Computational Intelligence
Winter Term 2011/12

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Application Fields of ANNs
Lecture 03

Classification

phase I: train network phase II: apply network to unkown inputs for classification

- Application Fields of ANNs
- Classification
- Prediction
- Function Approximation
- Radial Basis Function Nets (RBF Nets)
- Model
- Training
- Recurrent MLP
- Elman Nets
- Jordan Nets

Application Fields of ANNs
Lecture 03

Prediction of Time Series
time series $x_{1}, x_{2}, x_{3}, \ldots$ (e.g. temperatures, exchange rates, ...)
task: given a subset of historical data, predict the future

training patterns:
historical data where true output is known; error per pattern $=\left(\widehat{x}_{t+\tau}-x_{t+\tau}\right)^{2}$
phase I: train network
phase II: apply network to historical inputs for predicting unkown outputs

Application Fields of ANNs

Lecture 03

Prediction of Time Series: Example for Creating Training Data

given: time series $10.5,3.4,5.6,2.4,5.9,8.4,3.9,4.4,1.7$
time window: $k=3$

further input / output pairs: (3.4, 5.6, 2.4)
5.9
3.9

$$
\begin{equation*}
(5.6,2.4,5.9) \tag{2.4,5.9,8.4}
\end{equation*}
$$

(5.9, 8.4, 3.9)
(8.4, 3.9, 4.4)
G. Rudolph: Computational Intelligence • Winter Term 2011/12
technische universität
dortmund

Radial Basis Function Nets (RBF Nets)

Definition:

A function $\phi: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ is termed radial basis function iff $\exists \varphi: \mathbb{R} \rightarrow \mathbb{R}: \forall x \in \mathbb{R}^{n}: \phi(x ; c)=\varphi(\|x-c\|) . \quad \square$

Lecture 03

Definition:

RBF local iff

$\varphi(r) \rightarrow 0$ as $r \rightarrow \infty$

Application Fields of ANNs

Lecture 03

Function Approximation (the general case)
task: given training patterns (input / output), approximate unkown function
\rightarrow should give outputs close to true unkown function for arbitrary inputs

- values between training patterns are interpolated
- values outside convex hull of training patterns are extrapolated

x : input training pattern
- : input pattern where output to be interpolated
s : input pattern where output to be extrapolated
technische universität
dortmund

Lecture 03

Definition:

A function $f: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ is termed radial basis function net (RBF net)

$$
\text { iff } f(x)=w_{1} \varphi\left(\left\|x-c_{1}\right\|\right)+w_{2} \varphi\left(\left\|x-c_{2}\right\|\right)+\ldots+w_{p} \varphi\left(\left\|x-c_{q}\right\|\right)
$$

- layered net
- 1st layer fully connected
- no weights in 1st layer
- activation functions differ

Radial Basis Function Nets (RBF Nets)

given $: N$ training patterns $\left(x_{i}, y_{i}\right)$ and q RBF neurons
find $\quad:$ weights w_{1}, \ldots, w_{q} with minimal error

solution:

we know that $f\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, N$ or equivalently
$\sum_{k=1}^{q} w_{k} \cdot \underbrace{\varphi\left(\left\|x_{i}-c_{k}\right\|\right)}_{\substack{\mathrm{p}_{\mathrm{ik}} \\ \text { unknown }}}=y_{i}$
$\Rightarrow \sum_{k=1}^{q} w_{k} \cdot p_{i k}=y_{i} \quad \Rightarrow \mathrm{~N}$ linear equations with q unknowns

| technische universität |
| :--- | :--- |
| dortmund |\quad G. Rudolph: Computational Intelligence \cdot Winter Term 2011/12 9

dortmund

Radial Basis Function Nets (RBF Nets)

Lecture 03

complexity (naive)

$w=\left(P^{\prime} P\right)^{-1} P^{\prime} y$

remark: if N large then inaccuracies for P'P likely
\Rightarrow first analytic solution, then gradient descent starting from this solution

$\underbrace{\text { (}}_{$| requires |
| :---: |
| differentiable |
| basis functions! |$}$

```
in matrix form: P w = y
case N=q: w = P-1}y\quad if P has full ran
case N<q: many solutions but of no practical relevance
case N > q: w = P+}y\quad where P P+ is Moore-Penrose pseudo inverse
Pw=y
P'Pw = P` y
(\mp@subsup{P}{}{(PP)-1 P'P}w=\mp@subsup{\underbrace}{}{(\mp@subsup{P}{}{\prime}P\mp@subsup{)}{}{-1}\mp@subsup{P}{}{\prime}}y\quad| |implify
unit matrix }\mp@subsup{\underbrace}{\mp@subsup{P}{}{+}}{
```


Radial Basis Function Nets (RBF Nets)

Lecture 03

advantages:

- additional training patterns \rightarrow only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

Elman nets (1990)

Elman net =

MLP + context neuron for each neuron output of MLP,
context neurons fully connected to associated MLP layer

Recurrent MLPs

Lecture 03

Recurrent MLPs

Lecture 03

Jordan nets (1986)

- context neuron:

reads output from some neuron at step t and feeds value into net at step $t+1$

Jordan net $=$

MLP + context neuron for each output, context neurons fully connected to input layer

Recurrent MLPs

Lecture 03

Training?

\Rightarrow unfolding in time ("loop unrolling")

- identical MLPs serially connected (finitely often)
- results in a large MLP with many hidden (inner) layers
- backpropagation may take a long time
- but reasonable if most recent past more important than layers far away

Why using backpropagation?

\Rightarrow use Evolutionary Algorithms directly on recurrent MLP!

