

Single-Layer Perceptron (SLP)	Lecture 02	Single-I	ayer Perceptron (SLP)	<u> </u>	Lecture 02	
There exist numerous variants of Perceptron Learning Me	ethods.	as yet:	Online Learning			
Theorem: (Duda & Hart 1973)			\rightarrow Update of weights afte	r each training patte	rn (if necessary)	
If rule for correcting weights is $w_{t+1} = w_t + \gamma_t x$ (if $w_t^{\iota} x < $	< 0)					
1. $\forall t \ge 0 : \gamma_t \ge 0$		now:	Batch Learning			
2. $\sum_{t=0}^{\infty} \gamma_t = \infty$			→ Update of weights only	after test of all train	ning patterns	
			\rightarrow Update rule:			
3. $\lim_{m \to \infty} \frac{\sum_{t=0}^{m} \gamma_t^2}{\left(\sum_{t=0}^{m} \gamma_t\right)^2} = 0$			$W_{t+1} = W_t + \gamma \sum X$	(γ > 0)		
$(\sum_{m \to \infty}^{m \to \infty} \left(\sum_{m \to t}^{m} \gamma_t \right)^2$			$w_{t+1} = w_t + \frac{1}{7} \sum_{k=1}^{7} x_k$ $w_t^* x < 0$ $x \in B$	(7 - 0)		
$(\iota=0)$			$x\inB$			
then $w_t \rightarrow w^*$ for $t \rightarrow \infty$ with $\forall x'w^* > 0$.	•		vague assessment in liter	ature:		
e.g.: $\gamma_t = \gamma > 0$ or $\gamma_t = \gamma / (t+1)$ for $\gamma > 0$			advantage : "usual	ly faster"		
			disadvantage : "need	s more memory" 🔸		
technische universität G. Rudolph: Comp dortmund	utational Intelligence • Winter Term 2012/13 5		ische universität und	G. Rudolph: Co	omputational Intelligence • Wir	ter Term 2012/13 6
Single-Layer Perceptron (SLP)	Lecture 02	Single-L	ayer Perceptron (SLP)		Lecture 02	
find weights by means of optimization		Gradier	nt method	Cradiant nair	ata in direction of	-
Let $F(w) = \{ x \in B : w'x < 0 \}$ be the set of patterns incorre	ectly classified by weight w.	W _{t+1} = W	$v_{t} - \gamma \nabla f(w_{t})$		nts in direction of ent of function $f(\cdot)$	
						_
Objective function: $f(w) = -\sum w^{t}x \rightarrow min!$		Gradien	t $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_1}\right)$	$f(w) = \frac{\partial f(w)}{\partial f(w)}$		
$x\inF(w)$		Oradien	$ (w_1)^{-1} (w_1)^{-1} (\partial w_1)^{-1} (\partial w_1$	$\partial w_2 \cdots, \partial w_n $	ouun	on: siofw _i
Optimum: $f(w) = 0$ iff $F(w)$ is empty					<u>here</u> d	lenote
		$\partial f(w)$	$\partial \sum ($	$\partial \sum_{n} \sum_{n}^{n}$		onents of w; they are
		∂w_i	$= -\frac{\partial}{\partial w_i} \sum_{x \in F(w)} w'x =$	$-\frac{1}{\partial w_i}\sum_{x\in F(w)}\sum_{j=1}^{k}$	$w_j \cdot x_j$ not th counter	e iteration ers!
Possible approach: gradient method						
	converges to a <u>local</u> minimum (dep. on w_0)		$= -\sum_{x \in F(w)} \frac{\partial}{\partial w_i} \left(\sum_{j=1}^n w_j \right)$	$w_j \cdot x_j = - \sum_{j=1}^{n}$	$\sum_{i=1}^{n} x_i$	
			$x \in F(w) \underbrace{ \cdots }_{j=1}^{m} \bigcup_{j=1}^{m}$	$$ $x \in F($	(w)	
•			x_i			
technische universität G. Rudolph: Comp dortmund	utational Intelligence • Winter Term 2012/13 7	tu techni dortmi	ische universität und	G. Rudolph: Co	omputational Intelligence • Wir	ter Term 2012/13 8

Single-Layer Perceptron (SLP)	Lecture 02	Single-Layer Perceptron (SLP)	Lecture 02		
Single-Layer Perceptron (SLP) Lecture 02 Gradient method thus: gradient $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}, \dots, \frac{\partial f(w)}{\partial w_n}\right)'$ $= \left(\sum_{x \in F(w)} x_1, -\sum_{x \in F(w)} x_2, \dots, -\sum_{x \in F(w)} x_n\right)'$ $= -\sum_{x \in F(w)} x_x$		Single-Layer Perceptron (SLP)Lecture 02How difficult is it(a) to find a separating hyperplane, provided it exists?(b) to decide, that there is no separating hyperplane?Let B = P \cup { -x : x \in N } (only positive examples), $w_i \in \mathbb{R}$, $\theta \in \mathbb{R}$, $ B = m$ For every example $x_i \in B$ should hold: $x_{i1} w_1 + x_{i2} w_2 + + x_{in} w_n \ge \theta$ \rightarrow trivial solution $w_i = \theta = 0$ to be excluded!Therefore additionally: $\eta \in \mathbb{R}$ $x_{i1} w_1 + x_{i2} w_2 + + x_{in} w_n - \theta - \eta \ge 0$			
$\Rightarrow w_{t+1} = w_t + \gamma \sum_{x \in F(w_t)} x$ technische universität	gradient method ⇔ batch learning G. Rudolph: Computational Intelligence • Winter Term 2012/13 9	Idea: η maximize \rightarrow if $\eta^* > 0$, then solution found technische universität G. Rud	lolph: Computational Intelligence • Winter Term 2012/13 10		
Single-Layer Perceptron (SLP)	Lecture 02	Multi-Layer Perceptron (MLP)	Lecture 02		
$ \underbrace{Matrix \text{ notation:}}_{A = \begin{pmatrix} x_1' & -1 & -1 \\ x_2' & -1 & -1 \\ \vdots & \vdots & \vdots \\ x_1' & z_1' & z_2' \end{pmatrix}}_{A = \begin{pmatrix} w \\ \theta \\ \eta \end{pmatrix} $		 What can be achieved by adding a layer? Single-layer perceptron (SLP) ⇒ Hyperplane separates space in two subspace 	es N		
$(x_m -1 -1)$ Linear Programming Problem: $f(z_1, z_2,, z_n, z_{n+1}, z_{n+2}) = z_{n+2} \rightarrow max!$	calculated by e.g. Kamarkar- algorithm in polynomial time	 Two-layer perceptron ⇒ arbitrary convex sets can be separated Three-layer perceptron ⇒ arbitrary sets can be separated (depends on 	connected by AND gate in 2nd layer		
s.t. Az≥0					

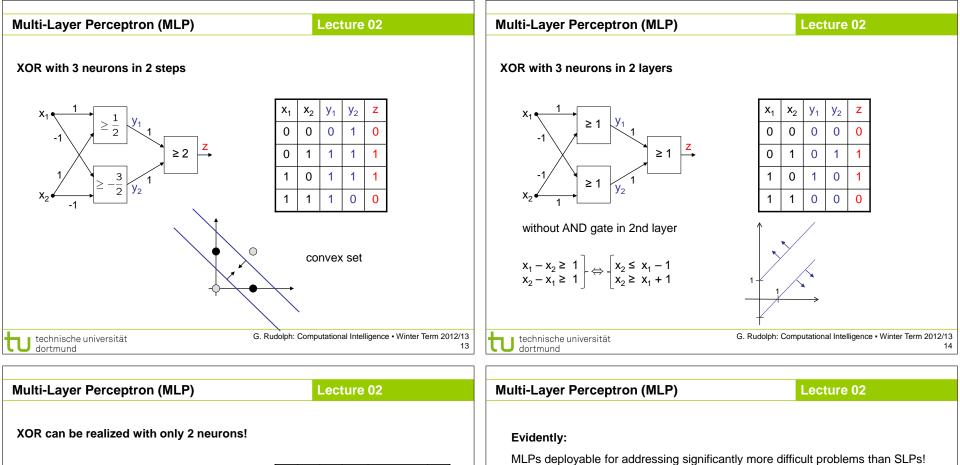
s.t. Az ≥ 0

If $z_{n+2} = \eta > 0$, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!

technische universität dortmund

several convex sets representable by 2nd layer,


these sets can be combined in 3rd layer

 \Rightarrow more than 3 layers not necessary!

convex sets of 2nd layer

connected by

OR gate in 3rd layer

x_1 1 z_2 y z_2 z_1 z_1 z_2 x_2

x ₁	x ₂	У	-2y	x ₁ -2y+x ₂	z
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	1	-2	0	0

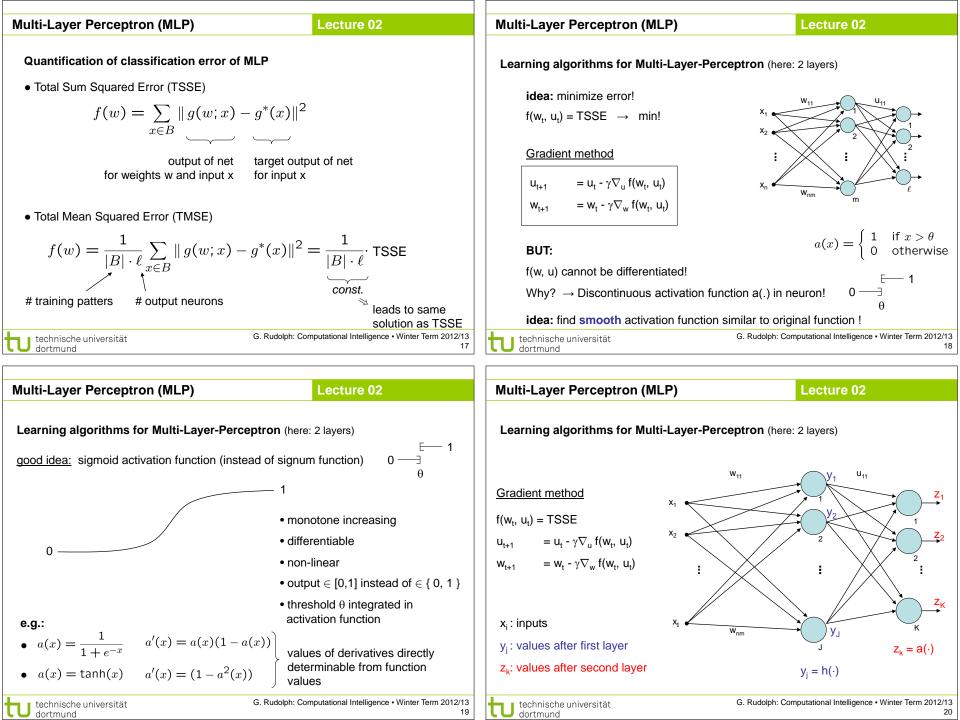
BUT: this is not a layered network (no MLP) !

Is there an efficient learning algorithm for MLPs?

But:

History:


Unavailability of efficient learning algorithm for MLPs was a brake shoe ...


... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

How can we adjust all these weights and thresholds?

Multi-Layer Perceptron (MLP)Lecture 02
$$y_j = h\left(\sum_{k=1}^{J} w_{ij} \cdot x_i\right) = h(w_j'x)$$
output of neuron j
after 1st layer $z_k = a\left(\sum_{j=1}^{J} u_{jk} \cdot y_j\right) = a(u_k'y)$ output of neuron k
after 2nd layer $= a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_i\right)\right)$ output of neuron k
after 2nd layer $= a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_i\right)\right)$ output of neuron k
after 2nd layer $= a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_i\right)\right)$ output of neuron k
after 2nd layer $= a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_i\right)\right)$ v_{ij} error of input x $f(w, u; x, z^*) = \sum_{k=1}^{K} \left[a\left(\sum_{i=1}^{J} u_{ijk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_i\right)\right) - z_k^*(x)\right]^2$ $= a\left(\sum_{i=1}^{J} u_{ijk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_i\right)\right)$ v_{ij} $= a\left(\sum_{i=1}^{J} u_{ijk} \cdot x_i\right)$ v_{ij} $= a\left(\sum_{i=1}^{J} u_{ijk} \cdot x_i\right)^2$ v_{ij} $= b\left(\sum_{i=1}^{J} v_{ijk} \cdot x_i\right)^2$ <

Multi-Layer Perceptron (MLP)	Lecture 02	Multi-Layer Perceptron (MLP)	Lecture 02
$f(w, u; x, z^*) = \sum_{k=1}^{K} [a(u'_k y) - z^*_k]^2$		partial derivative w.r.t. \mathbf{w}_{ij} : $\frac{\partial f(w, u; x, z^*)}{\partial w_{ij}} = 2 \sum_{k=1}^{K} [a(u'_k y) - z^*_k] \cdot a'_k$ $z_k z_k z_$	$(u_k'y)\cdot u_{jk}\cdot h'(w_j'x)\cdot x_i$
partial derivative w.r.t. u _{jk} :		w_{ij} $k=1$ z_k z_k (1)	$(1-z_k) y_j (1-y_j)$
$\frac{\partial f(w, u; x, z^*)}{\partial u_{jk}} = 2 \left[a(u'_k y) - z^*_k \right] \cdot a'(u'_k y) \cdot y_j$		$= 2 \cdot \sum_{k=1}^{K} [z_k - z_k^*] \cdot z_k \cdot (1)$	$(-z_k) \cdot u_{jk} \cdot y_j (1-y_j) \cdot x_i$
$= 2 [a(u'_k y) - z^*_k] \cdot a(u'_k y) \cdot (1 -$	$-a(u_k'y))\cdot y_j$	factors (
$=\underbrace{2\left[z_k-z_k^*\right]\cdot z_k\cdot (1-z_k)\cdot y_j}_{}$		$= x_i \cdot y_j \cdot (1 - y_j) \cdot \sum_{k=1}^{K} 2 \cdot \sum_$	$\underbrace{[z_k - z_k^*] \cdot z_k \cdot (1 - z_k) \cdot u_{jk}}_{\gamma}$
"error signal" δ_k		error sign	al δ_k from previous layer
C. Budabb Com	putational Intelligence • Winter Term 2012/13		al δ_j from "current" layer udolph: Computational Intelligence • Winter Term 2012/13
technische universität G. Rudolph: Com dortmund	25	dortmund G. R	26
Multi-Layer Perceptron (MLP)	Lecture 02	Multi-Layer Perceptron (MLP)	Lecture 02
Generalization (> 2 layers)	i∈S→	error signal of neuron in inner layer determined	by
Let neural network have L layers S_1 , S_2 , S_L . Let neurons of all layers be numbered from 1 to N.	neuron j is in m-th layer	 error signals of all neurons of subsequent lay weights of associated connections. 	er and
All weights w _{ij} are gathered in weights matrix W.			
Let o _j be output of neuron j.		 First determine error signals of output neuron 	s
error signal:		use these error signals to calculate the error signals to	
$o_j \cdot (1 - o_j) \cdot (o_j - z_j^*) \text{if } j \in S_L$	(output neuron)	 use these error signals to calculate the error signals 	
$\delta_j = \begin{cases} o_j \cdot (1 - o_j) \cdot (o_j - z_j^*) & \text{if } j \in S_L \\ o_j \cdot (1 - o_j) \cdot \sum_{k \in S_{m+1}} \delta_k \cdot w_{jk} & \text{if } j \in S_n \end{cases}$	$_n$ and $m < L$	• and so forth until reaching the first inner layer	
correction:		1	
(t+1) (t) (t) in case of online	learning: each test pattern presented	thus, error is propagated backwards from output \Rightarrow backpropagation (of error)	it layer to first inner
Lechnische universität G. Rudolph: Com	putational Intelligence • Winter Term 2012/13 27	G. R dortmund	udolph: Computational Intelligence • Winter Term 2012/13 28

Multi-Layer Perceptron (MLP)

Lecture 02

- \Rightarrow other optimization algorithms deployable!
- in addition to **backpropagation** (gradient descent) also:
- Backpropagation with Momentum take into account also previous change of weights:

 $\Delta w_{ij}^{(t)} = -\gamma_1 \cdot o_i \cdot \delta_j - \gamma_2 \cdot \Delta w_{ij}^{(t-1)}$

• QuickProp

assumption: error function can be approximated locally by quadratic function, update rule uses last two weights at step t - 1 and t - 2.

• Resilient Propagation (RPROP)

exploits sign of partial derivatives: 2 times negative or positive \Rightarrow increase step! change of sign \Rightarrow reset last step and decrease step! typical values: factor for decreasing 0,5 / factor of increasing 1,2

• evolutionary algorithms individual = weights matrix later more about this!

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2012/13 29