

Computational Intelligence

Winter Term 2012/13

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

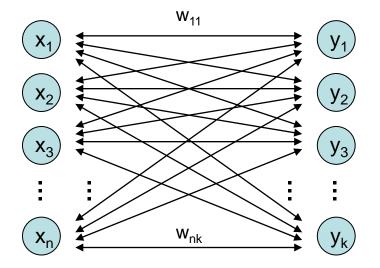
Plan for Today

- Bidirectional Associative Memory (BAM)
 - Fixed Points
 - Concept of Energy Function
 - Stable States = Minimizers of Energy Function
- Hopfield Network
 - Convergence
 - Application to Combinatorial Optimization

Bidirectional Associative Memory (BAM)

Lecture 04

Network Model



- x, y : row vectors
- W : weight matrix
- W': transpose of W

bipolar inputs \in {-1,+1}

• fully connected

- bidirectional edges
- synchonized:
 - step t : data flow from x to y step t + 1 : data flow from y to x

start:
$$y^{(0)} = sgn(x^{(0)} W)$$

 $x^{(1)} = sgn(y^{(0)} W')$
 $y^{(1)} = sgn(x^{(1)} W)$
 $x^{(2)} = sgn(y^{(1)} W')$

Fixed Points

Definition

(x, y) is *fixed point* of BAM iff y = sgn(x W) and x' = sgn(W y').

Set W = x' y. (note: x is row vector)

$$y = sgn(x W) = sgn(x (x' y)) = sgn((x x') y) = sgn(||x ||^2 y) = y$$

> 0 (does not alter sign)

$$x' = sgn(Wy') = sgn((x'y)y') = sgn(x'(yy')) = sgn(x'||y||^2) = x'$$

> 0 (does not alter sign)

Theorem: If W = x'y then (x,y) is fixed point of BAM.

J technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 04

Concept of Energy Function

<u>given</u>: BAM with W = x'y \Rightarrow (x,y) is stable state of BAM starting point x⁽⁰⁾ \Rightarrow y⁽⁰⁾ = sgn(x⁽⁰⁾ W) \Rightarrow excitation e' = W (y⁽⁰⁾)' \Rightarrow if sign(e') = x⁽⁰⁾ then (x⁽⁰⁾, y⁽⁰⁾) stable state true if small angle \Leftarrow e' close to x⁽⁰⁾ between e' and $x^{(0)}$ $x^{(0)} = (1, 1)$ 1 0 cos(x) recall: $\frac{ab'}{\|a\| \cdot \|b\|} = \cos \angle (a, b)$ small angle $\alpha \Rightarrow$ large cos(α) 0

J technische universität dortmund

Concept of Energy Function

required:

small angle between $e' = W y^{(0)}$ ' and $x^{(0)}$

 \Rightarrow larger cosine of angle indicates greater similarity of vectors

 $\Rightarrow \forall e' \text{ of equal size: try to maximize } x^{(0)} e' = || x^{(0)} || \cdot || e || \cdot \cos \angle (x^{(0)}, e)$ fixed fixed $\rightarrow max!$

- \Rightarrow maximize $x^{(0)} e^{\cdot} = x^{(0)} W y^{(0)}$
- \Rightarrow identical to minimize $\ \ \ -x^{(0)} \ W \ y^{(0)}$ '

Definition

Energy function of BAM at iteration t is E(
$$x^{(t)}$$
 , $y^{(t)}$) = $-\frac{1}{2}x^{(t)}Wy^{(t)}$

Stable States

Theorem

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a finite number of updates.

Proof:

$$E(x,y) = -\frac{1}{2}xWy' = \begin{cases} -\frac{1}{2}x(Wy') = -\frac{1}{2}xb' = -\frac{1}{2}\sum_{i=1}^{n} b_i x_i \\ -\frac{1}{2}(xW)y' = -\frac{1}{2}ay' = -\frac{1}{2}\sum_{i=1}^{k} a_i y_i \end{cases}$$
 excitations

BAM asynchronous \Rightarrow

select neuron at random from left or right layer, compute its excitation and change state if necessary (states of other neurons not affected)

7

Bidirectional Associative Memory (BAM)

neuron i of left layer has changed \Rightarrow sgn(x_i) \neq sgn(b_i)

 \Rightarrow x_i was updated to $\tilde{x}_i = -x_i$

$$E(x,y) - E(\tilde{x},y) = -\frac{1}{2} \underbrace{b_i (x_i - \tilde{x}_i)}_{<0} > 0$$

x _i	b _i	x _i - x̃ _i
-1	> 0	< 0
+1	< 0	> 0

Lecture 04

use analogous argumentation if neuron of right layer has changed

- \Rightarrow every update (change of state) decreases energy function
- ⇒ since number of different bipolar vectors is finite update stops after finite #updates

remark: dynamics of BAM get stable in local minimum of energy function!

q.e.d.

special case of BAM but proposed earlier (1982)

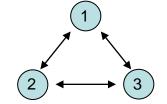
characterization:

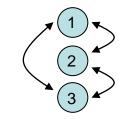
- neurons preserve state until selected at random for update
- n neurons fully connected
- symmetric weight matrix
- no self-loops (→ zero main diagonal entries)
- thresholds θ , neuron i fires if excitations larger than θ_i

transition: select index k at random, new state is $\tilde{x} = \text{sgn}(xW - \theta)$

where
$$\tilde{x} = (x_1, ..., x_{k-1}, \tilde{x}_k, x_{k+1}, ..., x_n)$$

energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$





Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates. $\hfill\square$

assume that x_k has been updated $\Rightarrow \tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$ **Proof**: $E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$ $= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^{n} \theta_i \tilde{x}_i$ $= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(x_i x_j - \tilde{x}_i \tilde{x}_j \right) + \sum_{i=1}^{n} \theta_i \left(\underbrace{x_i - \tilde{x}_i}_{\gamma} \right)$ = 0 if $i \neq k$ $= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} \left(x_i x_j - \tilde{x}_i \tilde{x}_j \right) - \frac{1}{2} \sum_{\substack{j=1\\i\neq k}}^{n} w_{kj} \left(x_k x_j - \tilde{x}_k \tilde{x}_j \right) + \theta_k \left(x_k - \tilde{x}_k \right)$

technische universität dortmund

Hopfield Network

$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i \left(x_k - \tilde{x}_k\right) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j \left(x_k - \tilde{x}_k\right) + \theta_k \left(x_k - \tilde{x}_k\right)$$
(rename j to i, recall W = W', w_{kk} = 0)

$$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

U technische universität dortmund

Application to Combinatorial Optimization

Idea:

- \bullet transform combinatorial optimization problem as objective function with $x \in$ {-1,+1} n
- rearrange objective function to look like a Hopfield energy function
- extract weights W and thresholds θ from this energy function
- \bullet initialize a Hopfield net with these parameters W and θ
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem

m

Example I: Linear Functions

$$f(x) = \sum_{i=1}^{n} c_i x_i \quad \to \min! \quad (x_i \in \{-1, +1\})$$

Evidently: E(x) = f(x) with W = 0 and $\theta = c$

$$\Downarrow$$

choose $x^{(0)} \in \{-1, +1\}^n$ set iteration counter t = 0repeat choose index k at random $x_k^{(t+1)} = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t)} \cdot 0 - c_k) = -\operatorname{sgn}(c_k) = \begin{cases} -1 & \text{if } c_k > 0 \\ +1 & \text{if } c_k < 0 \end{cases}$ increment tuntil reaching fixed point

 \Rightarrow fixed point reached after $\Theta(n \log n)$ iterations on average

Example II: MAXCUT

<u>given:</u> graph with n nodes and symmetric weights $\omega_{ij} = \omega_{ji}$, $\omega_{ii} = 0$, on edges

<u>task</u>: find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

<u>encoding</u>: $\forall i=1,...,n$: $y_i = 0 \Leftrightarrow node i in set V_0$; $y_i = 1 \Leftrightarrow node i in set V_1$

objective function:
$$f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i \left(1 - y_j \right) + y_j \left(1 - y_i \right) \right] \rightarrow \max!$$

preparations for applying Hopfield network

- step 1: conversion to minimization problem
- step 2: transformation of variables
- step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

Hopfield Network

Example II: MAXCUT (continued)

- step 1: conversion to minimization problem
 - \Rightarrow multiply function with -1 $\Rightarrow E(y) = -f(y) \rightarrow min!$
- step 2: transformation of variables $\Rightarrow y_i = (x_i+1) / 2$

$$\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_i + 1}{2} \left(1 - \frac{x_j + 1}{2} \right) + \frac{x_j + 1}{2} \left(1 - \frac{x_i + 1}{2} \right) \right]$$
$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_i x_j \right]$$
$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j$$

constant value (does not affect location of optimal solution)

Hopfield Network

Example II: MAXCUT (continued)

step 3: transformation to "Hopfield normal form"

$$E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{\substack{i=1 \ j=1 \ i \neq j}}^{n} \sum_{\substack{j=1 \ i \neq j}}^{n} \left(-\frac{1}{2} \omega_{ij}\right) x_i x_j$$
$$= -\frac{1}{2} x' W x + \theta' x$$
$$\downarrow$$
$$0'$$

step 4: extract coefficients as weights and thresholds of Hopfield net

$$w_{ij} = -\frac{\omega_{ij}}{2}$$
 for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net

technische universität dortmund