

Computational Intelligence Winter Term 2012/13

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik

Fuzzy Systems: Introduction

TU Dortmund

Observation: Communication between people is not precise but somehow fuzzy and vague.

"If the water is too hot then add a little bit of cold water."

- Despite these shortcomings in human language we are able
- to process fuzzy / uncertain information and

· to accomplish complex tasks!

Goal:

Development of formal framework to process fuzzy statements in computer.

dortmund

Fuzzy Sets

Plan for Today

Basic Definitions and Results for Standard Operations

Algebraic Difference between Fuzzy and Crisp Sets

Fuzzy Systems: Introduction

technische universität

Consider the statement:

Which temperature defines "hot"?

Lecture 05

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 05

A single temperature $T = 100^{\circ} C$?

"The water is hot."

No! Rather, an interval of temperatures: $T \in [70, 120]$!

Some people regard temperatures > 60° C as hot, others already T > 50° C!

Idea: All people might agree that a temperature in the <u>set</u> [70, 120]

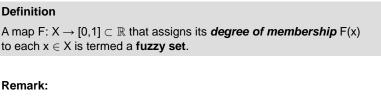
But who defines the limits of the intervals?

defines a hot temperature!

If $T = 65^{\circ}C$ not all people regard this as hot. It does not belong to [70,120].

But it is hot to some degree.

Or: T = 65°C belongs to set of hot temperatures to some <u>degree!</u>


technische universität

Can be the concept for capturing fuzziness! ⇒ Formalize this concept! G. Rudolph: Computational Intelligence • Winter Term 2012/13

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 05

A fuzzy set F is actually a map F(x). Shorthand notation is simply F.

technische universität

1.2

1.0

0.8

0.4

0.2

≥ 0.6

Fuzzy Sets: Membership Functions

paraboloidal function

Fuzzy Sets: The Beginning ...

Same point of view possible for traditional ("crisp") sets:

$$A(x) := \mathbf{1}_{[x \in A]} := \mathbf{1}_A(x) := \left\{ \begin{array}{l} 1 & \text{, if } x \in A \\ 0 & \text{, if } x \notin A \end{array} \right.$$
 characteristic / indicator function of (crisp) set A

$$\Rightarrow$$
 membership function interpreted as generalization of characteristic function

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 05

0.8 ≥ 0.6 0.4 0.2

G. Rudolph: Computational Intelligence • Winter Term 2012/13

$$A(x) = \begin{cases} -\frac{(x-1)(x-5)}{4} & \text{if } 1 \le x < 5\\ 0 & \text{otherwise} \end{cases}$$

$$A(x) = \exp\left(-\frac{(x-3)^2}{2}\right)$$

0.8 0.8 € 0.6 € 0.6 0.4 0.4 0.2 $A(x) = \begin{cases} \frac{1}{3}(x-1) & \text{if } 1 \le x < 4\\ 5 - x & \text{if } 4 \le x < 5\\ 0 & \text{otherwise} \end{cases} \qquad A(x) = \begin{cases} \frac{1}{2}(x-1) & \text{if } 1 \le x < 3\\ 1 & \text{if } 3 \le x < 4\\ 5 - x & \text{if } 4 \le x < 5 \end{cases}$

Lecture 05

1.0

trapezoidal function

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 05

Definition A fuzzy set F over the crisp set X is termed

Fuzzy Sets: Basic Definitions

■ technische universität

Fuzzy Sets: Membership Functions

1.0

triangle function

b) universal if F(x) = 1 for all $x \in X$.

if F(x) = 0 for all $x \in X$,

Empty fuzzy set is denoted by \mathbb{O} . Universal set is denoted by \mathbb{U} .

Definition

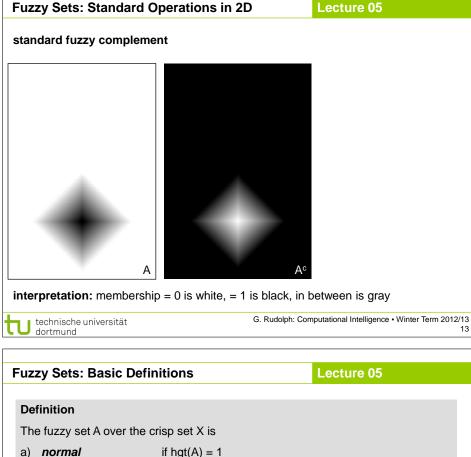
Let A and B be fuzzy sets over the crisp set X.

Remark: A strict subset is also called a *proper* subset.

- a) A and B are termed **equal**, denoted A = B, if A(x) = B(x) for all $x \in X$.

a) **empty**

- b) A is a **subset** of B, denoted $A \subseteq B$, if $A(x) \le B(x)$ for all $x \in X$.


- c) A is a *strict subset* of B, denoted $A \subset B$, if $A \subseteq B$ and $\exists x \in X$: A(x) < B(x).

- technische universität

G. Rudolph: Computational Intelligence • Winter Term 2012/13

technische universität

Definition

 $\operatorname{card}(A) := \left\{ \begin{array}{ll} \sum\limits_{x \in X} A(x) & \text{, if X countable} \\ \\ \int\limits_{Y} A(x) \, dx & \text{, if } X \subseteq \mathbb{R}^{\mathsf{n}} \end{array} \right.$

The *cardinality* card(A) of a fuzzy set A over the crisp set X is

b) A(x) = 1/x with $x \in \mathbb{N}$ $\Rightarrow card(A) = \sum_{x \in X} A(x) = \sum_{x=1}^{\infty} \frac{1}{x} = \infty$

hgt(A) = 0.8

dpth(A) = 0.2

Examples:

a) $A(x) = q^x$ with $q \in (0,1)$, $x \in \mathbb{N}_0$ \Rightarrow card $(A) = \sum_{x \in X} A(x) = \sum_{x=0}^{\infty} q^x = \frac{1}{1-q} < \infty$

c) $A(x) = \exp(-|x|)$

technische universität dortmund

Fuzzy Sets: Basic Definitions

The fuzzy set A over the crisp set X has **height** hgt(A) = sup{ A(x) : $x \in X$ }, **depth** dpth(A) = inf { $A(x) : x \in X$ }.

Definition

■ technische universität

Fuzzy Sets: Basic Definitions

 $A(x) = \min\left\{1, 2 \exp\left(-\frac{x^2}{2}\right)\right\}$

Lecture 05

 \Rightarrow card(A) = $\int A(x) = \int_{-\infty}^{\infty} \exp(-|x|) = 2 < \infty$

G. Rudolph: Computational Intelligence • Winter Term 2012/13

1.0

€ 0.6

Lecture 05

hgt(A) = 1

G. Rudolph: Computational Intelligence • Winter Term 2012/13

€ 0.6

 $A(x) = \frac{1}{5} + \frac{3}{5} \exp(-|x|)$

A is (co-) normal

but not strongly (co-) normal

if $\exists x \in X$: A(x) = 1

if 0 < A(x) < 1 for all $x \in X$.

Remark:

How to normalize a non-normal fuzzy set A?

G. Rudolph: Computational Intelligence • Winter Term 2012/13

 $A^*(x) = \frac{A(x)}{\operatorname{hgt}(A)}$

if dpth(A) = 0

strongly co-normal if $\exists x \in X$: A(x) = 0

■ technische universität

strongly normal

co-normal

subnormal

Fuzzy Sets: Basic Results Lecture 05			
-			
	Theorem		
		over a crisp set X the <u>standard union operation</u> is	
a)		$: A \cup B = B \cup A$	
b)		$: A \cup (B \cup C) = (A \cup B) \cup C$ $: A \cup A = A$	
c) d)	•	$: A \subseteq B \Rightarrow (A \cup C) \subseteq (B \cup C).$	
u,	monotone	$(\mathcal{N} \subseteq \mathcal{D} \to (\mathcal{N} \cup \mathcal{O}) \subseteq (\mathcal{D} \cup \mathcal{O}).$	
Proof: (via reduction to definitions)			
ad a) $A \cup B = max \{ A(x), B(x) \} = max \{ B(x), A(x) \} = B \cup A.$			
ad b) A \cup (B \cup C) = max { A(x), max{ B(x), C(x) } } = max { A(x), B(x) , C(x) } = max { max { A(x), B(x) } , C(x) } = (A \cup B) \cup C.			
ac	$A \in A \cup A = \max \{A(x), A(x)\} = A(x) = A.$		
ad	$dd) A \cup C = \max \{ A(x), $	$C(x)$ } \leq max { $B(x)$, $C(x)$ } = $B \cup C$ since $A(x) \leq B(x)$.	q.e.d.
hu	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term	2012/13 17
	acremana		
Fu	zzy Sets: Basic Res	ults Lecture 05	
	zzy Sets: Basic Res	ults Lecture 05	
TI	heorem	Lecture 05 C over a crisp set X there are the distributive laws	Ī
TI Fo	heorem	over a crisp set X there are the <u>distributive laws</u>	
TI Fo	h eorem or fuzzy sets A, B and C	Cover a crisp set X there are the <u>distributive laws</u>) \cap (A \cup C)	
TI Fo a) b)	theorem or fuzzy sets A, B and C $A \cup (B \cap C) = (A \cup B)$ $A \cap (B \cup C) = (A \cap B)$	over a crisp set X there are the <u>distributive laws</u> $)\cap (A\cup C)$ $)\cup (A\cap C).$	
TI Fo a) b)	theorem or fuzzy sets A, B and C $A \cup (B \cap C) = (A \cup B)$ $A \cap (B \cup C) = (A \cap B)$	Cover a crisp set X there are the <u>distributive laws</u>) \cap (A \cup C)	
TI Fo a) b)	theorem or fuzzy sets A, B and C $A \cup (B \cap C) = (A \cup B)$ $A \cap (B \cup C) = (A \cap B)$ roof: d a) max { A(x), min { B(x)}	over a crisp set X there are the <u>distributive laws</u> $)\cap (A\cup C)$ $)\cup (A\cap C).$	
TI Fo a) b)	heorem or fuzzy sets A, B and C $A \cup (B \cap C) = (A \cup B)$ $A \cap (B \cup C) = (A \cap B)$ roof: d a) max { A(x), min { B(x) \le C(x) then n}	Cover a crisp set X there are the <u>distributive laws</u> $(A \cup C)$ $(A \cap C)$ $(x), C(x) \} = \begin{cases} \max \{A(x), B(x)\} & \text{if } B(x) \leq C(x) \\ \max \{A(x), C(x)\} & \text{otherwise} \end{cases}$	
TI Fo a) b)	theorem or fuzzy sets A, B and C or $A \cup (B \cap C) = (A \cup B)$ or $A \cap (B \cup C) = (A \cap B)$ roof: d a) max { $A(x)$, min { $B(x) \leq C(x)$ then more sets of the content of	Cover a crisp set X there are the <u>distributive laws</u> $(A \cup C) \cup (A \cap C).$ $(x), C(x) \} = \begin{cases} \max \{A(x), B(x)\} & \text{if } B(x) \leq C(x) \\ \max \{A(x), C(x)\} & \text{otherwise} \end{cases}$ $(x), C(x) \} \leq \max \{A(x), C(x)\}.$	
TI Fo a) b)	heorem or fuzzy sets A, B and C $A \cup (B \cap C) = (A \cup B)$ $A \cap (B \cup C) = (A \cap B)$ roof: d a) max { A(x), min { B(x) \leq C(x) then n Otherwise result is always t	Cover a crisp set X there are the <u>distributive laws</u> $(x) \cap (A \cup C)$ $(x) \cup (A \cap C)$ $(x) \cap (A \cup C)$ $(x) \cap (A \cap C)$ $(x) \cap $	
TII Fc a) b) Pi ad	heorem or fuzzy sets A, B and C $A \cup (B \cap C) = (A \cup B)$ $A \cap (B \cup C) = (A \cap B)$ roof: d a) max { A(x), min { B(x) \leq C(x) then n Otherwise result is always t	C over a crisp set X there are the <u>distributive laws</u> $(x) \cap (A \cup C)$ $(x) \cup (A \cap C).$ $(x), C(x) \} = \begin{cases} \max \{A(x), B(x)\} & \text{if } B(x) \leq C(x) \\ \max \{A(x), C(x)\} & \text{otherwise} \end{cases}$ $(x), C(x) \} \leq \max \{A(x), C(x)\}.$ $(x), C(x) \geq \max \{A(x), B(x)\}.$ $(x), C$	

```
associative
                                    : A \cap (B \cap C) = (A \cap B) \cap C
                                    : A \cap A = A
      idempotent
                                    : A \subseteq B \Rightarrow (A \cap C) \subseteq (B \cap C).
     monotone
 Proof: (analogous to proof for standard union operation)
                                                           G. Rudolph: Computational Intelligence • Winter Term 2012/13
  U technische universität dortmund
                                                                          Lecture 05
Fuzzy Sets: Basic Results
 Theorem
                                                          Proof:
                                                          (via reduction to definitions)
 If A is a fuzzy set over a crisp set X then
 a) A \cup \mathbb{O} = A
                                                          ad a) \max \{ A(x), 0 \} = A(x)
                                                          ad b) max \{A(x), 1\} = \mathbb{U}(x) \equiv 1
 b) A \cup \mathbb{U} = \mathbb{U}
                                                          ad c) min \{A(x), 0\} = \mathbb{O}(x) \equiv 0
 c) A \cap \mathbb{O} = \mathbb{O}
                                                          ad d) min \{A(x), 1\} = A(x).
 d) A \cap \mathbb{U} = A.
 Breakpoint:
 So far we know that fuzzy sets with operations \cap and \cup are a distributive lattice.
 If we can show the validity of
 • (A^c)^c = A
 • A \cup A<sup>c</sup> = \mathbb{U}
```

For fuzzy sets A, B and C over a crisp set X the standard intersection operation is

 $: A \cap B = B \cap A$

Fuzzy Sets: Basic Results

Theorem

a) commutative

 $\bullet A \cap A^c = \mathbb{O}$

dortmund

technische universität

Lecture 05

⇒ Fuzzy Sets would be Boolean Algebra! Is it true ?

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Theorem Remark: If A is a fuzzy set over a crisp set X then Recall the identities a) $(A^{c})^{c} = A$ $\min\{a,b\} = \frac{a+b-|a-b|}{2}$ b) $\frac{1}{2} \le (A \cup A^c)(x) < 1$ for $A(x) \in (0,1)$ $\max\{a,b\} = \frac{a+b+|a-b|}{2}$ c) $0 < (A \cap A^c)(x) \le \frac{1}{2}$ for $A(x) \in (0,1)$ Proof. ad a) $\forall x \in X$: 1 - (1 - A(x)) = A(x). ad b) $\forall x \in X$: max { A(x), 1 – A(x) } = $\frac{1}{2}$ + | A(x) – $\frac{1}{2}$ | $\geq \frac{1}{2}$. Value 1 only attainable for A(x) = 0 or A(x) = 1. ad c) $\forall x \in X$: min { A(x), 1 – A(x) } = $\frac{1}{2}$ - | A(x) – $\frac{1}{2}$ | $\leq \frac{1}{2}$. Value 0 only attainable for A(x) = 0 or A(x) = 1. q.e.d. technische universität G. Rudolph: Computational Intelligence • Winter Term 2012/13 Fuzzy Sets: DeMorgan's Laws Lecture 05 **Theorem** If A and B are fuzzy sets over a crisp set X with standard union, intersection, and complement operations then **DeMorgan**'s laws are valid: a) $(A \cap B)^c = A^c \cup B^c$ b) $(A \cup B)^c = A^c \cap B^c$ **Proof:** (via reduction to elementary identities) ad a) $(A \cap B)^{c}(x) = 1 - \min \{A(x), B(x)\} = \max \{1 - A(x), 1 - B(x)\} = A^{c}(x) \cup B^{c}(x)$ ad b) $(A \cup B)^{c}(x) = 1 - \max \{A(x), B(x)\} = \min \{1 - A(x), 1 - B(x)\} = A^{c}(x) \cap B^{c}(x)$ q.e.d.

Lecture 05

Fuzzy Sets: Basic Results

Conclusion: Fuzzy sets with \cup and \cap are a distributive lattice. But in general:

Lecture 05

- a) $A \cup A^c \neq \mathbb{U}$ \Rightarrow Fuzzy sets with \cup and \cap are **not** a Boolean algebra!

Remarks: The law of excluded middle does not hold!

ad a)

- ("Everything must either be or not be!")
- The law of noncontradiction does not hold! ad b)

("Nothing can both be and not be!")

Fuzzy Sets: Algebraic Structure

- \Rightarrow Nonvalidity of these laws generate the desired fuzziness!

- but: Fuzzy sets still endowed with much algebraic structure (distributive lattice)!
- G. Rudolph: Computational Intelligence Winter Term 2012/13 technische universität
 - dortmund

Question Conjecture : Why restricting result above to "standard" operations?

: Most likely there also exist "nonstandard" operations!