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Approximative Reasoning

So far:
ep:IFXisATHEN Y is B

— R(x, y) = Imp( A(x), B(y) ) rule as relation; fuzzy implication

e rule: IF XisATHEN Y is B
fact: Xis A
conclusion: Y is B

— B(y) = sup,x t( A‘(x), R(x, ¥) ) composition rule of inference

Thus:
® B'(y) = sup,x t( A'(x), Imp( A(x), B(y) ))
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Approximative Reasoning

here:
Alx) =

1
0

Bi(y)

for x =X, | crisp input! |

otherwise

sup,x t( A'(x), Imp( A(x), B(y) ) )

sup t( 0, Imp(A(x), B(y))) for x # x,

X #Xo
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t( 1, Imp(A(xo), B(Y))) forx =x,

0 for x # x, since t(0,a)=0

Imp( ( A(x,), B(y)) for x = x, since t(a, 1) =a
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Approximative Reasoning

Lemma:

a) ta,1)=a

b) t(a,b)<min{a, b}

c) t(0,a)=0

Proof: by a)

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b < 1, that t(a, b) < t(a, 1) = a.
Commutativity (axiom 3) and monotonicity lead in case of a <1 to
t(a, b) = t(b, a) < t(b, 1) = b. Thus, t(a, b) is less than or
equal to a as well as b, which in turn implies t(a, b) < min{ a, b }.

ad c) From b) follows 0 < (0, a) < min {0, a } = 0 and therefore t(0, a) = 0. u
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Approximative Reasoning

Multiple rules:

Imp,( A4(x), B4(y))
Imp,( Ay(x), By(y) )
Imp,( Az(x), B(y))

CUR(% y) = Imp( Ay(x), B(y) )

IF Xis A;, THEN Y is B, - Ry(x,y)
IF Xis A,, THEN Y is B, — Ry(x,y)
IF X is A;, THEN Y is B, — Rs(x, y)

IF Xis A, THEN Y is B,
Xis A
Y is B

Multiple rules for crisp input:  x, is given
By'(y) = Imp;(A(xo), B4(y) )

B, (y) = IMp,(An(Xo), Ba(y))

aggregation of rules or
local inferences necessary!

min

aggregate! = B'(y) = aggr{B;'(y), ..., B,(y) }, where aggr = { max
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Approximative Reasoning

FITA: “First inference, then aggregate!”

1. Each rule of the form IF X is A, THEN Y is B, must be transformed by
an appropriate fuzzy implication Imp,(-, -) to a relation R, :

R(x, y) = Imp, ( A(X), By(y) )-
2. Determine B,‘(y) = R (X, y) o A‘(x) for allk = 1, ..., n (locale inference).

3. Aggregate to B(y) = B( B;(y), .... B,(Y) )-

FATI: “First aggregate, then inference!”

1. Each rule of the form IF X ist A, THEN Y ist B, must be transformed by
an appropriate fuzzy implication Imp,(-, -) to a relation R, :

Ri(x, y) = Imp,( Ay(x), By(y) ).

2. Aggregate R,, ..., R, to a superrelation with aggregating function a(-):
R(X, y) = a( Ry(X, Y), ..., Ry(x, y) ).

3. Determine B'(y) = R(x, y) o A'(x) w.r.t. superrelation (inference).
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Approximative Reasoning

1. Which principle is better? FITA or FATI?

2. Equivalence of FITA and FATI ?

FITA: B(y) = B(B4(¥), ---» B,'(¥))
B(Ry(X, y) 0 A'(x), ..., Ri(X, ¥) o A(X) )

FATI: B'(y) = R(x,y) o A'(x)

o Ry(x,y), -, Ry(%, y) ) o A(X)
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Approximative Reasoning

special case:
Alx) =

1 forx=x
0 crisp input!

0 otherwise

On the equivalence of FITA and FATI:

FITA: B(y) = B(B(y) ..., B/(Y))
= BCIMP,(A4(X): By(Y) ), -, Imp(An(Xp), By(y) ) )
FATI: B(y) = R(x,y) o A'(x)

sup,x t( A'(x), R(x, y) ) (from now: special case)
R(Xo, ¥)

a( Imp,(A(xg), B4(y) ), -, Imp,( A (Xo), Bn(Y) ) )

evidently: sup-t-composition with arbitrary t-norm and a(-) = (-)
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Approximative Reasoning

e AND-connected premises
IFX,=A,; ANDX,=A,,AND ... AND X, = A,  THENY =B,

IFX,=A,;ANDX,=A,AND ... AND X, =A  THENY =B,
reduce to single premise for each rule k:
AXqs-e ey X)) = M {AG(Xy), Ap(Xa)s oo Agn(X) } or in general: t-norm

e OR-connected premises
IFX,=A;,;ORX,=A,,0R...ORX_ =A,,THENY =B,
IFX,=A,,ORX,=A,0R...0ORX_ =A,, THENY =B,
reduce to single premise for each rule k:

Al (Xq,es X) = max { A (Xg), Aa(Xa)s - Agn(Xin) 3

o A or in general: s-norm
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Approximative Reasoning

important:

e if rules of the form IF X is A THEN Y is B interpreted as logical implication
= R(x, y) = Imp( A(x), B(y) ) makes sense

e we obtain: B'(y) = sup,_y t( A'(x), R(x, y))

= the worse the match of premise A‘(x), the larger is the fuzzy set B‘(y)

= follows immediately from axiom 1: a < b implies Imp(a, z) > Imp(b, z)

interpretation of output set B(y):

e B'(y) is the set of values that are still possible

e each rule leads to an additional restriction of the values that are still possible

= resulting fuzzy sets B‘,(y) obtained from single rules must be mutually intersected!
= aggregation via B'(y) = min { B,'(y), ..., B,(y) }
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Approximative Reasoning

important:

e if rules of the form IF X is A THEN Y is B are not interpreted as logical
implications, then the function Fct(-) in

R(x, y) = Fet( A(x), B(y) )
can be chosen as required for desired interpretation.
e frequent choice (especially in fuzzy control):
- R(x, y) = min { A(x), B(x) }
- R(x, y) = Ax) - B(x)

Mamdami — “implication®
Larsen — “implication®
= of course, they are no implications but special t-norms!

= thus, if relation R(x, y) is given,
then the composition rule of inference

| B(y)= A(X) o R(x, y) = sup, . min { A(x), R(x,y)} |

still can lead to a conclusion via fuzzy logic.
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Approximative Reasoning

example: [JM96, S. 244ff)
industrial drill machine — control of cooling supply

modelling
linguistic variable : rotation speed

linguistic terms : very low, low, medium, high, very high

Approximative Reasoning

example: (continued)
industrial drill machine — control of cooling supply

modelling
linguistic variable : cooling quantity

linguistic terms :very small, small, normal, much, very much

ground set : X with 0 < x < 18000 [rpm] ground set : Y with 0 <y <18 [liter / time unit]
1 1
vl m h vh Vs s n m vm,

1000 5000 9000 13000 17000 rotation 1 5 9 13 17 coolin_g
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Approximative Reasoning Approximative Reasoning

example: (continued) example: (continued)

industrial drill machine — control of cooling supply industrial drill machine — control of cooling supply

rule base 1. input: crisp value x, = 10000 min'  (no fuzzy set!)

IF rotation speed IS very low THEN cooling quantity 1S very small — fuzzyfication = determine membership for each fuzzy set over X
low small — yields S’ =(0, 0, %, %, 0) via x = ( S, (Xy)» Si(%o)» Sm(Xo)s Sh(Xo) Sun(Xo) )
medium normal
high much 2. FITA: locale inference = since Imp(0,a) = 0 we only need to consider:
very high very much Spi Culy) =Imp(%, C(y))

T T

sets S, S, Sy, Sy, Syp sets C, C;, C, C, Cypy

“rotation speed” “cooling quantity”
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Sp: Cly) = Imp( %, Cr(y) )

3. aggregation:

?
C(y) = aggr { C',(y), C(y) } max{(mp( %, C.(y) ),
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Approximative Reasoning Lecture (0]:]

example: (continued)

industrial drill machine — control of cooling supply

C'(y) = max { Imp( %, C,(y) ), Imp( %, C,(y) ) }

in case of control task typically no logic-based interpretation:
— max-aggregation and

— relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b) ».Mamdani controller*

thus:

C'(y) = max {min { %, C,(y) }, min { %4, C,(y) } }

— graphical illustration

Approximative Reasoning Lecture (0]]

example: (continued)

industrial drill machine — control of cooling supply

C'(y) =max {min { %, C(y) }, min { ¥4, C_.(y) } }, X, = 10000 [rpm]

AL

/

17000 1 5 9 13 17

1000 5000 9000 13000

rotation speed cooling quantity
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Lecture 08

Fuzzy Control

open and closed loop control:

affect the dynamical behavior of a system
in a desired manner

e open loop control

control is aware of reference values and has a model of the system
= control values can be adjusted,

such that process value of system is equal to reference value

problem: noise! = deviation from reference value not detected

e closed loop control

now: detection of deviations from reference value possible
(by means of measurements / sensors)
and new control values can take into account the amount of deviation

Fuzzy Control

Lecture 08

open loop control

Q
to)
7),
G, ”,
L7
%

w u y
_ _— _—
reference process

value value
control system
process

assumption: undisturbed operation = process value = reference value
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Fuzzy Control

closed loop control

noise
Q
to)
)
G, , d
L7
%
w u y
_— _ —_—
reference — process
value value

control system
process

control deviation = reference value — process value
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Fuzzy Control

required:

model of system / process
— as differential equations or difference equations (DEs)

— well developed theory available

so, why fuzzy control?

e there exists no process model in form of DEs etc.
(operator/human being has realized control by hand)

e process with high-dimensional nonlinearities — no classic methods available

e control goals are vaguely formulated (,soft“ changing gears in cars)

G. Rudolph: Computational Intelligence = Winter Term 2010/11
22

technische universitat
dortmund

Fuzzy Control

fuzzy description of control behavior

IF Xis A,, THEN Y is B,
IF Xis A,, THEN Y is B,
IF Xis A;, THEN Y is B,
similar to approximative reasoning
IF Xis A, THEN Y is B,

Xis A’

Y is B

but fact A* is not a fuzzy set but a crisp input

— actually, it is the current process value

fuzzy controller executes inference step

— yields fuzzy output set B'(y)

but crisp control value required for the process / system

— defuzzification (= “condense” fuzzy set to crisp value)
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Fuzzy Control

defuzzification Def: rule k active < A,(x) >0
e maximum method
- only active rule with largest activation level is taken into account
— suitable for pattern recognition / classification
— decision for a single alternative among finitely many alternatives
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)

7
RN
|/\’\A | X
]
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‘ ¥ = argmax B'(y) ‘

B(y) B(y) B(y)

0,5 /\/\ 0,5

T T T
]
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Fuzzy Control

defuzzification Y*={y e Y:B(y) = hgt(B) }

e maximum mean value method

- all active rules with largest activation level are taken into account

— interpolations possible, but need not be useful

— obviously, only useful for neighboring rules with max. activation
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

Fuzzy Control

defuzzification Y*={y e Y:B(y) = hgt(B) }

e center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account
— interpolations possible, but need not be useful
— obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

- 1 ” _  infY*4+supY*
L Y *| Z Y Y=
yreyr B(y) :
”””””””””” B(y) B(y) -
0,5
0,5 0,5
useful solution? — 7 EB
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2010/11 technische universitat G. Rudolph: Computational Intelligence = Winter Term 2010/11
dortmund 25 dortmund 26
Fuzzy Control Fuzzy Control
/
defuzzification c o COG §= Jy-B (y) dy
xcursion: —
e Center of Gravity (COG) [ B'(y) dy
- all active rules are taken into account B) pendant in
— but numerically expensive ... ...only valid for HW solution, today! probability theory:
. 1 expectation value
— borders cannot appear in output ( 3 work-around )
- if only single active rule: independent from activation level } }
y
- continuous curve for output values ! .77
B/( ) d triangle: trapezoid:
__ Jy-B(y)dy
Y= ——"F"F57 ~ + o+ 242 42,24 _
J Bl(y) dy — Y1 Y2 T Y3 §= Ya Yz —Y> — Y1 Y3ys — Yi1y2
3 3(ya+y3 —y2 —v1)
Y1 Y2 Y3 YY2 Y3 Vs
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Fuzzy Control

z=B(y)
_Jy-B'Wdy

1 ' [ B'(y) dy

¢

'y, 12 ¥s Ya Ys Yo
assumption: fuzzy membership functions piecewise linear
output set B‘(y) represented by sequence of points (y,, z,), (Y2, Z), -+, (Yns Z)
= area under B'(y) and weighted area can be determined additively piece by piece
= linear equation z=my + b = insert (y;, z,) and (Y;,1,Z+¢)

= yields m and b for each of the n-1 linear sections

Yi+1 m
= F, = /y (my-+b) dy = E(yi2+1_yi2)+b(yi+l_yi) 2 Gy
i ~ ()
y —
Yit1 m b F;
=G, = / y(my+bd) dy = 3(?4?4-1_%‘3)‘{‘5(%24—1_%’2) ; !
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Fuzzy Control

Defuzzification
e Center of Area (COA)
+ developed as an approximation of COG

* let y, be the COGs of the output sets B’,(y):

_ 2k Ap(o) - Uk
>k Ar(xo0)

[
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