Computational Intelligence

Winter Term 2012/13

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Fuzzy sets
- Axioms of fuzzy complement, t- and s-norms
- Generators
- Dual tripels

Fuzzy Sets

Lecture 06

Considered so far:

Standard fuzzy operators

- $A^{c}(x)=1-A(x)$
- $(A \cap B)(x)=\min \{A(x), B(x)\}$
- $(A \cup B)(x)=\max \{A(x), B(x)\}$
\Rightarrow Compatible with operators for crisp sets
with membership functions with values in $\mathbb{B}=\{0,1\}$
\exists Non-standard operators? \Rightarrow Yes! Innumerable many!
- Defined via axioms.
- Creation via generators.

Fuzzy Complement: Axioms

Definition

A function $\mathrm{c}:[0,1] \rightarrow[0,1]$ is a fuzzy complement iff

$(A 1)$	$c(0)=1$ and $c(1)=0$
$(A 2)$	$\forall a, b \in[0,1]: a \leq b \Rightarrow c(a) \geq c(b)$

"nice to have":
(A3) $\mathrm{C}(\cdot)$ is continuous.
(A4) $\quad \forall a \in[0,1]: c(c(a))=a$

Examples:

a) standard fuzzy complement $\mathrm{c}(\mathrm{a})=1-\mathrm{a}$
ad (A1): $c(0)=1-0=1$ and $c(1)=1-1=0$
ad (A3): 『 ad (A2): $\mathrm{c}^{\prime}(\mathrm{a})=-1<0$ (monotone decreasing)

Lecture 06

Fuzzy Complement: Examples

Lecture 06

b) $c(a)=\left\{\begin{array}{ll}1 & \text { if } a \leq t \\ 0 & \text { otherwise }\end{array} \quad\right.$ for some $t \in(0,1)$

ad (A1): $c(0)=1$ since $0<t$ and $c(1)=0$ since $t<1$.
ad (A2): monotone (actually: constant) from 0 to t and t to 1 , decreasing at $t\}$
ad (A3): not valid \rightarrow discontinuity at t
ad (A4): not valid \rightarrow counter example
$c(c(1 / 4))=c(1)=0 \neq 1 / 4$ for $t=1 / 2$

Fuzzy Complement: Examples

Lecture 06

d) $\mathrm{c}(\mathrm{a})=\frac{1-a}{1+\lambda a}$ for $\lambda>-1$

Sugeno class

$$
\begin{aligned}
\operatorname{ad}(\mathrm{A} 1): & \mathrm{c}(0)=1 \text { and } \mathrm{c}(1)=0 \\
\text { ad }(\mathrm{A} 2): & c(a) \geq c(b) \Leftrightarrow \frac{1-a}{1+\lambda a} \geq \frac{1-b}{1+\lambda b} \Leftrightarrow \\
& (1-a)(1+\lambda b) \geq(1-b)(1+\lambda a) \Leftrightarrow \\
& b(\lambda+1) \geq a(\lambda+1) \Leftrightarrow b \geq a
\end{aligned}
$$

technische universität

sugeno class

ad (A3): is continuous as a composition of continuous functions $\left.\operatorname{ad}(\mathrm{A} 4): c(c(a))=c\left(\frac{1-a}{1+\lambda a}\right)=\frac{1-\frac{1-a}{1+\lambda a}}{1+\lambda \frac{1-a}{1+\lambda a}}=\frac{a(\lambda+1)}{\lambda+1}=a\right\}$

Fuzzy Complement: Examples

c) $\mathrm{c}(\mathrm{a})=\frac{1+\cos (\pi a)}{2}$
ad (A1): $c(0)=1$ and $c(1)=0$
ad (A2): $\quad c^{\prime}(a)=-1 / 2 \pi \sin (\pi a)<0 \quad$ since $\sin (\pi a)>0$ for $\left.a \in(0,1)\right\}$
ad (A3): is continuous as a composition of continuous functions
ad (A4): not valid \rightarrow counter example

$$
c\left(c\left(\frac{1}{3}\right)\right)=c\left(\frac{3}{4}\right)=\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}
$$

Fuzzy Complement: Examples

e) $c(a)=\left(1-a^{w}\right)^{1 / w}$ for $w>0$

Yager class
ad (A1): $c(0)=1$ and $c(1)=0$
ad (A2): $\quad\left(1-a^{w}\right)^{1 / w} \geq\left(1-b^{w}\right)^{1 / w} \Leftrightarrow 1-a^{w} \geq 1-b^{w} \Leftrightarrow$

$$
a^{w} \leq b^{w} \Leftrightarrow a \leq b
$$

ad (A3): is continuous as a composition of continuous functions $\operatorname{ad}(\mathrm{A} 4): c(c(a))=c\left(\left(1-a^{w}\right)^{\frac{1}{w}}\right)=\left(1-\left[\left(1-a^{w}\right)^{\frac{1}{w}}\right]^{w}\right)^{\frac{1}{w}}$

$$
=\left(1-\left(1-a^{w}\right)\right)^{\frac{1}{w}}=\left(a^{w}\right)^{\frac{1}{w}}=a
$$

Lecture 06

Theorem

If function $\mathrm{c}:[0,1] \rightarrow[0,1]$ satisfies axioms (A1) and (A2) of fuzzy complement then it has at most one fixed point a^{*} with $c\left(a^{*}\right)=a^{*}$.

Proof:

one fixed point \rightarrow see example (a) \rightarrow intersection with bisectrix

no fixed point \rightarrow see example $(\mathrm{b}) \rightarrow$ no intersection with bisectrix
assume $\exists \mathrm{n}>1$ fixed points, for example a^{*} and b^{*} with $\mathrm{a}^{*}<\mathrm{b}^{*}$
$\Rightarrow c\left(a^{*}\right)=a^{*}$ and $c\left(b^{*}\right)=b^{*} \quad$ (fixed points)
$\Rightarrow c\left(a^{*}\right)<c\left(b^{*}\right)$ with $\mathrm{a}^{*}<\mathrm{b}^{*}$ impossible if $\mathrm{c}(\cdot)$ is monotone decreasing
\Rightarrow contradiction to axiom (A2)

Fuzzy Complement: $1^{\text {st }}$ Characterization

Lecture 06

Theorem

c: $[0,1] \rightarrow[0,1]$ is involutive fuzzy complement iff \exists continuous function $\mathrm{g}:[0,1] \rightarrow \mathbb{R}$ with

$$
\text { - } g(0)=0
$$

- strictly monotone increasing
- $\forall a \in[0,1]: c(a)=g^{(-1)}(g(1)-g(a))$.
- $\int \mathrm{g}^{(-1)}(\mathrm{x})$ pseudo-inverse

Examples

a) $g(x)=x$

$$
\Rightarrow \mathrm{g}^{-1}(\mathrm{x})=\mathrm{x} \quad \Rightarrow \mathrm{c}(\mathrm{a})=1-\mathrm{a}
$$

(Standard)
b) $g(x)=x^{w}$
$\Rightarrow g^{-1}(x)=x^{1 / w}$
$\Rightarrow \mathrm{c}(\mathrm{a})=\left(1-\mathrm{a}^{\mathrm{w}}\right)^{1 / \mathrm{w}}$
(Yager class, w>0)
c) $g(x)=\log (x+1) \Rightarrow g^{-1}(x)=e^{x}-1 \Rightarrow c(a)=\exp (\log (2)-\log (a+1))-1$

$$
=\frac{1-a}{1+a}
$$

(Sugeno class. $\lambda=1$)

Theorem

If function $\mathrm{c}:[0,1] \rightarrow[0,1]$ satisfies axioms (A1) - (A3) of fuzzy complement then it has exactly one fixed point a^{*} with $\mathrm{c}\left(\mathrm{a}^{*}\right)=\mathrm{a}^{*}$.

Proof:

Intermediate value theorem \rightarrow
If $\mathrm{c}(\cdot)$ continuous (A3) and $\mathrm{c}(0) \geq \mathrm{c}(1)$ (A1/A2)
then $\forall v \in[c(1), c(0)]=[0,1]: \exists a \in[0,1]: c(a)=v$.
\Rightarrow there must be an intersection with bisectrix
\Rightarrow a fixed point exists and by previous theorem there are no other fixed points!

Examples:

(a) $c(a)=1-a$

$$
\Rightarrow a=1-a
$$

$$
\Rightarrow a^{*}=1 / 2
$$

(b) $c(a)=\left(1-a^{w}\right)^{1 / w}$
$\Rightarrow \mathrm{a}=\left(1-\mathrm{a}^{\mathrm{w}}\right)^{1 / \mathrm{w}}$
$\Rightarrow a^{*}=(1 / 2)^{1 / w}$
tu
technische universität
dortmund

Fuzzy Complement: $1^{\text {st }}$ Characterization

Lecture 06

Examples

d) $g(a)=\frac{1}{\lambda} \log _{e}(1+\lambda a)$ for $\lambda>-1$

- $g(0)=\log _{e}(1)=0$
- strictly monotone increasing since $g^{\prime}(a)=\frac{1}{1+\lambda a}>0$ for $a \in[0,1]$
- inverse function on $[0,1]$ is $g^{-1}(a)=\frac{\exp (\lambda a)-1}{\lambda}$, thus

$$
\begin{aligned}
c(a) & =g^{-1}\left(\frac{\log (1+\lambda)}{\lambda}-\frac{\log (1+\lambda a)}{\lambda}\right) \\
& =\frac{\exp (\log (1+\lambda)-\log (1+\lambda a))-1}{\lambda} \\
& =\frac{1}{\lambda}\left(\frac{1+\lambda}{1+\lambda a}-1\right)=\frac{1-a}{1+\lambda a} \quad \text { (Sugeno Complement) }
\end{aligned}
$$

Fuzzy Complement: $\mathbf{2}^{\text {nd }}$ Characterization

Lecture 06

Theorem

c: $[0,1] \rightarrow[0,1]$ is involutive fuzzy complement iff \exists continuous function $f:[0,1] \rightarrow \mathbb{R}$ with

- $f(1)=0$
- strictly monotone decreasing
- $\forall a \in[0,1]: c(a)=f(-1)(f(0)-f(a))$.
defines a decreasing generator
$f(-1)(x)$ pseudo-inverse

Examples

a) $\mathrm{f}(\mathrm{x})=k-k \cdot \mathrm{x}(k>0) \quad \mathrm{f}(-1)(\mathrm{x})=1-\mathrm{x} / \mathrm{k}$
$\mathrm{c}(\mathrm{a})=1-\frac{k-(k-k a)}{k}=1-a$
b) $f(x)=1-x^{w}$
$f^{(-1)}(x)=(1-x)^{1 / w}$
$c(a)=f^{-1}\left(a^{w}\right)=\left(1-a^{w}\right)^{1 / w} \quad$ (Yager)

Lecture 06

Fuzzy Intersection: t-norm

Examples:

Name
Function
(a)
(b)

(a) Standard	$t(a, b)=\min \{a, b\}$
(b) Algebraic Product	$t(a, b)=a \cdot b$
(c) Bounded Difference	$t(a, b)=\max \{0, a+b-1\}$
(d) Drastic Product	$t(a, b)=\left\{\begin{array}{l}a \text { if } b=1 \\ b \text { if } a=1 \\ 0 \text { otherwise }\end{array}\right.$

(c)
(d)

Is algebraic product a t-norm? Check the 4 axioms!

$$
\operatorname{ad}(\mathrm{A} 1): \mathrm{t}(\mathrm{a}, 1)=\mathrm{a} \cdot 1=\mathrm{a} \quad \nabla \quad \mathrm{ad}(\mathrm{~A} 3): \mathrm{t}(\mathrm{a}, \mathrm{~b})=\mathrm{a} \cdot \mathrm{~b}=\mathrm{b} \cdot \mathrm{a}=\mathrm{t}(\mathrm{~b}, \mathrm{a})
$$

$\mathrm{ad}(\mathrm{A} 2): \mathrm{a} \cdot \mathrm{b} \leq \mathrm{a} \cdot \mathrm{d} \Leftrightarrow \mathrm{b} \leq \mathrm{d} \quad \nabla$
$\operatorname{ad}(\mathrm{A} 4): \mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{d})=(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{d}$ च

Fuzzy Intersection: t-norm

Definition

A function $t:[0,1] \times[0,1] \rightarrow[0,1]$ is a fuzzy intersection or \boldsymbol{t}-norm iff
(A1) $t(a, 1)=a$
(A2) $\mathrm{b} \leq \mathrm{d} \Rightarrow \mathrm{t}(\mathrm{a}, \mathrm{b}) \leq \mathrm{t}(\mathrm{a}, \mathrm{d}) \quad$ (monotonicity)
(A3) $t(a, b)=t(b, a)$
(A4) $t(a, t(b, d))=t(t(a, b), d)$
(commutative) (associative)

"nice to have"

(A5) $t(a, b)$ is continuous
(continuity)
(A6) $t(a, a)<a$
(subidempotent)
(A7) $\mathrm{a}_{1} \leq \mathrm{a}_{2}$ and $\mathrm{b}_{1} \leq \mathrm{b}_{2} \Rightarrow \mathrm{t}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right) \leq \mathrm{t}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$ (strict monotonicity)

Note: the only idempotent t-norm is the standard fuzzy intersection

[^0]Fuzzy Intersection: Characterization

Lecture 06

Theorem

Function $\mathrm{t}:[0,1] \times[0,1] \rightarrow[0,1]$ is a t-norm \Leftrightarrow
\exists decreasing generator $f:[0,1] \rightarrow \mathbb{R}$ with $t(a, b)=f(-1)(f(a)+f(b))$.

Example:

$f(x)=1 / x-1$ is decreasing generator since

- $f(x)$ is continuous
- $f(1)=1 / 1-1=0$
- $f^{\prime}(x)=-1 / x^{2}<0$ (monotone decreasing)∇
inverse function is $\mathrm{f}^{-1}(\mathrm{x})=\frac{1}{x+1}$
$\Rightarrow \mathrm{t}(\mathrm{a}, \mathrm{b})=f^{-1}\left(\frac{1}{a}+\frac{1}{b}-2\right)=\frac{1}{\frac{1}{a}+\frac{1}{b}-1}=\frac{a b}{a+b-a b}$

Fuzzy Union: s-norm

Lecture 06

Definition

A function $\mathrm{s}:[0,1] \times[0,1] \rightarrow[0,1]$ is a fuzzy union or s-norm or \boldsymbol{t}-conorm iff
(A1) $s(a, 0)=a$
(A2) $\mathrm{b} \leq \mathrm{d} \Rightarrow \mathrm{s}(\mathrm{a}, \mathrm{b}) \leq \mathrm{s}(\mathrm{a}, \mathrm{d})$
(monotonicity)
(A3) $s(a, b)=s(b, a)$
(A4) $s(a, s(b, d))=s(s(a, b), d)$
(commutative)
(associative)

"nice to have"

(A5) $s(a, b)$ is continuous
(continuity)
(A6) $s(a, a)>a$
(A7) $\mathrm{a}_{1} \leq \mathrm{a}_{2}$ and $\mathrm{b}_{1} \leq \mathrm{b}_{2} \Rightarrow \mathrm{~s}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right) \leq \mathrm{s}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$
(superidempotent) (strict monotonicity)

Note: the only idempotent s-norm is the standard fuzzy union

Fuzzy Union: Characterization

Lecture 06

Theorem

Function s: $[0,1] \times[0,1] \rightarrow[0,1]$ is a s-norm \Leftrightarrow
\exists increasing generator $g:[0,1] \rightarrow \mathbb{R}$ with $s(a, b)=g^{(-1)}(g(a)+g(b))$.

Example:

$g(x)=-\log (1-a)$ is increasing generator since

- $g(x)$ is continuous
- $g(0)=-\log (1-0)=0$ ■
- $\mathrm{g}^{\prime}(\mathrm{x})=1 /(1-\mathrm{a})>0$ (monotone increasing) ∇
inverse function is $\mathrm{g}^{-1}(\mathrm{x})=1-\exp (-\mathrm{a})$

$$
\begin{aligned}
\Rightarrow \mathrm{s}(\mathrm{a}, \mathrm{~b}) & =g^{-1}(-\log (1-a)-\log (1-b)) \\
& =1-\exp (\log (1-a)+\log (1-b)) \\
& =1-(1-a)(1-b)=a+b-a b \quad \text { (algebraic sum) }
\end{aligned}
$$

Examples:

Name	Function
Standard	$s(a, b)=\max \{a, b\}$
Algebraic Sum	$s(a, b)=a+b-a \cdot b$
Bounded Sum	$s(a, b)=\min \{1, a+b\}$
Drastic Union	$s(a, b)=\left\{\begin{array}{l}a \text { if } b=0 \\ b \text { if } a=0 \\ 1 \text { otherwise }\end{array}\right.$

(c)
(b)

(d)

Is algebraic sum a t-norm? Check the 4 axioms!
$\operatorname{ad}(\mathrm{A} 1): s(a, 0)=a+0-a \cdot 0=a \quad \nabla$
ad (A3): \downarrow
$a d(A 2): a+b-a \cdot b \leq a+d-a \cdot d \Leftrightarrow b(1-a) \leq d(1-a) \Leftrightarrow b \leq d \nabla$
\square technische universität dortmund
G. Rudolph: Computational Intelligence • Winter Term 2012/13

Combination of Fuzzy Operations: Dual Triples

Lecture 06

Background from classical set theory:

\cap and \cup operations are dual w.r.t. complement since they obey DeMorgan's laws

Definition

A pair of t-norm $\mathrm{t}(\cdot, \cdot)$ and s-norm $\mathrm{s}(\cdot, \cdot)$ is said to be dual with regard to the fuzzy complement $\mathrm{c}(\cdot)$ iff

- $c(t(a, b))=s(c(a), c(b))$
- $c(s(a, b))=t(c(a), c(b))$
for all $a, b \in[0,1]$.

Definition

Let ($\mathrm{c}, \mathrm{s}, \mathrm{t}$) be a tripel of fuzzy complement c(•), s - and t-norm.
If t and s are dual to c then the tripel $(\mathrm{c}, \mathrm{s}, \mathrm{t})$ is called a dual tripel.

Examples of dual tripels

t-norm	s-norm	complement
$\min \{a, b\}$	$\max \{a, b\}$	$1-a$
$a \cdot b$	$a+b-a \cdot b$	$1-a$
$\max \{0, a+b-1\}$	$\min \{1, a+b\}$	$1-a$

Dual Triples vs. Non-Dual Triples

Lecture 06

$c(t(a, b))$

$s(c(a), c(b))$

	Non-Dual Triple:
	- algebraic product
	- bounded sum
	- standard complement
	\Rightarrow left image \neq right image

Dual Triples vs. Non-Dual Triples

Lecture 06

Why are dual triples so important?

\Rightarrow allow equivalent transformations of fuzzy set expressions
\Rightarrow required to transform into some normal form (standardized input)
\Rightarrow e.g. two stages: intersection of unions $\bigcap_{i=1}^{n}\left(A_{i} \cup B_{i}\right)$
or union of intersections

$$
\bigcup_{i=1}^{n}\left(A_{i} \cap B_{i}\right)
$$

Example:

$$
\begin{array}{ll}
A \cup\left(B \cap(C \cap D)^{c}\right)= & \leftarrow \text { not in normal form } \\
A \cup\left(B \cap\left(C^{c} \cup D^{c}\right)\right)= & \leftarrow \text { equivalent if DeMorgan's law valid (dual triples!) } \\
A \cup\left(B \cap C^{c}\right) \cup\left(B \cap D^{c}\right) & \leftarrow \text { equivalent (distributive lattice!) }
\end{array}
$$

[^0]: technische universität

