

Optimization Basics Lecture 10 local solution $x^* \in X$: if x* local solution then $\forall x \in N(x^*): f(x^*) \leq f(x)$ f(x*) local optimum / minimum neighborhood of $x^* =$ example: $X = \mathbb{R}^n$, $N_{\epsilon}(x^*) = \{ x \in X : ||x - x^*||_2 \le \epsilon \}$ bounded subset of X remark: evidently, every global solution / optimum is also local solution / optimum; the reverse is wrong in general! example: f: [a,b] $\rightarrow \mathbb{R}$, global solution at \mathbf{x}^* G. Rudolph: Computational Intelligence • Winter Term 2009/10 technische universität

Lecture 10 **Optimization Basics** When using which optimization method? mathematical algorithms randomized search heuristics · problem explicitly specified problem given by black / gray box • no problem-specific solver available problem-specific solver available problem well understood problem poorly understood · insufficient ressources for designing ressources for designing algorithm affordable algorithm solution with proven quality · solution with satisfactory quality required sufficient ⇒ don't apply EAs ⇒ EAs worth a try G. Rudolph: Computational Intelligence • Winter Term 2009/10 I technische universität

Optimization Basics Lecture 10 What makes optimization difficult? some causes: local optima (is it a global optimum or not?) • constraints (ill-shaped feasible region) non-smoothness (weak causality) → strong causality needed! discontinuities (⇒ nondifferentiability, no gradients) lack of knowledge about problem (⇒ black / gray box optimization) $f(x) = a_1 x_1 + ... + a_n x_n \rightarrow max!$ with $x_i \in \{0,1\}, a_i \in \mathbb{R}$ \Rightarrow x_i* = 1 if a_i > 0 \Rightarrow NP-hard add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$ ⇒ still harder add capacity constraint to TSP \Rightarrow CVRP

Evolutionary Algorithm Basics

technische universität

Lecture 10

G. Rudolph: Computational Intelligence • Winter Term 2009/10

idea: using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution $x \in X = S_1 \times ... \times S_n$ = chromosome of **individual**

multiset of feasible solutions = population: multiset of individuals

objective function f: $X \to \mathbb{R}$ = fitness function

<u>often:</u> $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\} \}$ <u>also:</u> combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2009/10

Evolutionary Algorithm Basics

Lecture 10

Selection

- (a) select parents that generate offspring
- → selection for reproduction
- (b) select individuals that proceed to next generation \rightarrow selection for survival

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically: selection only based on fitness values f(x) of individuals

seldom: additionally based on individuals' chromosomes x (→ maintain diversity)

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2009/10

Evolutionary Algorithm Basics

Lecture 10

Specific example: (1+1)-EA in \mathbb{B}^n for minimizing some $f: \mathbb{B}^n \to \mathbb{R}$

population size = 1, number of offspring = 1, selects best from 1+1 individuals

parent offspring

- 1. initialize $X^{(0)} \in \mathbb{B}^n$ uniformly at random, set t = 0
- 2. evaluate f(X(t))
- 3. select parent: Y = X(t)

no choice, here

- 4. variation: flip each bit of Y independently with probability $p_m = 1/n$
- evaluate f(Y)
- 6. selection: if $f(Y) \le f(X^{(t)})$ then $X^{(t+1)} = Y$ else $X^{(t+1)} = X^{(t)}$
- 7. if not stopping then t = t+1, continue at (3)

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Evolutionary Algorithm Basics

Lecture 10

Selection methods

population P = $(x_1, x_2, ..., x_\mu)$ with μ individuals

two approaches:

- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- uniform / neutral selection

choose index i with probability $1/\mu$

• fitness-proportional selection choose index i with probability $\mathbf{s}_{i} = \frac{f(x_{i})}{\sum\limits_{x \in P} f(x)}$

don't user

 $problems: f(x) > 0 \ for \ all \ x \in X \ required \\ \qquad \Rightarrow g(x) = exp(\ f(x)\) > 0$

but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2009/10

Evolutionary Algorithm Basics

Lecture 10

Selection methods

population P = $(x_1, x_2, ..., x_u)$ with μ individuals

· rank-proportional selection

order individuals according to their fitness values

fitness-proportional selection based on ranks

· k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and probability that best individual does not survive:

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Evolutionary Algorithm Basics

Lecture 10

Selection methods without replacement

population P = $(x_1, x_2, ..., x_u)$ with μ parents and population Q = $(y_1, y_2, ..., y_{\lambda})$ with λ offspring

- (μ, λ) -selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks
- \Rightarrow best individual may get lost, $\lambda \ge \mu$ required
- (μ+λ)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
- ⇒ best individual survives for sure

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2009/10