

Computational Intelligence

Winter Term 2011/12

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

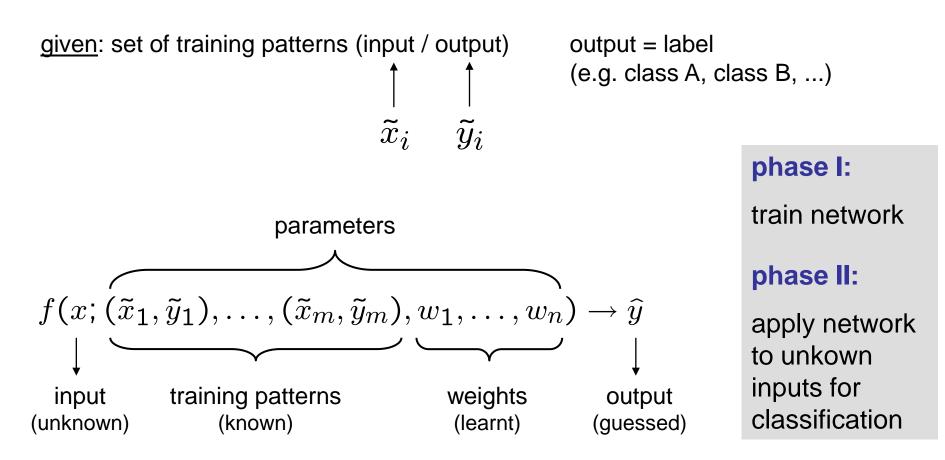
TU Dortmund

Plan for Today

- Application Fields of ANNs
 - Classification
 - Prediction
 - Function Approximation
- Radial Basis Function Nets (RBF Nets)
 - Model
 - Training
- Recurrent MLP
 - Elman Nets
 - Jordan Nets

Application Fields of ANNs

Classification

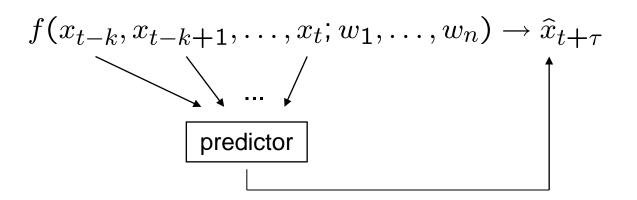


Lecture 03

Prediction of Time Series

time series $x_1, x_2, x_3, ...$ (e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future



training patterns:

historical data where true output is known;

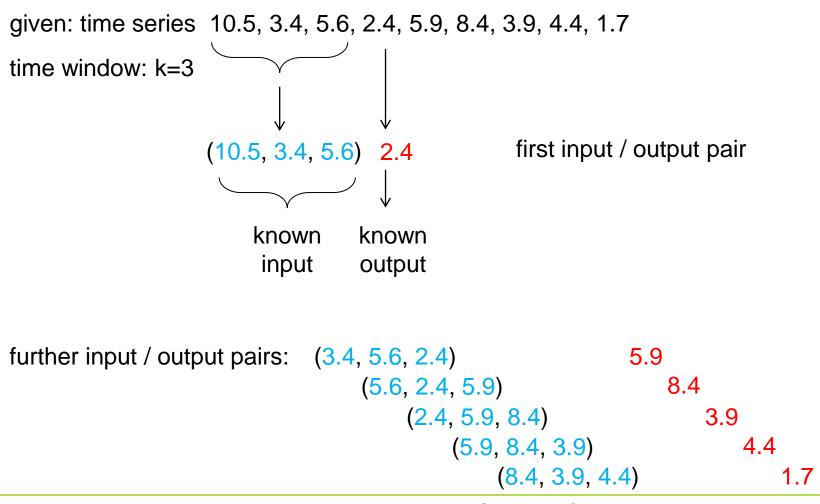
error per pattern = $(\hat{x}_{t+\tau} - x_{t+\tau})^2$

phase I:
train network
phase II:
phase II:
apply network
to historical
inputs for
predicting
unkown
outputs

technische universität

dortmund

Prediction of Time Series: Example for Creating Training Data

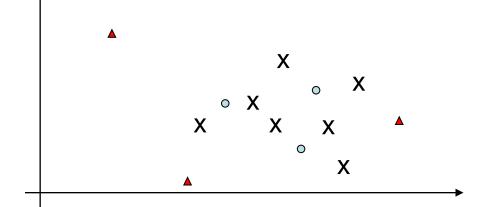


Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

 \rightarrow should give outputs close to true unkown function for arbitrary inputs

- values between training patterns are interpolated
- values outside convex hull of training patterns are extrapolated



- x : input training pattern
- input pattern where output to be interpolated
- input pattern where output to be extrapolated

Radial Basis Function Nets (RBF Nets)		Lecture 03	
	Definition:	Definition:	
	A function $\varphi:\mathbb{R}^n\to\mathbb{R}$ is termed radial basis function	RBF local iff	
	$\text{iff } \exists \ \phi : \mathbb{R} \to \mathbb{R} : \forall \ x \in \mathbb{R}^n : \phi(x; \ c) = \phi \ (\ \ x - c \ \) \ . \Box$	$\phi(\mathbf{r}) \rightarrow 0 \text{ as } \mathbf{r} \rightarrow \infty$	[
	typically, x denotes Euclidean norm of vector x		

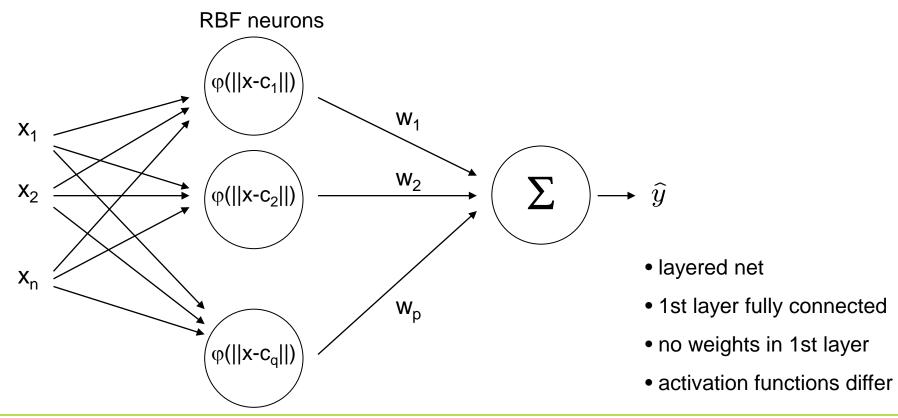
examples:



Definition:

A function f: $\mathbb{R}^n \to \mathbb{R}$ is termed radial basis function net (RBF net)

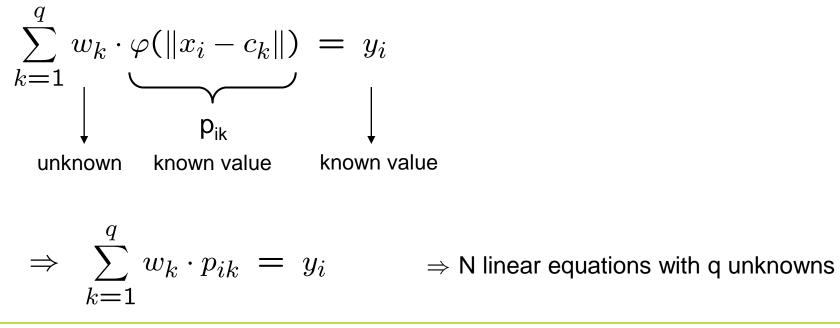
 $\text{iff } f(x) = w_1 \ \phi(|| \ x - c_1 \ || \) + w_2 \ \phi(|| \ x - c_2 \ || \) \ + ... + w_p \ \phi(|| \ x - c_q \ || \) \qquad \square$



- given : N training patterns (x_i, y_i) and q RBF neurons
- find : weights $w_1, ..., w_q$ with minimal error

solution:

we know that $f(x_i) = y_i$ for i = 1, ..., N or equivalently



technische universität dortmund

Lecture 03

in matrix form: P w = y with $P = (p_{ik})$ and P: N x q, y: N x 1, w: q x 1,

case N = q: $w = P^{-1} y$ if P has full rank

case N < q: many solutions but of no practical relevance

case N > q: $w = P^+ y$ where P⁺ is Moore-Penrose pseudo inverse

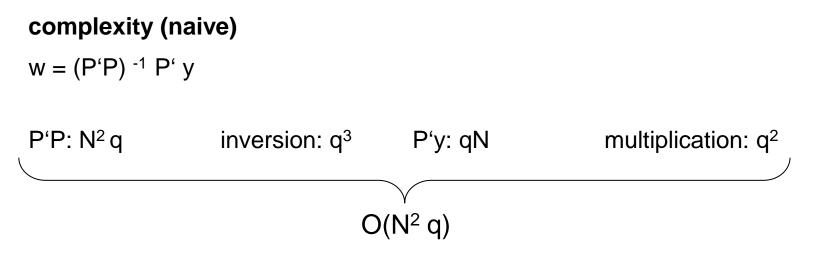
Pw = y

P'P w = P' y

 $(\mathbf{P'P})^{-1} \mathbf{P'P} \mathbf{w} = (\mathbf{P'P})^{-1} \mathbf{P'} \mathbf{y}$ unit matrix $\mathbf{P^+}$

- $| \cdot P'$ from left hand side (P' is transpose of P)
- $| \cdot (P'P)^{-1}$ from left hand side

simplify



remark: if N large then inaccuracies for P'P likely

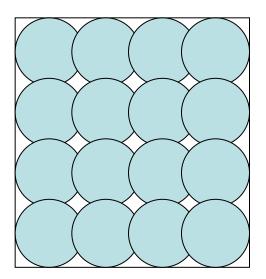
 \Rightarrow first analytic solution, then gradient descent starting from this solution

requires differentiable basis functions!

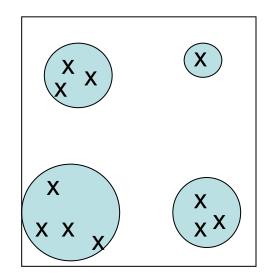
Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given \Rightarrow center c_k and radii σ considered given and known

how to choose c_k and σ ?



uniform covering



if training patterns inhomogenously distributed then first cluster analysis

choose center of basis function from each cluster, use cluster size for setting σ

advantages:

- additional training patterns \rightarrow only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs

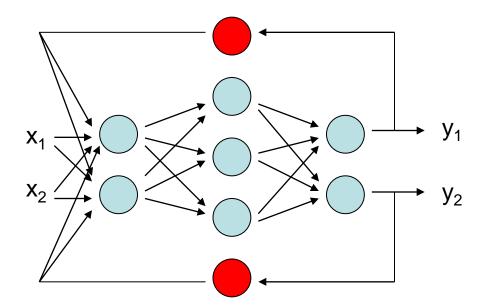
disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

Jordan nets (1986)

• context neuron:

reads output from some neuron at step t and feeds value into net at step t+1



Jordan net =

MLP + context neuron for each output, context neurons fully connected to input layer

Elman nets (1990)

Elman net =

MLP + context neuron for each neuron output of MLP, context neurons fully connected to associated MLP layer

Training?

- \Rightarrow unfolding in time ("loop unrolling")
- identical MLPs serially connected (finitely often)
- results in a large MLP with many hidden (inner) layers
- backpropagation may take a long time
- but reasonable if most recent past more important than layers far away

Why using backpropagation?

 \Rightarrow use *Evolutionary Algorithms* directly on recurrent MLP!

