Plan for Today

- Evolutionary Algorithms (EA)
 - Optimization Basics
 - EA Basics

Optimization Basics

Given:
- **objective function** $f: X \to \mathbb{R}$
- **feasible region** X (= nonempty set)

Objective: find solution with **minimal** or **maximal** value!

Optimization problem:
find $x^* \in X$ such that $f(x^*) = \min \{ f(x) : x \in X \}$

Note:
$max \{ f(x) : x \in X \} = -min \{ -f(x) : x \in X \}$
Optimization Basics

1. **Local Solution**

 - A local solution $x^* \in X$ is a solution where:

 $$\forall x \in N(x^*): f(x^*) \leq f(x)$$

 If x^* is a local solution, then $f(x^*)$ is a local optimum / minimum.

 - Neighborhood of x^* is a bounded subset of X.

 - Example: $X = \mathbb{R}^n$, $N(x^*) = \{ x \in X : \| x - x^* \|_2 \leq \varepsilon \}$

2. **Remark**

 - Every global solution / optimum is also a local solution / optimum.
 - The reverse is not necessarily true.

 - Example: $f: [a,b] \rightarrow \mathbb{R}$, global solution at x^*

What makes optimization difficult?

- Local optima (is it a global optimum or not?)
- Constraints (ill-shaped feasible region)
- Non-smoothness (weak causality)
- Discontinuities (no gradients)
- Lack of knowledge about problem (black / gray box optimization)

Evolutionary Algorithm Basics

Idea:

- Using biological evolution as a metaphor and pool of inspiration.

- Interpretation: biological evolution as an iterative method of improvement.

Representation:

- Feasible solution $x \in X = S_1 \times \ldots \times S_n$ = chromosome of individual.
- Multiset of feasible solutions = population: multiset of individuals.

Objective Function:

- $f: X \rightarrow \mathbb{R}$ = fitness function.
- Often: $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi$ is permutation of $\{1,2,\ldots,n\}\}$.

Also:

- Combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets.

- Structure of feasible region / search space defines representation of individual.

When using which optimization method?

- **Mathematical Algorithms**
 - Problem explicitly specified.
 - Problem-specific solver available.
 - Problem well understood.
 - Resources for designing algorithm affordable.
 - Solution with proven quality required.

- **Randomized Search Heuristics**
 - Problem given by black / gray box.
 - No problem-specific solver available.
 - Problem poorly understood.
 - Insufficient resources for designing algorithm.
 - Solution with satisfactory quality sufficient.

- **Evolutionary Algorithms**

$$\Rightarrow$$ don't apply EAs

$$\Rightarrow$$ EAs worth a try
Evolutionary Algorithm Basics

Specific example: (1+1)-EA in \mathbb{R}^n for minimizing some f: $\mathbb{R}^n \to \mathbb{R}$

population size = 1, number of offspring = 1, selects best from 1+1 individuals

1. initialize $X(0) \in \mathbb{R}^n$ uniformly at random, set $t = 0$
2. evaluate $f(X(0))$
3. select parent: $Y = X(0)$
4. variation: add random vector: $Y = Y + Z$, e.g. $Z \sim \mathcal{N}(0, I_n)$
5. evaluate $f(Y)$
6. selection: if $f(Y) \leq f(X(0))$ then $X(t+1) = Y$ else $X(t+1) = X(t)$
7. if not stopping then $t = t+1$, continue at (3)

Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring → selection for reproduction
(b) select individuals that proceed to next generation → selection for survival

necessary requirements:
- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically: selection only based on fitness values $f(x)$ of individuals
seldom: additionally based on individuals’ chromosomes x (→ maintain diversity)
Evolutionary Algorithm Basics

Selection methods

Population \(P = (x_1, x_2, ..., x_\mu)\) with \(\mu\) individuals

Two approaches:
1. repeatedly select individuals from population with replacement
2. rank individuals somehow and choose those with best ranks (no replacement)

Uniform / Neutral selection
Choose index \(i\) with probability \(1/\mu\)

Fitness-proportional selection
Choose index \(i\) with probability \(s_i = \frac{f(x_i)}{\sum_{x \in P} f(x)}\)

- **Problems:** \(f(x) > 0\) for all \(x \in X\) required \(\Rightarrow g(x) = \exp(f(x)) > 0\)
- But already sensitive to additive shifts \(g(x) = f(x) + c\)
- Almost deterministic if large differences, almost uniform if small differences

Rank-proportional selection
Order individuals according to their fitness values
Assign ranks
Fitness-proportional selection based on ranks
\(\Rightarrow\) avoids all problems of fitness-proportional selection
But: best individual has only small selection advantage (can be lost!)

K-ary tournament selection
Draw \(k\) individuals uniformly at random (typically with replacement) from \(P\)
Choose individual with best fitness (break ties at random)
\(\Rightarrow\) has all advantages of rank-based selection and
Probability that best individual does not survive:
\[
\left(1 - \frac{1}{\mu}\right)^k \mu \approx e^{-k}
\]

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- **Intrinsic elitism:** method selects from parent and offspring, best survives with probability 1
- **Forced elitism:** if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

<table>
<thead>
<tr>
<th>Method</th>
<th>(P{ select \ best }) from parents & offspring</th>
<th>Intrinsic elitism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>Fitness proportionate</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>Rank proportionate</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>K-ary tournament</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>((\mu + \lambda))</td>
<td>= 1</td>
<td>yes</td>
</tr>
<tr>
<td>((\mu, \lambda))</td>
<td>= 1</td>
<td>no</td>
</tr>
</tbody>
</table>

Evolutionary Algorithm Basics

Selection methods

Population \(P = (x_1, x_2, ..., x_\mu)\) with \(\mu\) individuals

Rank-proportional selection
Order individuals according to their fitness values
Assign ranks
Fitness-proportional selection based on ranks
\(\Rightarrow\) avoids all problems of fitness-proportional selection
But: best individual has only small selection advantage (can be lost!)

K-ary tournament selection
Draw \(k\) individuals uniformly at random (typically with replacement) from \(P\)
Choose individual with best fitness (break ties at random)
\(\Rightarrow\) has all advantages of rank-based selection and
Probability that best individual does not survive:
\[
\left(1 - \frac{1}{\mu}\right)^k \mu \approx e^{-k}
\]

Evolutionary Algorithm Basics

Selection methods without replacement

Population \(P = (x_1, x_2, ..., x_\mu)\) with \(\mu\) parents and
Population \(Q = (y_1, y_2, ..., y_\lambda)\) with \(\lambda\) offspring

- \((\mu, \lambda)\)-selection or truncation selection on offspring or comma-selection
 Rank \(\lambda\) offspring according to their fitness
 Select \(\mu\) offspring with best ranks
 \(\Rightarrow\) best individual may get lost, \(\lambda \geq \mu\) required

- \((\mu + \lambda)\)-selection or truncation selection on parents + offspring or plus-selection
 Merge \(\lambda\) offspring and \(\mu\) parents
 Rank them according to their fitness
 Select \(\mu\) individuals with best ranks
 \(\Rightarrow\) best individual survives for sure

Evolutionary Algorithm Basics

Selection methods

Population \(P = (x_1, x_2, ..., x_\mu)\) with \(\mu\) individuals

- **Rank-proportional selection**
 Order individuals according to their fitness values
 Assign ranks
 Fitness-proportional selection based on ranks
 \(\Rightarrow\) avoids all problems of fitness-proportional selection
 But: best individual has only small selection advantage (can be lost!)

- **K-ary tournament selection**
 Draw \(k\) individuals uniformly at random (typically with replacement) from \(P\)
 Choose individual with best fitness (break ties at random)
 \(\Rightarrow\) has all advantages of rank-based selection and
 Probability that best individual does not survive:
 \[
 \left(1 - \frac{1}{\mu}\right)^k \mu \approx e^{-k}
 \]

Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- **Intrinsic elitism:** method selects from parent and offspring, best survives with probability 1
- **Forced elitism:** if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

<table>
<thead>
<tr>
<th>Method</th>
<th>(P{ select \ best }) from parents & offspring</th>
<th>Intrinsic elitism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>Fitness proportionate</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>Rank proportionate</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>K-ary tournament</td>
<td>< 1</td>
<td>no</td>
</tr>
<tr>
<td>((\mu + \lambda))</td>
<td>= 1</td>
<td>yes</td>
</tr>
<tr>
<td>((\mu, \lambda))</td>
<td>= 1</td>
<td>no</td>
</tr>
</tbody>
</table>

Evolutionary Algorithm Basics

Selection methods without replacement

Population \(P = (x_1, x_2, ..., x_\mu)\) with \(\mu\) parents and
Population \(Q = (y_1, y_2, ..., y_\lambda)\) with \(\lambda\) offspring

- \((\mu, \lambda)\)-selection or truncation selection on offspring or comma-selection
 Rank \(\lambda\) offspring according to their fitness
 Select \(\mu\) offspring with best ranks
 \(\Rightarrow\) best individual may get lost, \(\lambda \geq \mu\) required

- \((\mu + \lambda)\)-selection or truncation selection on parents + offspring or plus-selection
 Merge \(\lambda\) offspring and \(\mu\) parents
 Rank them according to their fitness
 Select \(\mu\) individuals with best ranks
 \(\Rightarrow\) best individual survives for sure
Evolutionary Algorithm Basics

Variation operators: depend on representation

- mutation → alters a single individual
- recombination → creates single offspring from two or more parents

may be applied
- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

Evolutionary Algorithm Basics

Variation in \(\mathbb{B}^n \)

- Recombination (two parents)
 - a) 1-point crossover → draw cut-point \(k \in \{1, \ldots, n-1\} \) uniformly at random; choose first \(k \) bits from 1st parent, choose last \(n-k \) bits from 2nd parent
 - b) K-point crossover → draw \(K \) distinct cut-points uniformly at random; choose bits \(1 \) to \(k_1 \) from 1st parent, choose bits \(k_1+1 \) to \(k_2 \) from 2nd parent, choose bits \(k_2+1 \) to \(k_3 \) from 1st parent, and so forth ...
 - c) uniform crossover → for each index \(i \): choose bit \(i \) with equal probability from 1st or 2nd parent

- Recombination (multiparent: \(\rho = \text{#parents} \))
 - a) diagonal crossover (\(2 < \rho < n \)) → choose \(\rho - 1 \) distinct cut points, select chunks from diagonals

\[
\begin{align*}
\text{AAAAA} & \rightarrow \text{BBBBB} \\
\text{CCCCC} & \rightarrow \text{DDDDD}
\end{align*}
\]

\[
\begin{align*}
\text{AAAAAAAAAA} & \rightarrow \text{BBBBCCDDDD} \\
\text{BBBBBEBBBB} & \rightarrow \text{BCCCDAAAA} \\
\text{CCCCCCCCCC} & \rightarrow \text{CDDDAABBBB} \\
\text{DDDDDDDDDD} & \rightarrow \text{DAAAABCCCC}
\end{align*}
\]

- b) gene pool crossover (\(\rho > 2 \)) → for each gene: choose donating parent uniformly at random

Evolutionary Algorithm Basics

Mutation

a) local → choose index \(k \in \{1, \ldots, n\} \) uniformly at random, flip bit \(k \), i.e., \(x_k = 1 - x_k \)

b) global → for each index \(k \in \{1, \ldots, n\} \): flip bit \(k \) with probability \(p_m \in (0, 1) \)

c) “nonlocal” → choose \(K \) indices at random and flip bits with these indices

d) inversion → choose start index \(k_s \) and end index \(k_e \) at random, invert order of bits between start and end index

Evolutionary Algorithm Basics

Individuals ∈ \(\{0, 1\}^n \)

Mutation

a) local

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

b) global

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

c) “nonlocal”

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

d) inversion

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Evolutionary Algorithm Basics

Variation in \mathbb{P}_n

- **Mutation**
 - **local** \rightarrow 2-swap / 1-translocation
 - $5 \ 3 \ 2 \ 4 \ 1$ \rightarrow $5 \ 3 \ 2 \ 4 \ 1$
 - $5 \ 4 \ 3 \ 1$ \rightarrow $5 \ 2 \ 4 \ 3 \ 1$
 - **global** \rightarrow draw number K of 2-swaps, apply 2-swaps K times
 - K is positive random variable; its distribution may be uniform, binomial, geometrical, …; $E[K]$ and $V[K]$ may control mutation strength

- **Recombination (two parents)**
 - a) order-based crossover (OB)
 - b) partially mapped crossover (PMX)
 - c) cycle crossover (CX)

- **Recombination (multiparent)**
 - a) xx crossover
 - b) xx crossover
 - c) xx crossover

Evolutionary Algorithm Basics

Variation in \mathbb{R}_n

- **Mutation**
 - additive: $Y = X + Z$ (Z: n-dimensional random vector)
 - **local** $\rightarrow Z$ with bounded support
 - $f_Z(x) = \frac{4}{3} (1 - x^2) \cdot 1_{[-1,1]}(x)$
 - **nonlocal** $\rightarrow Z$ with unbounded support
 - $f_Z(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

Definition

Let $f_Z: \mathbb{R}^n \rightarrow \mathbb{R}^+$ be p.d.f. of r.v. Z. The set $\{ x \in \mathbb{R}^n : f_Z(x) > 0 \}$ is termed the **support** of Z. Most frequently used!
Evolutionary Algorithm Basics

Variation in \mathbb{R}^n

- Recombination (two parents)
 a) all crossover variants adapted from \mathbb{R}^n
 b) intermediate recombination
 \[z = \xi \cdot x + (1 - \xi) \cdot y \] with $\xi \in [0, 1]$
 c) intermediate (per dimension)
 \[\forall i : z_i = \xi_i \cdot x_i + (1 - \xi_i) \cdot y_i \] with $\xi_i \in [0, 1]$
 d) discrete
 \[\forall i : z_i = B_i \cdot x_i + (1 - B_i) \cdot y_i \] with $B_i \sim B(1, \frac{1}{2})$
 e) simulated binary crossover (SBX)

Variation in \mathbb{R}^n

- Recombination (multiparent), $\rho \geq 3$ parents
 a) intermediate recombination
 \[z = \sum_{k=1}^{\rho} \xi^{(k)} \cdot x^{(k)}_i \] where $\sum_{k=1}^{\rho} \xi^{(k)} = 1$ and $\xi^{(k)} \geq 0$
 (all points in convex hull)
 b) intermediate (per dimension)
 \[\forall i : z_i = \sum_{k=1}^{\rho} \xi^{(k)} \cdot x^{(k)}_i \]
 \[\forall i : z_i \in \left[\min_k \{x^{(k)}_i\}, \max_k \{x^{(k)}_i\} \right] \]

Theorem

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a strictly quasiconvex function. If $f(x) = f(y)$ for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

\[f \text{ strictly quasiconvex} \Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \max\{ f(x), f(y) \} \text{ for } 0 < \xi < 1 \]

since $f(x) = f(y) \Rightarrow \max\{ f(x), f(y) \} = \min\{ f(x), f(y) \}$

\[\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{ f(x), f(y) \} \text{ for } 0 < \xi < 1 \]

Theorem

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a differentiable function and $f(x) < f(y)$ for some $x \neq y$. If $(y - x)' \cdot \nabla f(x) < 0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

Proof:

If $d' \cdot \nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e.

\[\exists \delta > 0 : \forall s \in (0, \delta] : f(x + s \cdot d) < f(x). \]

Here: $d = y - x$ such that $P\{ f(\xi x + (1 - \xi) y) < f(x) \} \geq \delta > 0$. ■

sublevel set $S_{\alpha} = \{ x \in \mathbb{R}^n : f(x) < \alpha \}$
Evolutionary Algorithms: Historical Notes

Idea emerged independently several times: about late 1950s / early 1960s.
Three branches / "schools" still active today.

- **Evolutionary Programming (EP):**
 Pioneers: Lawrence Fogel, Alvin Owen, Michael Walsh (New York, USA).
 Original goal: Generate intelligent behavior through simulated evolution.
 Later (~1990s) specialized to optimization in \mathbb{R}^n by David B. Fogel.

- **Genetic Algorithms (GA):**
 Pioneer: John Holland (Ann Arbor, MI, USA).
 Original goal: Analysis of adaptive behavior.
 Applied to optimization tasks by PhD students (Kenneth de Jong, 1975; et al.).

- **Evolution Strategies (ES):**
 Pioneers: Ingo Rechenberg, Hans-Paul Schwefel, Peter Bienert (Berlin, Germany).
 Original goal: Optimization of complex systems.
 Approach: Viewing variation/selection as improvement strategy. First in \mathbb{Z}^n, then \mathbb{R}^n.

"Offspring" from GA branch:

- **Genetic Programming (GP):**
 Pioneers: Michael Lynn Cramer 1985, then: John Koza (Stanford, USA).
 Original goal: Evolve programs (parse trees) that must accomplish certain task.
 Approach: GA mechanism transferred to parse trees.
 Later: Programs as successive statements \rightarrow Linear GP (e.g. Wolfgang Banzhaf)

Already beginning early 1990s:
Borders between EP, GA, ES, GP begin to blur ...

\Rightarrow common term **Evolutionary Algorithm** embracing all kind of approaches
\Rightarrow broadly accepted name for the field: **Evolutionary Computation**

Scientific journals: **Evolutionary Computation** (MIT Press) since 1993,
IEEE Transactions on Evolutionary Computation since 1997,
several more specialized journals started since then.