Plan for Today

- Evolutionary Algorithms
 - Optimization Basics
 - EA Basics

Optimization Basics

given:

- **objective function** $f : X \rightarrow \mathbb{R}$
- **feasible region** X (= nonempty set)

objective: find solution with *minimal or maximal* value!

optimization problem:

find $x^* \in X$ such that $f(x^*) = \min \{ f(x) : x \in X \}$

note:

$max \{ f(x) : x \in X \} = -\min \{ -f(x) : x \in X \}$

modelling

- input

simulation

- system

optimization

- output
Optimization Basics

Lecture 10

local solution \(x^* \in X \):

\[\forall x \in N(x^*) : f(x^*) \leq f(x) \]

if \(x^* \) local solution then

f(x^*) local optimum / minimum

neighborhood of \(x^* \) = bounded subset of \(X \)

example: \(X = \mathbb{R}^n, N(x^*) = \{ x \in X : \| x - x^* \|_2 \leq \varepsilon \} \)

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

\[f(x) = a_1 x_1 + \ldots + a_n x_n \rightarrow \max! \]

with \(x_i \in \{0,1\}, a_i \in \mathbb{R} \)

add constant \(g(x) = b_1 x_1 + \ldots + b_n x_n \leq b \)

\(\Rightarrow \) \(x^*_i = 1 \) if \(a_i > 0 \)

\(\Rightarrow \) NP-hard

add capacity constraint to TSP \(\Rightarrow \) CVRP

\(\Rightarrow \) still harder

What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- non-smoothness (weak causality) \(\Rightarrow \) strong causality needed!
- discontinuities (\(\Rightarrow \) nondifferentiability, no gradients)
- lack of knowledge about problem (\(\Rightarrow \) black / gray box optimization)

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- resources for designing algorithm affordable
- solution with proven quality required

⇒ \textbf{don't apply EAs}

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient resources for designing algorithm
- solution with satisfactory quality sufficient

⇒ \textbf{EAs worth a try}

Evolutionary Algorithm Basics

Idea:

using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution \(x \in X = S_1 \times \ldots \times S_n \) = chromosome of individual

multiset of feasible solutions = population: multiset of individuals

objective function \(f : X \rightarrow \mathbb{R} \) = fitness function

Often: \(X = \mathbb{R}^n, X = [0,1]^n, X = \mathbb{P}_n = \{ \pi : \pi \text{ is permutation of } \{1,2,\ldots,n\} \} \)

Also: combinations like \(X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q \) or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual
Evolutionary Algorithm Basics

Lecture 10

Algorithmic skeleton

- Initialize population
- Evaluation
- Parent selection
- Variation (yields offspring)
- Evaluation (of offspring)
- Survival selection (yields new population)
- Stop?

Output: best individual found

Specific example: (1+1)-EA in \(\mathbb{R}^n \) for minimizing some \(f: \mathbb{R}^n \to \mathbb{R} \)

- Population size = 1, number of offspring = 1, selects best from 1+1 individuals
- No choice, here

1. Initialize \(X^{(0)} \in \mathbb{R}^n \) uniformly at random, set \(t = 0 \)
2. Evaluate \(f(X^{(0)}) \)
3. Select parent: \(Y = X^{(t)} \)
4. Variation: Flip each bit of \(Y \) independently with probability \(p_m = 1/n \)
5. Evaluate \(f(Y) \)
6. Selection: If \(f(Y) \leq f(X^{(0)}) \) then \(X^{(t+1)} = Y \) else \(X^{(t+1)} = X^{(t)} \)
7. If not stopping then \(t = t + 1 \), continue at (3)

Selection

- Select parents that generate offspring \(\rightarrow \) selection for reproduction
- Select individuals that proceed to next generation \(\rightarrow \) selection for survival

Necessary requirements:
- Selection steps must not favor worse individuals
- One selection step may be neutral (e.g., select uniformly at random)
- At least one selection step must favor better individuals

Typically: Selection only based on fitness values \(f(x) \) of individuals
Seldom: Additionally based on individuals’ chromosomes \(x \) \(\rightarrow \) maintain diversity

Selection methods

- Population \(P = (x_1, x_2, ..., x_\mu) \) with \(\mu \) individuals
- Two approaches:
 1. Repeatedly select individuals from population with replacement
 2. Rank individuals somehow and choose those with best ranks (no replacement)

 - Uniform/neutral selection
 choose index \(i \) with probability \(1/\mu \)
 - Fitness-proportional selection
 choose index \(i \) with probability \(s_i = \frac{f(x_i)}{\sum_{x \in P} f(x)} \)

Problems: \(f(x) > 0 \) for all \(x \in X \) required \(\Rightarrow g(x) = \exp(f(x)) > 0 \)
But already sensitive to additive shifts \(g(x) = f(x) + c \)
Almost deterministic if large differences, almost uniform if small differences

Don’t use!
Evolutionary Algorithm Basics

Lecture 10

Selection methods
population \(P = (x_1, x_2, ..., x_\mu) \) with \(\mu \) individuals

- **rank-proportional selection**
 order individuals according to their fitness values
 assign ranks
 fitness-proportional selection based on ranks
 \(\Rightarrow \) avoids all problems of fitness-proportional selection
 but: best individual has only small selection advantage (can be lost!)

- **k-ary tournament selection**
 draw \(k \) individuals uniformly at random (typically with replacement) from \(P \)
 choose individual with best fitness (break ties at random)
 \(\Rightarrow \) has all advantages of rank-based selection and
 probability that best individual does not survive:
 \[\left(1 - \frac{1}{\mu}\right)^{k\mu} \approx e^{-k} \]

Selection methods without replacement
population \(P = (x_1, x_2, ..., x_\mu) \) with \(\mu \) parents and
population \(Q = (y_1, y_2, ..., y_\lambda) \) with \(\lambda \) offspring

- \((\mu, \lambda)\)-selection or truncation selection on offspring or comma-selection
 rank \(\lambda \) offspring according to their fitness
 select \(\mu \) offspring with best ranks
 \(\Rightarrow \) best individual may get lost, \(\lambda \geq \mu \) required

- \((\mu+\lambda)\)-selection or truncation selection on parents + offspring or plus-selection
 merge \(\lambda \) offspring and \(\mu \) parents
 rank them according to their fitness
 select \(\mu \) individuals with best ranks
 \(\Rightarrow \) best individual survives for sure