

technische universität

technische universität

Plan for Today

Evolutionary Algorithms (EA)Optimization Basics

• EA Basics

optimization problem:

technische universität

note:

find $x^* \in X$ such that $f(x^*) = \min\{ f(x) : x \in X \}$

 $\max\{ f(x) : x \in X \} = -\min\{ -f(x) : x \in X \}$

Lecture 10

global solution

f(x*) global optimum

G. Rudolph: Computational Intelligence • Winter Term 2011/12

G. Rudolph: Computational Intelligence • Winter Term 2011/12

local solution $x^* \in X$: if x* local solution then f(x*) local optimum / minimum $\forall x \in N(x^*): f(x^*) \leq f(x)$ neighborhood of $x^* =$ example: $X = \mathbb{R}^n$, $N_c(x^*) = \{ x \in X : ||x - x^*||_2 \le \varepsilon \}$ bounded subset of X remark: evidently, every global solution / optimum is also local solution / optimum; the reverse is wrong in general! example: f: [a,b] $\rightarrow \mathbb{R}$, global solution at \mathbf{x}^* G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität **Optimization Basics** Lecture 10 When using which optimization method? mathematical algorithms randomized search heuristics problem explicitly specified problem given by black / gray box

Optimization Basics

 \vdash f(x) = a₁ x₁ + ... + a_n x_n → max! with x_i ∈ {0,1}, a_i ∈ ℝ add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$

add capacity constraint to TSP ⇒ CVRP

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 10

strong causality needed!

 \Rightarrow $x_i^* = 1$ if $a_i > 0$

 \Rightarrow NP-hard

⇒ still harder

objective function $f: X \to \mathbb{R}$

technische universität

Optimization Basics

some causes:

What makes optimization difficult?

local optima (is it a global optimum or not?)

discontinuities (⇒ nondifferentiability, no gradients)

lack of knowledge about problem (⇒ black / gray box optimization)

constraints (ill-shaped feasible region)

non-smoothness (weak causality)

Lecture 10

= fitness function

idea: using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution $x \in X = S_1 \times ... \times S_n$ = chromosome of individual multiset of feasible solutions = population: multiset of individuals

<u>often:</u> $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\} \}$ <u>also</u>: combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets

⇒ EAs worth a try

solution with satisfactory quality

Lecture 10

• no problem-specific solver available

insufficient ressources for designing

· problem poorly understood

algorithm

sufficient

G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität

• problem-specific solver available

· problem well understood

ressources for designing

solution with proven quality

algorithm affordable

⇒ don't apply EAs

required

⇒ structure of feasible region / search space defines representation of individual G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität dortmund

Lecture 10

Evolutionary Algorithm Basics

technische universität

```
parent offspring
1. initialize X^{(0)} \in \mathbb{B}^n uniformly at random, set t = 0
2. evaluate f(X(t))
3. select parent: Y = X<sup>(t)</sup>
                                                                                   no choice, here
4. variation: flip each bit of Y independently with probability p_m = 1/n
evaluate f(Y)
6. selection: if f(Y) \le f(X^{(t)}) then X^{(t+1)} = Y else X^{(t+1)} = X^{(t)}
```

population size = 1, number of offspring = 1, selects best from 1+1 individuals

Specific example: (1+1)-EA in \mathbb{B}^n for minimizing some $f: \mathbb{B}^n \to \mathbb{R}$

Evolutionary Algorithm Basics

Evolutionary Algorithm Basics Lecture 10

7. if not stopping then t = t+1, continue at (3)

■ technische universität

dortmund

Selection

(a) select parents that generate offspring (b) select individuals that proceed to next generation → selection for **survival**

G. Rudolph: Computational Intelligence • Winter Term 2011/12

→ selection for reproduction

Lecture 10

- necessary requirements:
- selection steps must not favor worse individuals one selection step may be neutral (e.g. select uniformly at random)

- at least one selection step must favor better individuals

typically: selection only based on fitness values f(x) of individuals seldom: additionally based on individuals' chromosomes x (→ maintain diversity)

G. Rudolph: Computational Intelligence • Winter Term 2011/12

technische universität

population $P = (x_1, x_2, ..., x_n)$ with μ individuals two approaches:

1. repeatedly select individuals from population with replacement

dortmund

Selection methods

- 2. rank individuals somehow and choose those with best ranks (no replacement) uniform / neutral selection
- choose index i with probability 1/u

Evolutionary Algorithm Basics

- fitness-proportional selection choose index i with probability $s_i = \frac{f(x_i)}{\sum_{i} f(x_i)}$
 - problems: f(x) > 0 for all $x \in X$ required $\Rightarrow g(x) = \exp(f(x)) > 0$ but already sensitive to additive shifts g(x) = f(x) + c

 - almost deterministic if large differences, almost uniform if small differences G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität

Lecture 10

Lecture 10

Selection methods without replacement population $P = (x_1, x_2, ..., x_n)$ with μ parents and

Evolutionary Algorithm Basics

population Q = $(y_1, y_2, ..., y_{\lambda})$ with λ offspring

- (μ, λ) -selection or truncation selection on offspring or comma-selection
- rank λ offspring according to their fitness select μ offspring with best ranks
- \Rightarrow best individual may get lost, $\lambda \ge \mu$ required
- (μ+λ)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents
- rank them according to their fitness select $\boldsymbol{\mu}$ individuals with best ranks
- ⇒ best individual survives for sure

Selection methods

Evolutionary Algorithm Basics

 rank-proportional selection order individuals according to their fitness values assign ranks

population $P = (x_1, x_2, ..., x_n)$ with μ individuals

fitness-proportional selection based on ranks ⇒ avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

k-ary tournament selection

technische universität

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and probability that best individual does not survive:

$$\left(1 - \frac{1}{\mu}\right)^{k\mu} \approx e^{-k}$$

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 10

outdated!

Lecture 10

Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring,
- best survives with probability 1 if best individual has not survived then re-injection into population,

i.e., replace worst selected individual by previously best parent			
method	P{ select best }	from parents & offspring	intrinsic elitism
neutral	< 1	no	no
fitness proportionate	< 1	no	no
rank proportionate	< 1	no	no
k-ary tournament	< 1	no	no
$(\mu + \lambda)$	= 1	yes	yes
4			

Lecture 10

Evolutionary Algorithm Basics

Variation in Bn Individuals $\in \{0, 1\}^n$ • Recombination (multiparent: ρ = #parents) a) diagonal crossover $(2 < \rho < n)$

Evolutionary Algorithm Basics

Variation in Bn

 Mutation a) local

b) global

c) "nonlocal"

d) inversion

dortmund

0

technische universität

BBBBBBBBBB

decdedecee

b) gene pool crossover ($\rho > 2$)

Evolutionary Algorithm Basics

k=2 1

a)

0

$$\rightarrow$$
 choose ρ – 1 distinct cut points, select chunks from diagonals

ABBBCCDDDD

can generate ρ offspring;

BCCCDDAAAA

CDDDAABBBB

at random for single offspring DDDDDDDDDD DAAABBCCCC

technische universität

otherwise choose initial chunk

Lecture 10

 k_e

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 10

d) 1

 \rightarrow choose index k \in { 1, ..., n } uniformly at random,

→ choose start index k_s and end index k_e at random

b) 1

invert order of bits between start and and index

 \rightarrow for each index k \in { 1, ..., n }: flip bit k with probability $p_m \in (0,1)$

K=2

c)

→ choose K indices at random and flip bits with these indices

flip bit k, i.e., $x_k = 1 - x_k$

Individuals $\in \{0, 1\}^n$

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Evolutionary Algorithm Basics Lecture 10 **Variation** in \mathbb{P}_n Individuals $X = \pi(1, ..., n)$ Mutation a) local \rightarrow 2-swap 1-translocation 53241 53241 54231 52431 b) global → draw number K of 2-swaps, apply 2-swaps K times K is positive random variable; its distrinution may be uniform, binomial, geometrical, ...; E[K] and V[K] may control mutation strength variance expectation G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität dortmund **Evolutionary Algorithm Basics** Lecture 10 Individuals $X = \pi(1, ..., n)$ **Variation** in \mathbb{P}_n Recombination (multiparent) a) xx crossover b) xx crossover c) xx crossover G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität

Variation in \mathbb{P}_n Individuals $X = \pi(1, ..., n)$ • Recombination (two parents) a) order-based crossover (OB)

b) partially mapped crossover (PMX)

Evolutionary Algorithm Basics

c) cycle crossover (CX)

technische universität

Evolutionary Algorithm Basics

dortmund

Variation in Rⁿ

Mutation

additive:

a) local

b) nonlocal

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 10 Individuals $X \in \mathbb{R}^n$

Lecture 10

(Z: n-dimensional random vector)

most frequently used!

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Definition

Let $f_Z: \mathbb{R}^n \to \mathbb{R}^+$ be p.d.f. of r.v. Z. The set { $x \in \mathbb{R}^n : f_7(x) > 0$ } is

termed the support of Z.

 \rightarrow Z with bounded support

 $f_Z(x) = \frac{4}{3} (1 - x^2) \cdot 1_{[-1,1]}(x)$

→ Z with unbounded support

 $f_Z(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

Y = X + Z

offspring = parent + mutation

c) intermediate (per dimension) d) discrete

Evolutionary Algorithm Basics

a) all crossover variants adapted from Bⁿ

Recombination (two parents)

Variation in Rn

b) intermediate

technische universität

Evolutionary Algorithm Basics

 $z = \xi \cdot x + (1 - \xi) \cdot y$ with $\xi \in [0, 1]$

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 10

Individuals $X \in \mathbb{R}^n$

Lecture 10

 $\forall i: z_i = \xi_i \cdot x_i + (1 - \xi_i) \cdot y_i \text{ with } \xi_i \in [0, 1]$ $\forall i: z_i = B_i \cdot x_i + (1 - B_i) \cdot y_i \text{ with } B_i \sim B(1, \frac{1}{2})$

e) simulated binary crossover (SBX)

(all points in convex hull)

technische universität

dortmund

Theorem

Evolutionary Algorithm Basics

• Recombination (multiparent), $\rho \ge 3$ parents

Variation in Rⁿ

b) intermediate (per dimension) $\forall i: z_i = \sum^{r} \xi_i^{(k)} \, x_i^{(k)}$

 $\forall i : z_i \in \left[\min_{k} \{x_i^{(k)}\}, \max_{k} \{x_i^{(k)}\}\right]$

Evolutionary Algorithm Basics

Let f: $\mathbb{R}^n \to \mathbb{R}$ be a differentiable function and f(x) < f(y) for some x \neq y. If $(y - x)^{\ell} \nabla f(x) < 0$ then there is a positive probability that an offspring

generated by intermediate recombination is better than both parents.

a) intermediate $z=\sum_{i=1}^{p}\xi^{(k)}\,x_i^{(k)}$ where $\sum_{i=1}^{p}\xi^{(k)}=1$ and $\xi^{(k)}\geq 0$

Lecture 10

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 10

Individuals $X \in \mathbb{R}^n$

Theorem Let $f: \mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If f(x) = f(y) for some $x \neq y$ then

every offspring generated by intermediate recombination is better than its parents. Proof:

f strictly quasiconvex $\Rightarrow f(\xi \cdot x + (1-\xi) \cdot y) < \max\{f(x), f(y)\}\$ for $0 < \xi < 1$

since
$$f(x) = f(y)$$
 $\Rightarrow \max\{f(x), f(y)\} = \min\{f(x), f(y)\}$
 $\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{f(x), f(y)\} \text{ for } 0 < \xi < 1$

Proof:

If $d'\nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e.

 $\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$

G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Evolutionary Algorithms: Historical Notes

Lecture 10

Idea emerged independently several times: about late 1950s / early 1960s.

Three branches / "schools" still active today.

Evolutionary Programming (EP):

Pioneers: Lawrence Fogel, Alvin Owen, Michael Walsh (New York, USA).

Original goal: Generate intelligent behavior through simulated evolution.

Approach: Evolution of finite state machines predicting symbols. Later (~1990s) specialized to optimization in \mathbb{R}^n by David B. Fogel.

Genetic Algorithms (GA):

Pioneer: John Holland (Ann Arbor, MI, USA).

Original goal: Analysis of adaptive behavior.

Approach: Viewing evolution as adaptation. Simulated evolution of bit strings. Applied to optimization tasks by PhD students (Kenneth de Jong, 1975; et al.).

Evolution Strategies (ES):

Pioneers: Ingo Rechenberg, Hans-Paul Schwefel, Peter Bienert (Berlin, Germany).

Original goal: Optimization of complex systems.

Approach: Viewing variation/selection as improvement strategy. First in \mathbb{Z}^n , then \mathbb{R}^n .

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2009/10

Evolutionary Algorithms: Historical Notes

Lecture 10

"Offspring" from GA branch:

Genetic Programming (GP):

Pioneers: Nichael Lynn Cramer 1985, then: John Koza (Stanford, USA).

Original goal: Evolve programs (parse trees) that must accomplish certain task. Approach: GA mechanism transferred to parse trees.

Later: Programs as successive statements → Linear GP (e.g. Wolfgang Banzhaf)

Already beginning early 1990s:

Borders between EP, GA, ES, GP begin to blurr ...

- ⇒ common term **Evolutionary Algorithm** embracing all kind of approaches
- ⇒ broadly accepted name for the field: **Evolutionary Computation**

scientific journals: Evolutionary Computation (MIT Press) since 1993, IEEE Transactions on Evolutionary Computation since 1997, several more specialized journals started since then.

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2009/10