

Computational Intelligence

Winter Term 2009/10

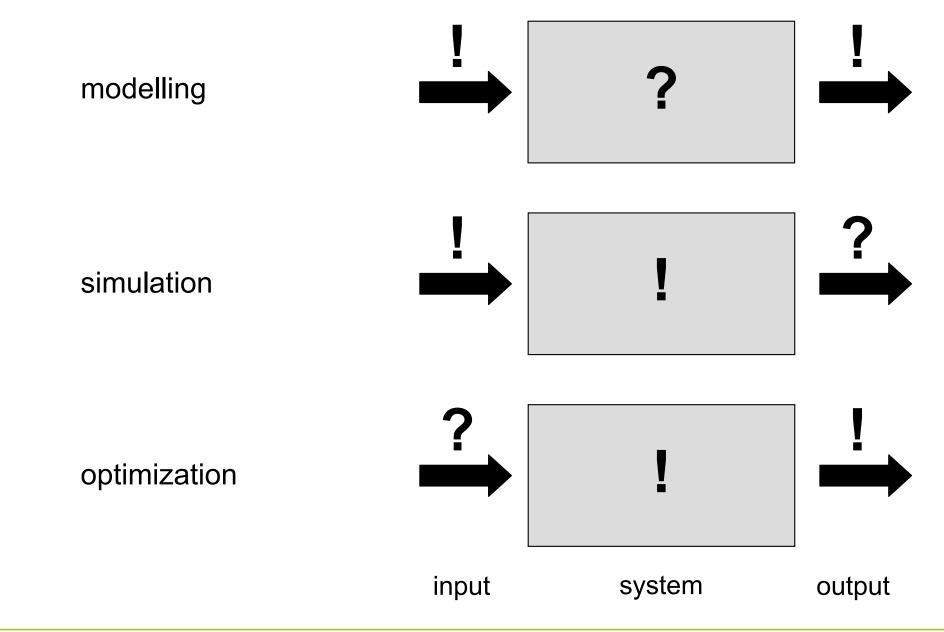
Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Evolutionary Algorithms
 - Optimization Basics
 - EA Basics



technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2009/10

given:

```
objective function f: X \to \mathbb{R}
```

```
feasible region X (= nonempty set)
```

objective: find solution with *minimal* or *maximal* value!

optimization problem:

find $x^* \in X$ such that $f(x^*) = \min\{ f(x) : x \in X \}$

x* global solutionf(x*) global optimum

<u>note:</u>

$$max\{ f(x) : x \in X \} = -min\{ -f(x) : x \in X \}$$

local solution $x^* \in X$: $\forall x \in N(x^*)$: $f(x^*) \leq f(x)$ neighborhood of $x^* =$ bounded subset of X if x* local solution then
f(x*) local optimum / minimum

$$\underline{\text{example:}} \quad X = \mathbb{R}^n, \ N_{\epsilon}(x^*) = \{ x \in X : || x - x^* ||_2 \le \epsilon \}$$

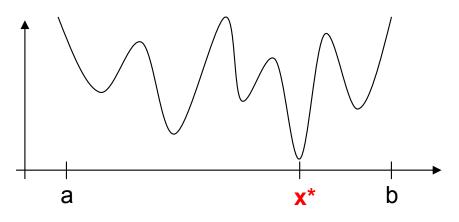
remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

example:

f: [a,b] $\rightarrow \mathbb{R}$, global solution at \mathbf{x}^*



What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- non-smoothness (weak causality) strong causality needed!
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)

→
$$f(x) = a_1 x_1 + ... + a_n x_n \rightarrow max!$$
 with $x_i \in \{0,1\}$, $a_i \in \mathbb{R}$ $\Rightarrow x_i^* = 1$ if $a_i > 0$
add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$ \Rightarrow NP-hard

add capacity constraint to TSP \Rightarrow CVRP

 \Rightarrow still harder

G. Rudolph: Computational Intelligence • Winter Term 2009/10

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required

\Rightarrow don't apply EAs

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient

⇒ EAs worth a try

idea: using biological evolution as metaphor and as pool of inspiration

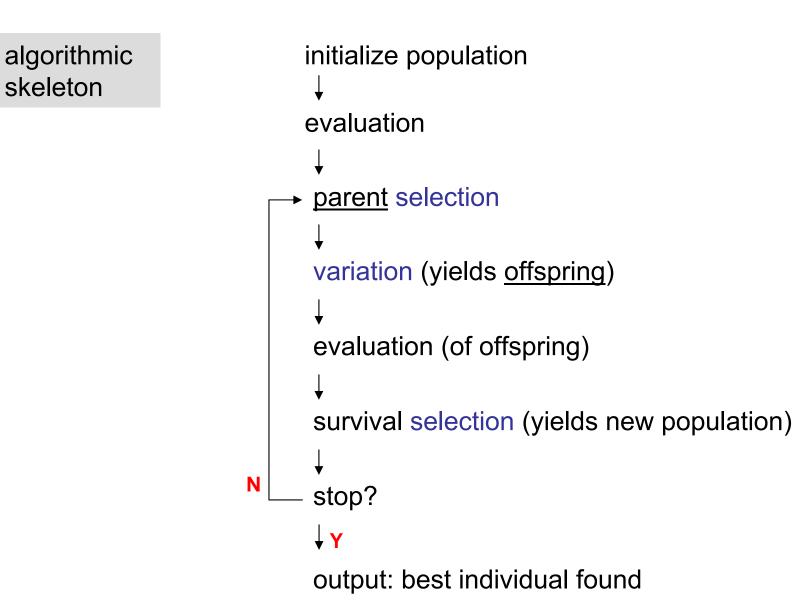
 \Rightarrow interpretation of biological evolution as iterative method of improvement

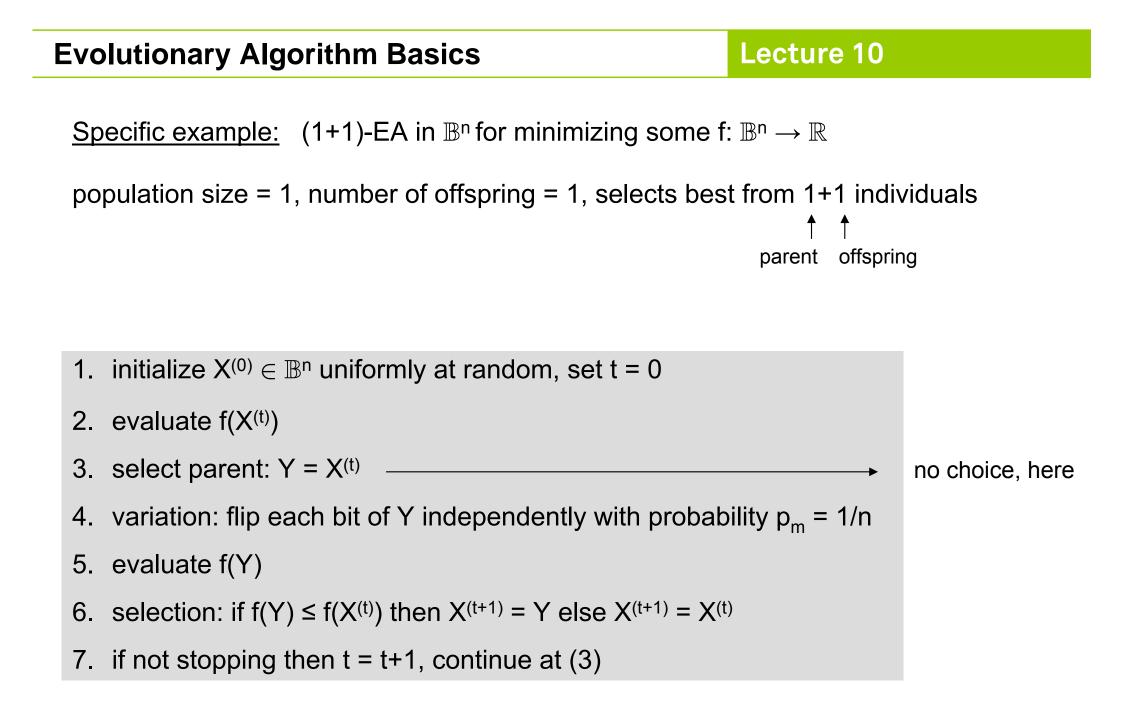
feasible solution $x \in X = S_1 \times ... \times S_n$ = chromosome of individualmultiset of feasible solutions= population: multiset of individualsobjective function $f: X \to \mathbb{R}$ = fitness function

often: $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\} \}$

<u>also</u>: combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual





 \rightarrow selection for reproduction

Selection

- (a) select parents that generate offspring
- (b) select individuals that proceed to next generation \rightarrow selection for survival

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals' chromosomes x (\rightarrow maintain diversity)

Selection methods

population P = ($x_1, x_2, ..., x_{\mu}$) with μ individuals

two approaches:

- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- *uniform / neutral selection* choose index i with probability $1/\mu$
- fitness-proportional selection choose index i with probability $s_i = \frac{f(x_i)}{\sum\limits_{x \in P} f(x)}$

don't Use!

problems: f(x) > 0 for all $x \in X$ required $\Rightarrow g(x) = exp(f(x)) > 0$

but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

Selection methods

population P = $(x_1, x_2, ..., x_{\mu})$ with μ individuals

rank-proportional selection

order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks

 \Rightarrow avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and probability that best individual does not survive:

$$\left(1-\frac{1}{\mu}\right)^{k\,\mu}\approx e^{-k}$$

Lecture 10

Selection methods without replacement

population P = ($x_1, x_2, ..., x_{\mu}$) with μ parents and population Q = ($y_1, y_2, ..., y_{\lambda}$) with λ offspring

 (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks

 \Rightarrow best individual may get lost, $\lambda \ge \mu$ required

 (μ+λ)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks

 \Rightarrow best individual survives for sure