

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund

Swarm Intelligence Lecture 14 metaphor

swarms of bird or fish seeking for food

- concepts: evaluation of own current situation
- communication / coordination
- by means of "stigmergy" comparison with other conspecific
- reinforcement learning • imitation of behavior of successful
- → positive feedback conspecifics

⇒ olfactoric communication ⇒ audio-visual communication

Contents

• Ant algorithms

Swarm Intelligence

• Particle swarm algorithms

(optimization in \mathbb{R}^n)

Lecture 14

(combinatorial optimization)

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 14

paradigm for design of metaheuristics for combinatorial optimization stigmergy = indirect communication through modification of environment

ant algorithms (ACO: Ant Colony Optimization)

technische universität

Swarm Intelligence

some facts:

Dorigo (1992): collective behavor of social insects (PhD)

- about 2% of all insects are social
- about 50% of all social insects are ants

~ 1991 Colorni / Dorigo / Maniezzo: Ant System (also: 1. ECAL, Paris 1991)

• total weight of all ants = total weight of all humans

 ants populate earth since 100 millions years • humans populate earth since 50.000 years

technische universität

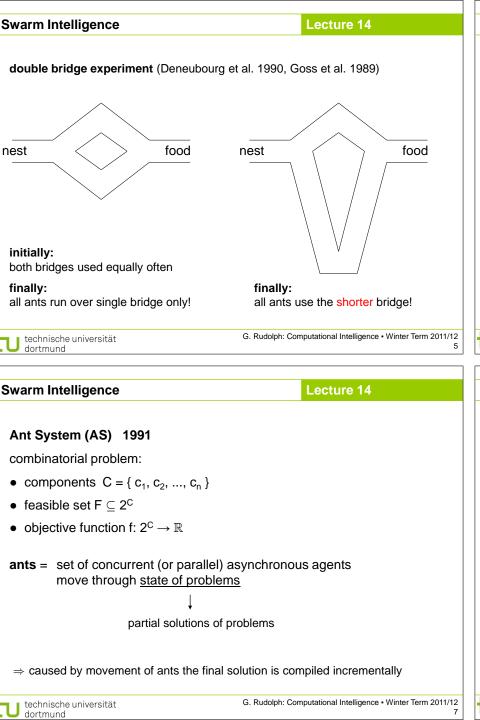
G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität dortmund

concepts:

ants or termites

seeking for food

G. Rudolph: Computational Intelligence • Winter Term 2011/12



⇒ pheromone concentration higher on shorter bridge ⇒ ants choose shorter bridge more frequently than longer bridge ⇒ pheromon concentration on shorter bridge even higher ⇒ even more ants choose shorter bridge \Rightarrow a.s.f. technische universität G. Rudolph: Computational Intelligence • Winter Term 2011/12 **Swarm Intelligence** Lecture 14 movement: stochastic local decision (2 parameters) 'trails' 'attractiveness'

while constructing the solution (if possible), otherwise at the end:

2. modification of 'trail value' of components on the path

excitement, stimulus

G. Rudolph: Computational Intelligence • Winter Term 2011/12

paths

feedback

1. evaluation of solutions

technische universität

Lecture 14

positive

feedback loop

Swarm Intelligence

How does it work?

more detailed:

ants place pheromons on their way

ants that use shorter bridge return faster

routing depends on concentration of pheromons

ant k in state i determine all possible continuations of current state i • choice of continuation according to probability distribution pi $p_{ii} = q(attractivity, amount of pheromone)$ heuristic is based on a priori a posteriori desirability of the move desirability of the move "how rewarding was the move in the past?" update of pheromone amount on the paths: as soon as all ants have compiled their solutions good solution → increase amount of pheromone, otherwise decrease \ technische universität G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 14

Lecture 14

G. Rudolph: Computational Intelligence • Winter Term 2011/12

two additional mechanisms: trail evaporation

demon actions (for centralized actions; not executable in general)

tested on TSP-Benchmark → not competitive ⇒ but: works in principle!

subsequent: 2 targets

1995 ANT-Q (Gambardella & Dorigo), simplified: 1996 ACS ant colony system

1. increase efficiency (→ competitiveness with state-of-the-art method)

2. better explanation of behavior

concepts:

technische universität

Swarm Intelligence Particle Swarm Optimization (PSO)

abstraction from fish / bird / bee swarm

technische universität

Swarm Intelligence

 ant starts in arbitrary city i pheromone on edges (i, j): τ_{ii}

TSP:

Combinatorial Problems (Example TSP)

• $\eta_{ii} = 1/d_{ii}$; $d_{ij} = distance$ between city i and j

G. Rudolph: Computational Intelligence • Winter Term 2011/12

G. Rudolph: Computational Intelligence • Winter Term 2011/12

Lecture 14

Lecture 14

developed by Russel Eberhard & James Kennedy (~1995)

 $\bullet \text{ probability to move from i to j:} \quad p_{ij}^{(t)} = \frac{\tau_{ij}^{\alpha}\,\eta_{ij}^{\beta}}{\sum\limits_{k\in\mathcal{N}:(t)}\tau_{ik}^{\alpha}\,\eta_{ik}^{\beta}} \quad \text{for } j\in\mathcal{N}_i(t)$

• $\mathcal{N}_i(t)$ = neighborhood of i at time step t (without cities already visited)

• update of pheromone after μ journeys of ants: $\tau_{ij} := \rho \, \tau_{ij} + \sum_{i} \, \Delta \tau_{ij}(k)$

• α = 1 and $\beta \in [2, 5]$ (empirical), $\rho \in (0,1)$ "evaporation rate"

• $\Delta \tau_{ii}(k) = 1$ / (tour length of ant k), if (i,j) belongs to tour

paradigm for design of metaheuristics for continuous optimization

particles "fly" or "swarm" through the search space

• particle (x, v) consists of position $x \in \mathbb{R}^n$ and "velocity" (i.e. direction) $v \in \mathbb{R}^n$

• PSO maintains multiple potential solutions at one time

• during each iteration, each solution/position is evaluated by an objective function

to find position of an extremal value returned by the objective function

Swarm Intelligence

Ant System (AS) is prototype

technische universität

Swarm Intelligence

Swarm Intelligence Lecture 14 PSO update of particle (x_i, v_i) at iteration t 1st step: $v_i(t+1) = \omega v_i(t) + \gamma_1 R_1 (x_b^*(t) - x_i(t)) + \gamma_2 R_2 (x^*(t) - x_i(t))$ const. const. const. random random variable variable best solution best solution among all solutions among all solutions of iteration $t \ge 0$ up to iteration $t \ge 0$ $x_h^*(t) = \operatorname{argmin} \{ f(x_i(t)) \}$ $x^*(t) = \operatorname{argmin} \{ f(x_h^*(\tau)) \}$ $i = 1, ..., \mu$ G. Rudolph: Computational Intelligence • Winter Term 2011/12 technische universität

Swarm Intelligence Lecture 14

PSO update of particle (x_i, v_i) at iteration t

 $x_i(t+1) = x_i(t) + v_i(t+1)$

2nd step:

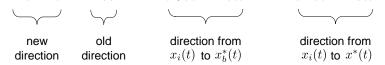
new old new position position direction Note the similarity to the concept of mutative step size control in EAs: first change the step size (direction), then use changed step size (direction) for changing position.

PSO update of particle (x_i, v_i) at iteration t

 $v_i(t+1) = \omega v_i(t) + \gamma_1 R_1 (x_b^*(t) - x_i(t)) + \gamma_2 R_2 (x^*(t) - x_i(t))$

1st step:

Swarm Intelligence



$$\omega$$
 : inertia factor, often $\in [0.8, 1.2]$
 γ_1 : cognitive factor, often $\in [1.7, 2.0]$
 γ_2 : social factor, often $\in [1.7, 2.0]$

positive r.v., often $r_1 \sim U[0,1]$ positive r.v., often $r_2 \sim U[0,1]$

technische universität

dortmund

Lecture 14

G. Rudolph: Computational Intelligence • Winter Term 2011/12