
Introduction Evolutionary Algorithms Initialization and Selection Variation EA Parameters Typical EAs EA-Design

Mutation

• depends on the search space

• generates one offspring from one parent

• makes only small changes with high probability
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Mutation operators for {0, 1}n

• Standard Bit Mutation (parameter mutation-probability pm)
Copy x to y and invert every bit of y independently with
probability pm.
• expected number of inverted bits = pm · n
• pm ∈ (0; 1/2] to favor small changes
• most often used mutation probability pm = 1/n

• b-Bit Mutation (parameter b)
Copy x to y, choose randomly uniformly
b different positions in y,
and invert the bits of y at these positions
• b often very small, most often b = 1
• easier to analyze than standard-bit-mutation
• Behavior can vary greatly from standard-bit-mutation
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Mutation operators for R
n

most often add random vector m on x to generate y

almost always E (m) = 0n

often m = (m′1,m
′
2, · · · ,m′n) where all m′ ∈ R

random choice of m′ ∈ R where E (m′) = 0

• restricted m′ ∈ [a; b], most often m′ ∈ [−a; a] uniformly

• unrestricted often normally distributed with probability
density 1√

2πσ
e−r

2/(2σ2)
 E (m′) = 0, Var(m′) = σ2

sometimes σ = 1 fixed and use s ·m′ instead of m′

How to choose s

• most often s is not fixed

• Idea choose large s, when far away from the optimum

• Idea choose small s, when close to the optimum
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Mutation operators for Sn

• we don’t discuss problem-specific mutation operators

• Exchange
Copy parent, choose i 6= j ∈ {1, 2, . . . , n} uniformly
randomly. Swap elements with positions i and j.

• Jump
Copy parent, choose i 6= j ∈ {1, 2, . . . , n} uniformly
randomly. Delete element at position i and insert it
at position j (elements in-between are moved).

• Combination of exchange and jump
Choose k ∈ N0 randomly according to Poisson-distribution
with parameter 1, i. e. Prob (k = r) = 1

e·r! .
Do k + 1 iterations, where randomly uniformly either an
exchange or a jump is done.
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Crossover

• depends on the search space

• usually generates one offspring from at least two parents

• usually generates offspring, that are ’similar’ to the parents

• sometimes two parents generate exactly two offspring
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Crossover operators for {0, 1}n (1)

• k-point crossover (parameter k)
Generate offspring y from parents x1 and x2.
Choose k different crossover points
p1, . . . , pk ∈ {1, 2, . . . , n− 1}

with p1 < p2 < p3 · · · < pk.
y = x1[1]x1[2] · · ·x1[p1]x2[p1 + 1] · · ·x2[p2]x1[p2 + 1] · · · .
• most often k very small, usually k = 2 or even k = 1

• uniform crossover
Generate offspring y from parents x1 and x2.
For every position i ∈ {1, . . . , n} choose yi
randomly uniformly from either x1[i] or x2[i].
• ∀i : x1[i] = x2[i]⇒ y[i] = x1[i]
• generates uniformly one of the possible offspring of x1 and x2

• in general there are much more possible offspring than using
k-point crossover
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Crossover operators for {0, 1}n (2)

• Genepool crossover
Generate offspring y from parents x1, x2, . . . , xµ.

Choose y[i] = 1 with probability
µ
∑

j=1
xj[i]/µ.

• often the whole population acts as parents
• theoretically motivated
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Crossover operators for R
n

• k-point crossover
works as in {0, 1}n

• uniform crossover
works as in {0, 1}n

• arithmetic crossover
Generate offspring y from parents x1, x2, . . . , xµ.

Generate y =
µ
∑

i=1
αi · xi with parameters α1, . . . , αµ

where
µ
∑

i=1
αi = 1.

• often αi = 1/µ for all i
• for αi = 1/µ, y is centroid of parents
• for αi = 1/µ, it’s also called intermediate crossover
• arithmetic crossover is the only deterministic variation operator
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Crossover operators for Sn

• most often offspring y is generated from two parents x1, x2

• frequent idea Choose two positions in x1, and sort elements
in this interval according to their order in x2 (concrete
examples: PMX, CX).

• many problem-specific crossover operators (e. g. edge
recombination or inver-over for TSP)

• no crossover operators successful over a wide range of
applications
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