

Computational Intelligence Winter Term 2012/13

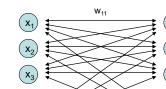
Lehrstuhl für Algorithm Engineering (LS 11)

Bidirectional Associative Memory (BAM)

Prof. Dr. Günter Rudolph

Fakultät für Informatik TU Dortmund

Network Model



x, y: row vectors W: weight matrix

W': transpose of W bipolar inputs $\in \{-1,+1\}$ • fully connected • bidirectional edges synchonized: : data flow from x to y step t + 1: data flow from y to x **start:** $y^{(0)} = sgn(x^{(0)} W)$

 $x^{(1)} = sgn(y^{(0)} W')$ $y^{(1)} = sgn(x^{(1)} W)$ $x^{(2)} = sgn(y^{(1)} W')$

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 04

Bidirectional Associative Memory (BAM)

Fixed Points

Definition

Set W = x' y.

technische universität

Plan for Today

■ Fixed Points

 Hopfield Network Convergence

(x, y) is **fixed point** of BAM iff y = sgn(x W) and x' = sgn(W y').

Bidirectional Associative Memory (BAM)

Stable States = Minimizers of Energy Function

Application to Combinatorial Optimization

Concept of Energy Function

Lecture 04

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 04

> 0 (does not alter sign)

> 0 (does not alter sign)

(note: x is row vector)

 $y = sgn(x W) = sgn(x(x'y)) = sgn((xx')y) = sgn(||x||^2 y) = y$

 $x' = sgn(W y') = sgn((x'y) y') = sgn(x'(y y')) = sgn(x'||y||^2) = x'$

Theorem: If W = x'y then (x,y) is fixed point of BAM.

G. Rudolph: Computational Intelligence • Winter Term 2012/13 technische universität dortmund

technische universität dortmund

Concept of Energy Function given: BAM with W = $x'y \Rightarrow (x,y)$ is stable state of BAM starting point x⁽⁰⁾ \Rightarrow y⁽⁰⁾ = sgn(x⁽⁰⁾ W) \Rightarrow excitation e' = W (y⁽⁰⁾)' \Rightarrow if sign(e') = $x^{(0)}$ then ($x^{(0)}$, $y^{(0)}$) stable state small angle between e' and x(0)

Bidirectional Associative Memory (BAM)

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 04

small angle $\alpha \Rightarrow$ large cos(α)

Lecture 04

Stable States

Theorem An asynchronous BAM with arbitrary weight matrix W reaches steady state in a finite number of updates.

recall: $\frac{ab'}{\|a\|\cdot\|b\|} = \cos\angle(a,b)$

Bidirectional Associative Memory (BAM)

Proof: $E(x,y) = -\frac{1}{2}xWy' = \begin{cases} -\frac{1}{2}x(Wy') &= -\frac{1}{2}xb' &= -\frac{1}{2}\sum_{i=1}^{k}b_{i}x_{i} \\ -\frac{1}{2}(xW)y' &= -\frac{1}{2}ay' &= -\frac{1}{2}\sum_{i=1}^{k}a_{i}y_{i} \end{cases}$ excitations

required:

⇒ larger cosine of angle indicates greater similarity of vectors

small angle between $e' = W y^{(0)}$ and $x^{(0)}$

Concept of Energy Function

 $\Rightarrow \forall e' \text{ of equal size: try to maximize } x^{(0)} \ e' = \mid\mid x^{(0)} \mid\mid \cdot \mid\mid e \mid\mid \cdot cos \angle \ (x^{(0)} \ , e)$

Bidirectional Associative Memory (BAM)

 \Rightarrow maximize $x^{(0)}$ e' = $x^{(0)}$ W $y^{(0)}$ '

 \Rightarrow identical to minimize $-x^{(0)}$ W $y^{(0)}$ '

Definition

Energy function of BAM at iteration t is E($x^{(t)}$, $y^{(t)}$) = $-\frac{1}{2}x^{(t)}$ W $y^{(t)}$.

technische universität G. Rudolph: Computational Intelligence • Winter Term 2012/13

Bidirectional Associative Memory (BAM)

 X_i - \widetilde{X}_i

< 0

q.e.d.

Lecture 04

Lecture 04

neuron i of left layer has changed \Rightarrow sgn(x_i) \neq sgn(b_i) \Rightarrow x_i was updated to $\tilde{x}_i = -x_i$

$$E(x,y) - E(\tilde{x},y) = -\frac{1}{2}b_i(x_i - \tilde{x}_i) > 0$$

< 0

- use analogous argumentation if neuron of right layer has changed
- ⇒ every update (change of state) decreases energy function ⇒ since number of different bipolar vectors is finite
- update stops after finite #updates

technische universität

remark: dynamics of BAM get stable in local minimum of energy function!

 symmetric weight matrix no self-loops (→ zero main diagonal entries) • thresholds θ , neuron i fires if excitations larger than θ_i **transition**: select index k at random, new state is $\tilde{x} = \text{sgn}(xW - \theta)$ where $\tilde{x} = (x_1, \dots, x_{k-1}, \tilde{x}_k, x_{k+1}, \dots, x_n)$

energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$ G. Rudolph: Computational Intelligence • Winter Term 2012/13

$E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$

Hopfield Network

number of updates.

U technische universität dortmund

technische universität

Theorem:

 $= -\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^{n} \theta_i \tilde{x}_i$ $= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) + \sum_{i=1}^{n} \theta_i (x_i - \tilde{x}_i)$

 $= -\frac{1}{2} \sum_{\substack{i=1 \ j \neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$

Hopfield network converges to local minimum of energy function after a finite

Proof: assume that x_k has been updated $\Rightarrow \tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$

Hopfield Network Application to Combinatorial Optimization

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 04

Lecture 04

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Idea:

• transform combinatorial optimization problem as objective function with $x \in \{-1,+1\}^n$ rearrange objective function to look like a Hopfield energy function

• extract weights W and thresholds θ from this energy function

• initialize a Hopfield net with these parameters W and θ

 run the Hopfield net until reaching stable state (= local minimizer of energy function) stable state is local minimizer of combinatorial optimization problem

 $= -(x_k - \tilde{x}_k) \left[\sum_{i=1}^n w_{ik} x_i - \theta_k \right] > 0$

 $\begin{array}{c|cccc} x_k & x_k - \tilde{x}_k & e_k - \theta_k & \Delta E \\ \hline +1 & > 0 & < 0 & > 0 \end{array}$

G. Rudolph: Computational Intelligence • Winter Term 2012/13

 $= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^n w_{ik} \, x_i \, (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^n w_{kj} \, x_j \, (x_k - \tilde{x}_k) + \theta_k \, (x_k - \tilde{x}_k)$ (rename j to i, recall W = W', w_{kk} = 0)

 $= -\frac{1}{2} \sum_{\substack{i=1 \ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } i \neq k} - \frac{1}{2} \sum_{\substack{j=1 \ i \neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$

Lecture 04

Lecture 04

 $= -\sum_{i=1}^{\infty} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$

excitation e

> 0 if $x_{\nu} < 0$ and vice versa

technische universität

Hopfield Network

technische universität

Hopfield Network

characterization:

• n neurons fully connected

special case of BAM but proposed earlier (1982)

neurons preserve state until selected at random for update

Example I: Linear Functions
$$f(x) = \sum_{i=1}^n c_i \, x_i \quad \to \min! \qquad (\, x_i \in \{-1, +1\}\,)$$
 Evidently: $E(x) = f(x)$ with $W = 0$ and $\theta = c$
$$\downarrow \downarrow$$
 Choose $x^{(0)} \in \{-1, +1\}^n$ set iteration counter $t = 0$ repeat choose index k at random
$$x_k^{(t+1)} = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t)} \cdot 0 - c_k) = -\operatorname{sgn}(c_k) = \left\{ \begin{array}{ll} -1 & \text{if } c_k > 0 \\ +1 & \text{if } c_k < 0 \end{array} \right.$$
 increment t until reaching fixed point
$$\Rightarrow \text{ fixed point reached after } \Theta(\text{n log n}) \text{ iterations on average}$$

Hopfield Network

■ technische universität

Hopfield Network

step 1:

step 2:

Example II: MAXCUT (continued)

 \Rightarrow y_i = (x_i+1) / 2

conversion to minimization problem

transformation of variables

 \Rightarrow multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow min!

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 04

Lecture 04

Hopfield Network

Example II: MAXCUT (continued)

$$\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_i + 1}{2} \left(1 - \frac{x_j + 1}{2} \right) + \frac{x_j + 1}{2} \left(1 - \frac{x_i + 1}{2} \right) \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_i x_j \right]$$

$$= \underbrace{\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij}}_{n-1} - \underbrace{\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j}_{n-1}$$

<u>encoding:</u> \forall i=1,...,n: $y_i = 0 \Leftrightarrow \text{node i in set } V_0$; $y_i = 1 \Leftrightarrow \text{node i in set } V_1$

technische universität

 $= -\frac{1}{2}x'Wx + \theta'x$

Hopfield Network

Example II: MAXCUT

objective function: $f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i (1-y_j) + y_j (1-y_i) \right] \rightarrow \max!$

with one endpoint in V₀ and one endpoint in V₁ becomes maximal

preparations for applying Hopfield network step 1: conversion to minimization problem

<u>given:</u> graph with n nodes and symmetric weights $\omega_{ii} = \omega_{ii}$, $\omega_{ii} = 0$, on edges

<u>task</u>: find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges

step 2: transformation of variables step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

Lecture 04

Lecture 04

G. Rudolph: Computational Intelligence • Winter Term 2012/13

G. Rudolph: Computational Intelligence • Winter Term 2012/13

step 3: transformation to "Hopfield normal form"

 $E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(-\frac{1}{2} \omega_{ij} \right) x_i x_j$

step 4: extract coefficients as weights and thresholds of Hopfield net

 $w_{ij} = -\frac{\omega_{ij}}{2}$ for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net technische universität