

Computational Intelligence

Winter Term 2011/12

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

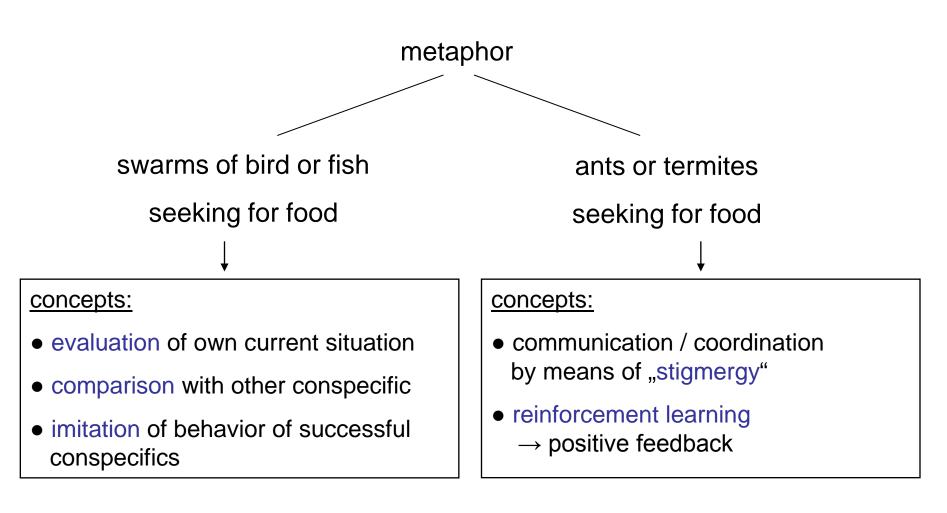
Fakultät für Informatik

TU Dortmund

Contents

- Ant algorithms
- Particle swarm algorithms

(combinatorial optimization) (optimization in \mathbb{R}^n)



 \Rightarrow audio-visual communication

 \Rightarrow olfactoric communication

ant algorithms (ACO: Ant Colony Optimization)

paradigm for design of metaheuristics for combinatorial optimization

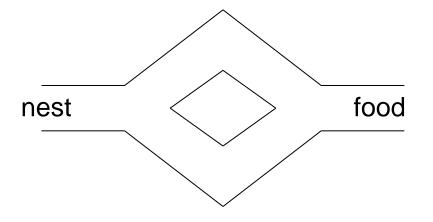
stigmergy = indirect communication through modification of environment

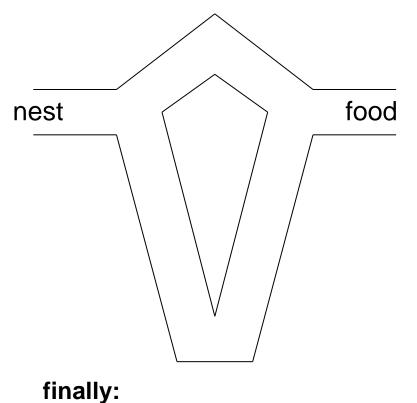
 \sim 1991 Colorni / Dorigo / Maniezzo: Ant System (also: 1. ECAL, Paris 1991) <u>Dorigo</u> (1992): collective behavor of social insects (PhD)

some facts:

- about 2% of all insects are social
- about 50% of all social insects are ants
- total weight of all ants = total weight of all humans
- ants populate earth since 100 millions years
- humans populate earth since 50.000 years

double bridge experiment (Deneubourg et al. 1990, Goss et al. 1989)





all ants use the shorter bridge!

initially:

both bridges used equally often

finally:

all ants run over single bridge only!

G. Rudolph: Computational Intelligence • Winter Term 2011/12

How does it work?

- ants place pheromons on their way
- routing depends on concentration of pheromons

more detailed:

ants that use shorter bridge return faster

- \Rightarrow pheromone concentration higher on shorter bridge
- \Rightarrow ants choose shorter bridge more frequently than longer bridge
- \Rightarrow pheromon concentration on shorter bridge even higher
- \Rightarrow even more ants choose shorter bridge
- \Rightarrow a.s.f.

positive

feedback

loop

Ant System (AS) 1991

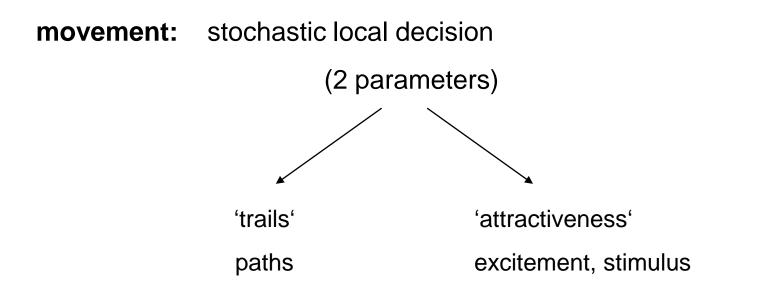
combinatorial problem:

- components $C = \{ c_1, c_2, ..., c_n \}$
- feasible set $F \subseteq 2^C$
- objective function f: $2^{C} \rightarrow \mathbb{R}$
- ants = set of concurrent (or parallel) asynchronous agents
 move through state of problems

partial solutions of problems

 \Rightarrow caused by movement of ants the final solution is compiled incrementally

Swarm Intelligence



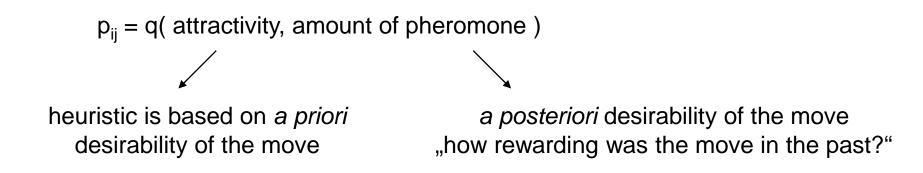
while constructing the solution (if possible), otherwise at the end:

- 1. evaluation of solutions
- 2. modification of 'trail value' of components on the path

feedback

ant k in state i

- determine all possible continuations of current state i
- choice of continuation according to probability distribution p_{ii}



 update of pheromone amount on the paths: as soon as all ants have compiled their solutions

good solution \nearrow increase amount of pheromone, otherwise decrease \searrow

Combinatorial Problems (Example TSP)

<u>TSP:</u>

- ant starts in arbitrary city i
- pheromone on edges (i, j): τ_{ij}
- probability to move from i to j:

$$p_{ij}^{(t)} = \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum\limits_{k \in \mathcal{N}_i(t)} \tau_{ik}^{\alpha} \eta_{ik}^{\beta}} \quad \text{for } j \in \mathcal{N}_i(t)$$

- $\eta_{ij} = 1/d_{ij}$; d_{ij} = distance between city i and j
- α = 1 and β \in [2, 5] (empirical), ρ \in (0,1) "evaporation rate"
- $\mathcal{N}_i(t)$ = neighborhood of i at time step t (without cities already visited)
- update of pheromone after μ journeys of ants:

$$\tau_{ij} := \rho \tau_{ij} + \sum_{k=1}^{\mu} \Delta \tau_{ij}(k)$$

• $\Delta \tau_{ij}(k) = 1$ / (tour length of ant k), if (i,j) belongs to tour

two additional mechanisms:

- 1. trail evaporation
- 2. demon actions (for centralized actions; not executable in general)

Ant System (AS) is prototype tested on TSP-Benchmark \rightarrow not competitive \Rightarrow but: works in principle!

subsequent: 2 targets

- 1. increase efficiency (→ competitiveness with state-of-the-art method)
- 2. better explanation of behavior

1995 ANT-Q (Gambardella & Dorigo), simplified: 1996 ACS ant colony system

Particle Swarm Optimization (PSO)

abstraction from fish / bird / bee swarm

paradigm for design of metaheuristics for <u>continuous</u> optimization

developed by Russel Eberhard & James Kennedy (~1995)

concepts:

- \bullet particle (x, v) consists of position $x\in \mathbb{R}^n$ and "velocity" (i.e. direction) $v\in \mathbb{R}^n$
- PSO maintains multiple potential solutions at one time
- during each iteration, each solution/position is evaluated by an objective function
- particles "fly" or "swarm" through the search space to find position of an extremal value returned by the objective function

PSO update of particle (x_i, v_i) at iteration t

1st step:

$$\begin{array}{c|c} v_i(t+1) = \omega \, v_i(t) + \gamma_1 \, R_1 \left(x_b^*(t) - x_i(t) \right) + \gamma_2 \, R_2 \left(x^*(t) - x_i(t) \right) \\ & \downarrow \\ \text{const.} & \text{const.} \\ & \downarrow \\ \text{random} \\ \text{variable} \\ \end{array} \begin{array}{c} \text{random} \\ \text{variable} \\ \text{best solution} \\ \text{among all solutions} \\ \text{of iteration } t \ge 0 \\ x_b^*(t) = \underset{i=1,\ldots,\mu}{\operatorname{argmin}} \{ f(x_i(t)) \} \\ x^*(t) = \underset{\tau=0,\ldots,t}{\operatorname{argmin}} \{ f(x_b^*(\tau)) \} \end{array}$$

PSO update of particle (x_i, v_i) at iteration t

1st step:

$$\begin{array}{c} v_i(t+1) = \omega \, v_i(t) + \gamma_1 \, R_1 \left(x_b^*(t) - x_i(t) \right) + \gamma_2 \, R_2 \left(x^*(t) - x_i(t) \right) \\ & \swarrow & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\ \begin{array}{c} \mathsf{new} & \mathsf{old} & \operatorname{direction} \, \mathrm{from} \\ \mathsf{direction} & \operatorname{direction} \, \mathrm{from} \\ \mathsf{direction} & x_i(t) \ \mathsf{to} \, x_b^*(t) & x_i(t) \ \mathsf{to} \, x^*(t) \end{array} \right) \end{array}$$

- ω : inertia factor, often $\in [0.8, 1.2]$
- γ_1 : cognitive factor, often $\in [1.7, 2.0]$
- γ_2 : social factor, often $\in [1.7, 2.0]$
- R_1 : positive r.v., often $r_1 \sim U[0,1]$
- R_2 : positive r.v., often $r_2 \sim U[0,1]$

Swarm Intelligence

PSO update of particle (x_i, v_i) at iteration t

2nd step:

$$x_i(t+1) = x_i(t) + v_i(t+1)$$

new old new position position direction

Note the similarity to the concept of mutative step size control in EAs: first change the step size (direction), then use changed step size (direction) for changing position.