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account
— interpolations possible, but need not be useful
— obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

infY*4+supY™

B(y) 4 B(y) 1
05 [1 0,5
- S -
Y
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Fuzzy Control

defuzzification
e Center of Gravity (COG)
- all active rules are taken into account
— but numerically expensive ... ...only valid for HW solution, today!

— borders cannot appear in output ( 3 work-around )
- if only single active rule: independent from activation level

- continuous curve for output values

Jy-B'(y)dy
J B'(y) dy

:\g’:
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Fuzzy Control

Excursion: COG

Jy-B'(y)dy

/
/ B'(y) dy
B(Y). pendaqt_ In
probability theory:
1T expectation value
1 y
triangle: trapezoid:
1 y1 + 2 + y3 ] vz +v3 —v5 — vi + y3va — y1yo

1 | >

I I
Y1 Y2 Y3
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v
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Fuzzy Control

z=B'(y)a
Jy-B'(y)dy

- / B'(y) dy

|
St
|

Y4 Y, Y3 Y, Y Yo Y y

assumption: fuzzy membership functions piecewise linear

output set B'(y) represented by sequence of points (y,, z,), (Y5, Z,), --., (Y Z,,)
= area under B'(y) and weighted area can be determined additively piece by piece
= linear equation z=my + b = insert (y,, z,) and (Y,,1,Zi.+)

= yields m and b for each of the n-1 linear sections

Yi+1 m )
= F= [ mytb) dy = T2 —uD)H(ia ) > Gi
( ~ 1
- Y=
Yit1 m b, 5 5 FE;
=G = / y (my+b) dy = — (vip1-v0)+5 Wi 1—v7) zz: ¢
Yi 3 2 D
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Fuzzy Control

Defuzzification
e Center of Area (COA)
» developed as an approximation of COG
* let y, be the COGs of the output sets B’/ (y):

>k Ar(x0) - Uk
>k Ar(xo)

Yy =
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