
Introduction Fitness-Based Partitions Lower Bounds

Evolutionary Algorithms

We know

• what evolutionary algorithms are and

• how we can design evolutionary algorithms.

What do we want to do now?

What do we do if we design a problem-specific algorithm?

1 prove its correctness

2 analyze its performance: (expected) run time

What does this mean for evolutionary algorithms in the context of
optimization?

1 prove that max. f -value in population converges to global
max. of f for t→∞

2 analyze how long this takes on average: expected optimization
time
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Analysis of Evolutionary Algorithms

What kind of evolutionary algorithms do we want to analyze?

clearly all kinds of evolutionary algorithms

more realistic very simple evolutionary algorithms
at least as starting point

For what kind of problems do we want to do analysis?

clearly all kinds of problems

more realistic very simple problems — “toy problems”
at least as starting point
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On “Toy Problems”

better term example problems

Why should we care?

• support analysis, help to develop analytical tools

• are easy to understand, are clearly structured

• present typical situations in a paradigmatic way

• make important aspects visible

• act as counter examples

• help to discover general properties

• are important tools for further design and analyis
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Upper bounds with f -based partitions
Method of f -based partitions works well with plus-selection.

Definition

Let f : {0, 1}n → R. A partition L0, L1, . . . , Lk of {0, 1}n is called
f -based partition iff the following holds.

1 ∀i, j ∈ {0, . . . , k} : ∀x ∈ Li : ∀y ∈ Lj : (i < j ⇒ f(x) < f(y))

2 Lk = {x ∈ {0, 1}n | f(x) = max {f(y) | y ∈ {0, 1}n}}

Often the trivial f -based parition works well.

k := |{f(x) | x ∈ {0, 1}n}| − 1

{f(x) | x ∈ {0, 1}n} = {f0, f1, . . . , fk} with f0 < f1 < · · · < fk

for i ∈ {0, 1, . . . , k} : Li := {x ∈ {0, 1}n | f(x) = fi}
359



Introduction Fitness-Based Partitions Lower Bounds

Example: (1+1) EA on OneMax

OneMax : {0, 1}n → R with OneMax(x) :=
n
∑

i=1
xi

The (1+1) EA

1. Initialization
Choose x ∈ {0, 1}n uniformaly at random.

2. Mutation
y := mutate(x); (standard bit mutations, pm = 1/n)

3. Selection
If f(y) ≥ f(x), Then x := y.

4. “Stoppping Criterion”
Continue at line 2.
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Method: f -based partitions

Key Observation:
(1+1) EA leaves each fitness layer at most once.

Lower bound on the probability to leave Li:

si := min
x∈Li

k
∑

j=i+1

∑

y∈Lj

p
H(x,y)
m · (1− pm)n−H(x,y)

Upper bound on the expected time needed to leave Li:
E (time to leave Li) ≤ 1/si

Upper bound on the expected optimization time:

E
(

T(1+1) EA,f

)

≤
k−1
∑

i=0
1/si
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Upper Bound: (1+1) EA on OneMax

Use trivial OneMax-based partition.

To leave Li, flip exactly 1 out of n− i 0-bits.

si ≥
(n−i

1

)

· 1
n ·
(

1− 1
n

)n−1
≥ n−ien

E
(

T(1+1) EA,OneMax

)

≤
n−1
∑

i=0

en

n− i
= en ·

n
∑

i=1

1

i

< en ln(n) + en

= O(n log n)
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Linear Functions

Observation OneMax(x) =
n
∑

i=1
x[i]

is of the form f(x) = w0 +
n
∑

i=1
wi · x[i]

Definition f : {0, 1}n → R is called linear

if f is of the form f(x) = w0 +
n
∑

i=1
wi · x[i]

Are all linear functions like OneMax?

Definition different extreme example
BinVal : {0, 1}n → R with

BinVal(x) =
n
∑

i=1
2n−i · x[i]
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Upper bound for E
(

T(1+1) EA,BinVal

)

Consider trivial fitness levels
∀i ∈ {0, 1, . . . , 2n − 1} : Li := {x ∈ {0, 1}n | BinVal(x) = i}

without considering si at best upper bound ≥ 2n − 1 achievable

Observation for good upper bounds number of fitness levels
needs to be small

Try more clever fitness levels
∀i ∈ {0, 1, . . . , n− 1} :

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| BinVal(x) <
i
∑

j=0
2n−1−j

}
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Upper bound for E
(

T(1+1) EA,BinVal

)

(II)

∀i ∈ {0, 1, . . . , n− 1} :

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| BinVal(x) <
i
∑

j=0
2n−1−j

}

obvious si ≥
1
n

(

1− 1
n

)n−1
≥ 1
en

Theorem E
(

T(1+1) EA,BinVal

)

≤ en2
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Upper bounds for linear functions

Theorem f linear ⇒ E
(

T(1+1) EA,f

)

= O(n2)

Proof f(x) =
n
∑

i=1
wix[i] mit w1 ≥ w2 ≥ · · · ≥ wn

Definition fitness levels for i ∈ {0, 1, . . . , n− 1}

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| f(x) <
i+1
∑

j=1
wj

}

Ln := {1n}

Observation in order to leave Li:
sufficient to mutate left-most 0-bit

thus E
(

T(1+1) EA,f

)

≤ en2
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