

Computational Intelligence

Winter Term 2011/12

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Organization (Lectures / Tutorials)
- Overview CI
- Introduction to ANN
 - McCulloch Pitts Neuron (MCP)
 - Minsky / Papert Perceptron (MPP)

Who are you?

either

studying "*Automation and Robotics*" (Master of Science) Module "Optimization"

or

studying "Informatik"

- BA-Modul "Einführung in die Computational Intelligence"
- Hauptdiplom-Wahlvorlesung (SPG 6 & 7)

Who am I?

Günter Rudolph Fakultät für Informatik, LS 11

Guenter.Rudolph@tu-dortmund.de OH-14, R. 232

office hours: Tuesday, 10:30–11:30am and by appointment ← best way to contact me← if you want to see me

Lectures	Wednesday	10:15-11:45	OH-14, R. <mark>304</mark>
Tutorials	Wednesday	12:15-13:45	OH-14, R. 304, bi-weekly
	or	16:15-17:45	OH-14, R. 304, bi-weekly

Tutor Dipl.-Inform. Nicola Beume, LS 11

Information
http://ls11-www.cs.unidortmund.de/people/rudolph/
teaching/lectures/CI/WS2011-12/lecture.jsp

Slidessee webLiteraturesee web

Knowledge about

- mathematics,
- programming,
- logic

is helpful.

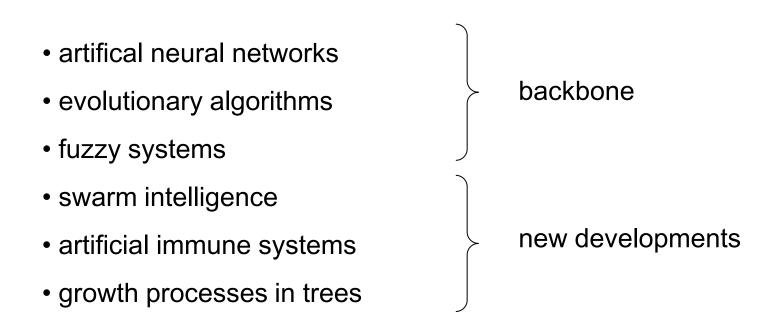
But what if something is unknown to me?

- covered in the lecture
- pointers to literature

... and don't hesitate to ask!

What is CI?

 \Rightarrow umbrella term for computational methods inspired by nature



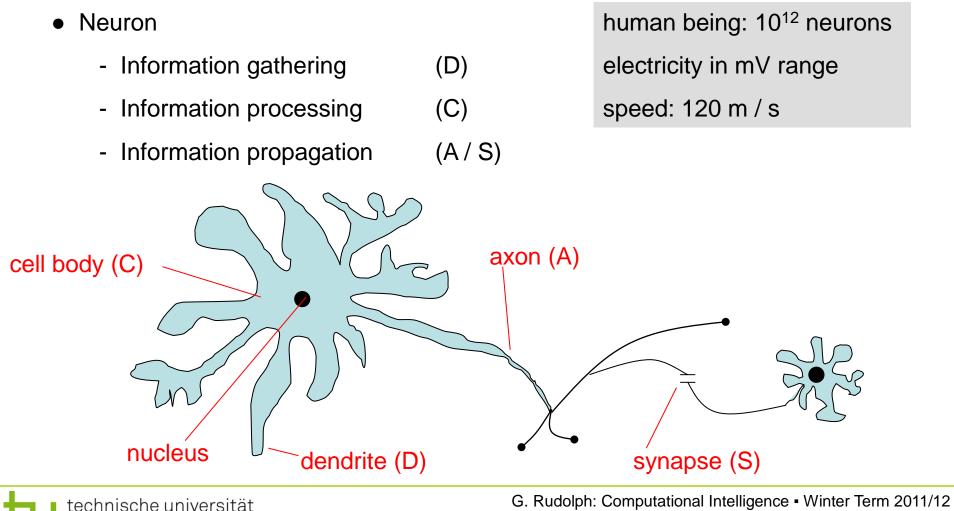
- term "computational intelligence" coined by John Bezdek (FL, USA)
- originally intended as a demarcation line
 - \Rightarrow establish border between artificial and computational intelligence
- nowadays: blurring border

our goals:

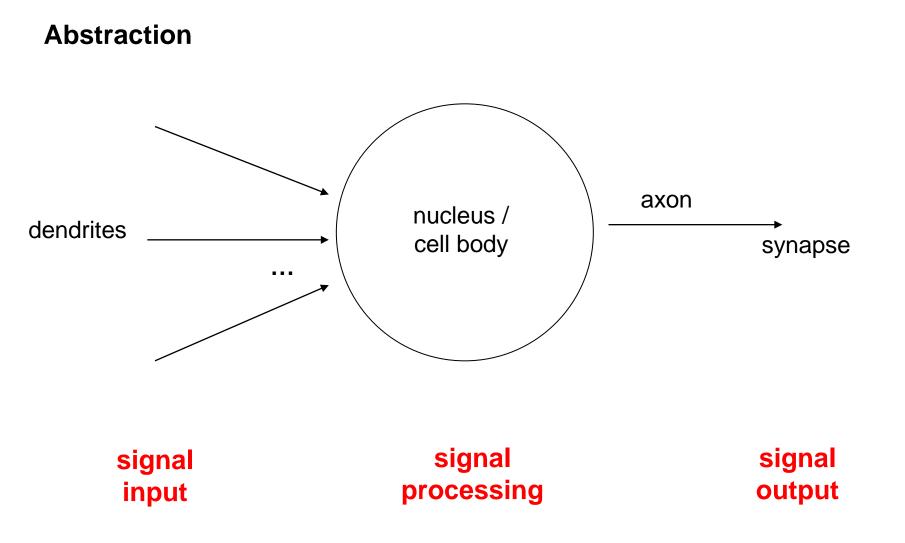
- 1. know what CI methods are good for!
- 2. know when refrain from CI methods!
- 3. know why they work at all!
- 4. know how to apply and adjust CI methods to your problem!

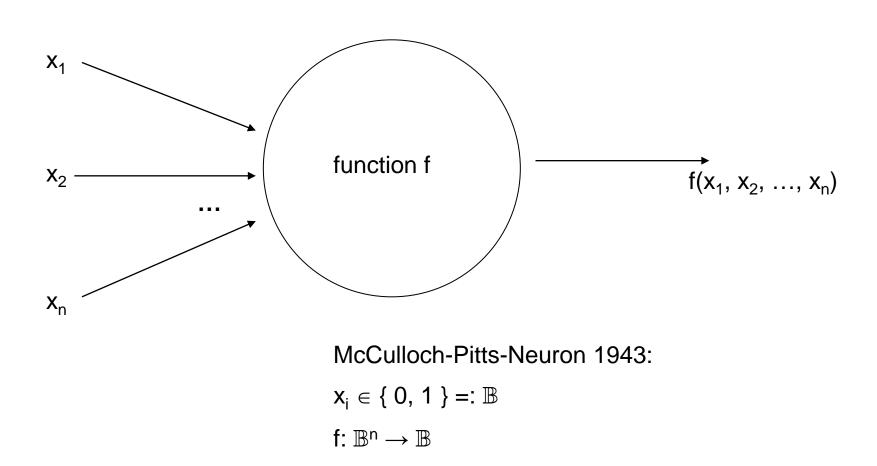
Biological Prototype

dortmund



Lecture 01





1943: Warren McCulloch / Walter Pitts

- description of neurological networks
 → modell: McCulloch-Pitts-Neuron (MCP)
- basic idea:
 - neuron is either active or inactive
 - skills result from *connecting* neurons
- considered static networks

(i.e. connections had been constructed and not learnt)

McCulloch-Pitts-Neuron

n binary input signals $x_1, ..., x_n$ threshold $\theta > 0$ $f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n x_i \ge \theta \\ 0 & \text{else} \end{cases}$ **boolean OR boolean AND** \Rightarrow can be realized: ≥ 1 ≥n Xn Xn

 $\theta = 1$

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2011/12

 $\theta = n$

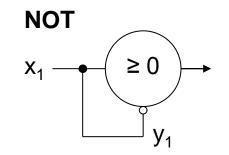
McCulloch-Pitts-Neuron

n binary input signals $x_1, ..., x_n$ threshold $\theta > 0$

in addition: m binary inhibitory signals y1, ..., ym

$$\tilde{f}(x_1, \ldots, x_n; y_1, \ldots, y_m) = f(x_1, \ldots, x_n) \cdot \prod_{j=1}^m (1-y_j)$$

- if at least one $y_i = 1$, then output = 0
- otherwise:
 - sum of inputs \geq threshold, then output = 1
 - else output = 0



m

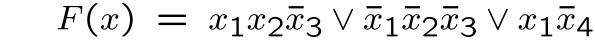
Assumption:

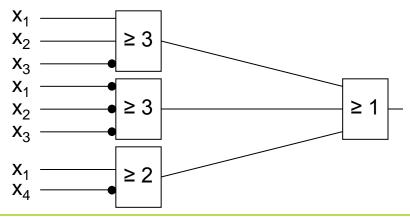
inputs also available in inverted form, i.e. \exists inverted inputs.

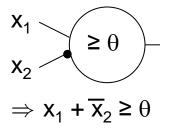
Theorem:

Every logical function F: $\mathbb{B}^n \to \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net.

Example:







Proof: (by construction)

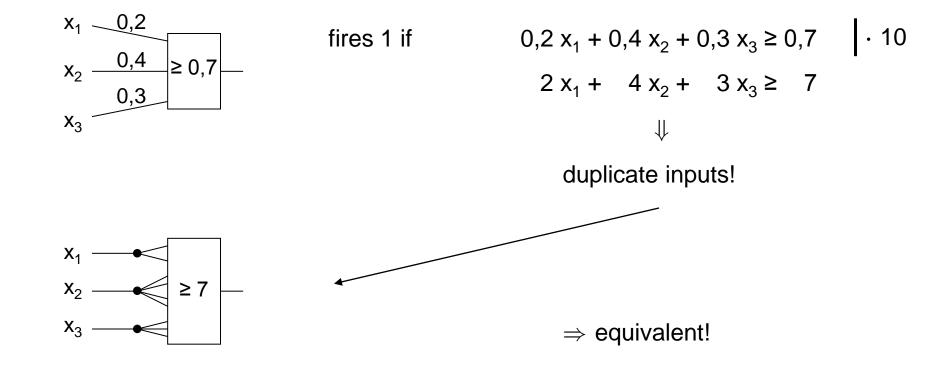
Every boolean function F can be transformed in disjunctive normal form

- \Rightarrow 2 layers (AND OR)
- 1. Every clause gets a decoding neuron with θ = n \Rightarrow output = 1 only if clause satisfied (AND gate)
- 2. All outputs of decoding neurons are inputs of a neuron with $\theta = 1$ (OR gate)

q.e.d.

Lecture 01

Generalization: inputs with weights



Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^+$.

Proof:
"* Let
$$\sum_{i=1}^{n} \frac{a_i}{b_i} x_i \ge \frac{a_0}{b_0}$$
 with $a_i, b_i \in \mathbb{N}$
Multiplication with $\prod_{i=0}^{n} b_i$ yields inequality with coefficients in \mathbb{N}

Duplicate input x_i , such that we get $a_i b_1 b_2 \cdots b_{i-1} b_{i+1} \cdots b_n$ inputs.

Threshold $\theta = a_0 b_1 \cdots b_n$

"⇐"

Set all weights to 1.

q.e.d.

G. Rudolph: Computational Intelligence • Winter Term 2011/12 18

Conclusion for MCP nets

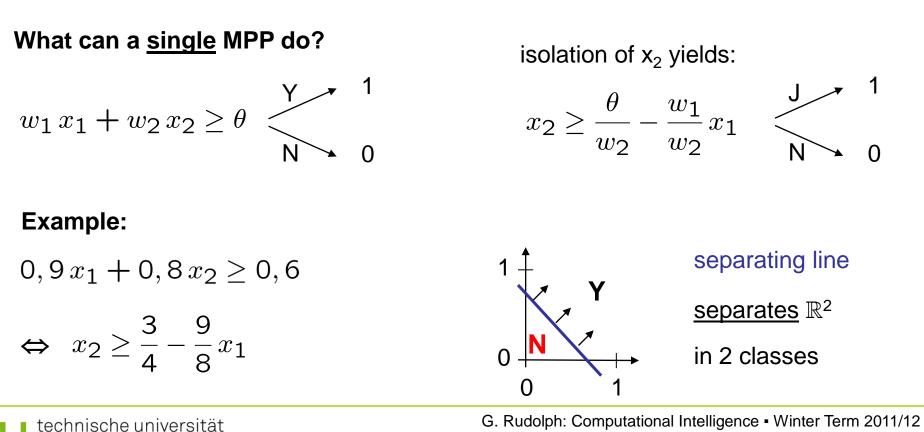
- + feed-forward: able to compute any Boolean function
- + recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

Lecture 01

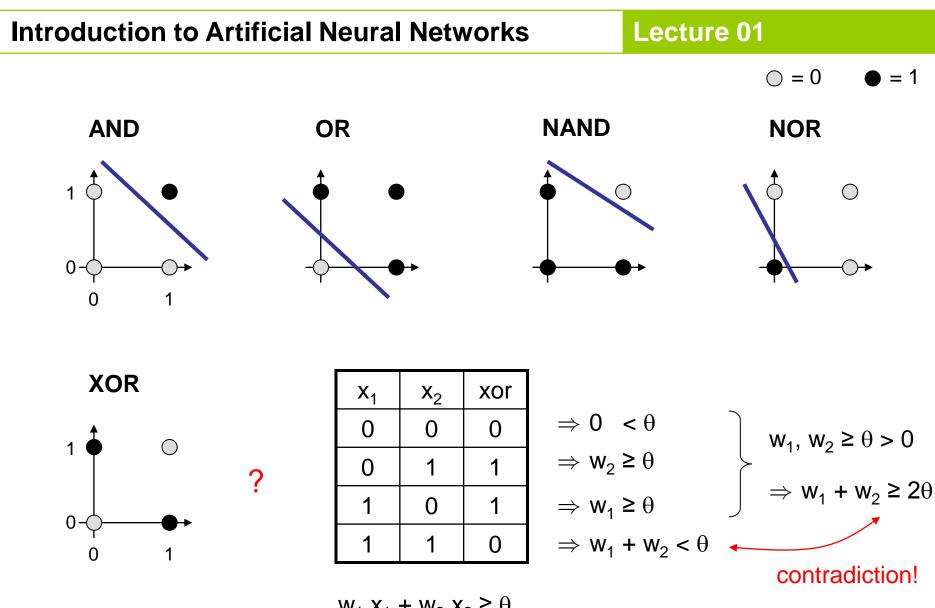
Perceptron (Rosenblatt 1958)

dortmund

- \rightarrow complex model \rightarrow reduced by Minsky & Papert to what is "necessary"
- \rightarrow Minsky-Papert perceptron (MPP), 1969 \rightarrow essential difference: $x \in [0,1] \subset \mathbb{R}$



20



 $W_1 X_1 + W_2 X_2 \ge \theta$

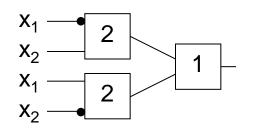
1969: Marvin Minsky / Seymor Papert

- book *Perceptrons* → analysis math. properties of perceptrons
- disillusioning result: perceptions fail to solve a number of trivial problems!
 - XOR-Problem
 - Parity-Problem
 - Connectivity-Problem
- .conclusion": All artificial neurons have this kind of weakness!
 ⇒ research in this field is a scientific dead end!
 - consequence: research funding for ANN cut down extremely (~ 15 years)

Lecture 01

how to leave the "dead end":

1. Multilayer Perceptrons:



 \Rightarrow realizes XOR

2. Nonlinear separating functions:

dortmund

XOR $g(x_{1}, x_{2}) = 2x_{1} + 2x_{2} - 4x_{1}x_{2} - 1 \quad \text{with} \quad \theta = 0$ g(0,0) = -1 g(0,1) = +1 g(1,0) = +1 g(1,1) = -1G. Rudolph: Computational Intellig

G. Rudolph: Computational Intelligence • Winter Term 2011/12 23

How to obtain weights w_i and threshold θ ?

as yet: by construction

example: NAND-gate

X ₁	x ₂	NAND	
0	0	1	$\Rightarrow 0 \ge \theta$
0	1	1	$\Rightarrow w_2 \ge \theta$
1	0	1	$\Rightarrow w_1 \ge \theta$
1	1	0	\Rightarrow w ₁ + w

 $W_2 < \theta$

requires solution of a system of linear inequalities ($\in P$)

(e.g.:
$$w_1 = w_2 = -2, \theta = -3$$
)

now: by "learning" / training

Perceptron Learning

Assumption: test examples with correct I/O behavior available

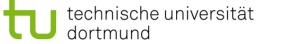
Principle:

(1) choose initial weights in arbitrary manner

- (2) feed in test pattern
- (3) if output of perceptron wrong, then change weights
- (4) goto (2) until correct output for al test paterns

graphically:

 \rightarrow translation and rotation of separating lines



G. Rudolph: Computational Intelligence • Winter Term 2011/12 25

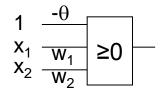
Introduction to Artificial Neural Networks

Lecture 01

Example \bigcirc \bullet $P = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}$ \bullet \bigcirc \bullet $N = \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ \circ

threshold as a weight: $w = (\theta, w_1, w_2)^{\circ}$

 \Downarrow



$$P = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
$$N = \left\{ \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$

suppose initial vector of weights is

$$w^{(0)} = (1, -1, 1)^{\circ}$$

Perceptron Learning

P: set of positive examples N: set of negative examples threshold θ integrated in weights

- 1. choose w_0 at random, t = 0
- 2. choose arbitrary $x \in P \cup N$
- 3. if $x \in P$ and $w_t `x > 0$ then goto 2 if $x \in N$ and $w_t `x \le 0$ then goto 2
- 4. if $x \in P$ and $w_t \cdot x \leq 0$ then $w_{t+1} = w_t + x$; t++; goto 2
- 5. if $x \in N$ and w_t 'x > 0 then $w_{t+1} = w_t x$; t++; goto 2
- 6. stop? If I/O correct for all examples!

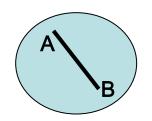
```
\begin{cases} I/O \text{ correct!} \\ \text{let } w'x \leq 0, \text{ should be } > 0! \\ (w+x)'x = w'x + x'x > w'x \\ \text{let } w'x > 0, \text{ should be } \leq 0! \\ (w-x)'x = w'x - x'x < w'x \end{cases}
```

remark: algorithm converges, is finite, worst case: exponential runtime

We know what a single MPP can do.

What can be achieved with many MPPs?

Single MPP \Rightarrow separates plane in two half planesMany MPPs in 2 layers \Rightarrow can identify convex sets



1. How? \Rightarrow 2 layers! \Leftarrow 2. Convex?

 $\label{eq:constraint} \begin{array}{l} \forall \ a,b \in X \text{:} \\ \lambda \ a \ + \ (1 \ - \ \lambda) \ b \in X \\ \text{for} \ \lambda \in (0,1) \end{array}$

Lecture 01

Single MPP

Many MPPs in 2 layers

- \Rightarrow separates plane in two half planes
- \Rightarrow can identify convex sets

- Many MPPs in 3 layers
- Many MPPs in > 3 layers

- \Rightarrow can identify arbitrary sets
- \Rightarrow not really necessary!

arbitrary sets:

- 1. partitioning of nonconvex set in several convex sets
- 2. two-layered subnet for each convex set
- 3. feed outputs of two-layered subnets in OR gate (third layer)

