Evolutionary Algorithms for Multiobiective Optimization

Lecturer: Günter Rudolph Stand-In: Nicola Beume

Lecture "Introduction to Computational Intelligence" Winter 2011/12 TU Dortmund, Dept. of Computer Science, LS11

25 01 2012

25.01.2012

Multiobiective Optimization

Real-world problems: various demands on problem solution

⇒ multiple conflictive objective functions

25.01.2012 2 / 28

Multiobjective Optimization

Multiobjective Problem $f: S \subseteq \mathbb{R}^n \rightarrow Z \subseteq \mathbb{R}^d$. $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_d(\mathbf{x}))$

How to relate vectors?

Pareto Dominance

partial order among vectors in \mathbb{R}^d and thus in \mathbb{R}^n

- $\mathbf{a} \leq \mathbf{b}$, \mathbf{a} weakly dominates $\mathbf{b} : \iff \forall i \in \{1, ..., d\} : a_i \leq b_i$
- $a \prec b$, a dominates $b : \iff a \leq b$ and $a \neq b$, i.e., $\exists i \in \{1, ..., d\} : a_i < b_i$ $a \parallel b$, a and b are incomparable: \iff neither $a \prec b$ nor $b \prec a$.

Nicola Beume (LS11)

25.01.2012 3 / 28

Nicola Beume (LS11)

25.01.2012

Aim of Optimization

Pareto front: set of optimal solution vectors in \mathbb{R}^d , i.e., $PF = \{ \mathbf{x} \in Z \mid \nexists \mathbf{x}' \in Z \text{ with } \mathbf{x}' \prec \mathbf{x} \}$

Aim of optimization: find Pareto front?

PF maybe infinitively large

PF hard to hit exactly in continuous space ⇒too ambitious!

Aim of optimization: approximate Pareto front!

Vicola Beume (LS11) Cl 2012 25.01.2012 5 / 28

_ -

Scalarization

Previous example: convex Pareto front

Consider concave Pareto front

f only boundary solutions are optimal

⇒ scalarization by simple weighting is not a good idea

Scalarization

Isn't there an easier way?

Scalarize objectives to single-objective function:

 $f: S \subseteq \mathbb{R}^n \rightarrow Z \subseteq \mathbb{R}^2 \Rightarrow f_{scal} = w_1 f_1(\mathbf{x}) + w_2 f_2(\mathbf{x})$

Result: single solution

Specify desired solution by choice of w_1, w_2

Classification

a-priori approach

first specify preferences, then optimize

more advanced scalarization techniques (e.g. Tschebyscheff) allow to access all elements of PF

remaining difficulty:

how to express your desires through parameter values!?

a-posteriori approach

first optimize (approximate Pareto front), then choose solution

⇒back to a-posteriori approach

⇒state-of-the-art methods: evolutionary algorithms

Nicola Beume (LS11) Cl 2012 25.01.2012 7/28 Nicola Beume (LS11) Cl 2012 25.01.2012 8/28

Evolutionary Algorithms

Evolutionary Multiobjective Optimization Algorithms (EMOA) Multiobjective Optimization Evolutionary Algorithms (MOEA)

What to change in case of multiobjective optimization?

Remaining operators may work on search space only

Minute Research (1911)

Selection in EMOA

Selection requires sortable population to choose best individuals

How to sort d-dimensional objective vectors?

Primary selection criterion:

use Pareto dominance relation to sort comparable individuals

Secondary selection criterion:
apply additional measure to incomparable individuals to enforce order

a Beume (LS11) Cl 2012 25.01.2012

Non-dominated Sorting Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains)

non-dominated set: best elements of set NDS(M) = $\{\mathbf{x} \in M \mid \nexists \mathbf{x}' \in M \text{ with } \mathbf{x}' \prec \mathbf{x}\}$

Simple algorithm:

iteratively remove non-dominated set until population empty

Non-dominated Sorting

Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains)

NDS(M) = $\{x \in M \mid \exists x' \in M \text{ with } x' \prec x\}$

Simple algorithm:

iteratively remove non-dominated set until population empty

25.01.2012 9 / 28

Non-dominated Sorting

Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains) non-dominated set; best elements of set

 $NDS(M) = \{x \in M \mid \exists x' \in M \text{ with } x' \prec x\}$

Simple algorithm:

iteratively remove non-dominated set until population empty

NSGA-II

Crowding distance:

1/2 perimeter of empty bounding box around point value of infinity for boundary points

large values good

NSGA-II

Popular EMOA: Non-dominated Sorting Genetic Algorithm II

 $(\mu + \mu)$ -selection:

- $\mathbf{0}$ perform non-dominated sorting on all $\mu + \mu$ individuals
- 2 take best subsets as long as they can be included completely
- if population size \(\mu \) not reached but next subset does not fit in completely:
- apply secondary selection criterion crowding distance to that subset fill up population with best ones w.r.t. the crowding distance

Difficulties of Selection

imagine point in the middle of the search space

d=2: 1/4 better, 1/4 worse, 1/2 incomparable d=3: 1/8 better, 1/8 worse, 3/4 incomparable

general; fraction 2^{-d+1} comparable, decreases exponentially

⇒typical case: all individuals incomparable

⇒mainly secondary selection criterion in operation

Drawback of crowding distance:

rewards spreading of points, does not reward approaching the Pareto front

 \Rightarrow NSGA-II diverges for large d, difficulties already for d=3

Nicola Reume (LS11) 25.01.2012 Nicola Beume (LS11)

Difficulties of Selection

Secondary selection criterion has to be meaningful!

Desired: choose best subset of size u from individuals

How to compare sets of partially incomparable points? ⇒use quality indicators for sets

One approach for selection

⇒for each point; determine contribution to quality value of set ⇒sort points according to contribution

25.01.2012

Hypervolumen (S-metric) as Quality Measure

dominated hypervolume: size of dominated space bounded by reference point

SMS(S-Metric Selection)-EMOA

State-of-the-art FMOA $(\mu + 1)$ -selection

non-dominated sorting

2 in case of incomparability: contributions to hypervolume of subset

SMS(S-Metric Selection)-EMOA

State-of-the-art FMOA

 $(\mu + 1)$ -selection

non-dominated sorting

2 in case of incomparability: contributions to hypervolume of subset

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

- $(\mu+1)\text{-selection}$
- 1 non-dominated sorting
- ② in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11) Cl 2012 25.01.2012 21 / 28

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

- $(\mu + 1)$ -selection
- 1 non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11) CI 2012

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA $(\mu + 1)$ -selection

- non-dominated sorting
- ② in case of incomparability: contributions to hypervolume of subset

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

- $(\mu+1)\text{-selection}$
- non-dominated sorting
- ② in case of incomparability: contributions to hypervolume of subset

SMS(S-Metric Selection)-EMOA

State-of-the-art FMOA

 $(\mu+1)$ -selection

non-dominated sorting

2 in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11) Cl 2012 25.01.2012 25 / 28

Computational complexity of hypervolume

Lower Bound $\Omega(m \log m)$

Upper Bound $O(m^{d/2} \cdot 2^{O(\log^* m)})$

proof: hypervolume as special case of Klee's measure problem

Conclusions on EMOA

NSGA-II

only suitable in case of d=2 objective functions otherwise no convergence to Pareto front

SMS-EMOA

also effective for d>2 due to hypervolume hypervolume calculation time-consuming \Rightarrow use approximation of hypervolume

Other state-of-the-art EMOA, e.g.

- . MO-CMA-ES: CMA-ES + hypervolume selection
- ε-MOEA: objective space partitioned into grid, only 1 point per cell
- MSOPS: selection acc. to ranks of different scalarizations

Conclusions

- real-world problems are often multiobjective
- · Pareto dominance only a partial order
- a priory: parameterization difficult
- a posteriori: choose solution after knowing possible compromises
- state-of-the-art a posteriori methods: EMOA, MOEA
- EMOA require sortable population for selection
- use quality measures as secondary selection criterion
 - · hypervolume: excellent quality measure, but computationally intensive
 - · use state-of-the-art EMOA, other may fail completely