technische universität dortmund		Plan for	Today	Lecture 06	
		 Fuzzy sets Axioms of fuzzy complement, t- and s-norms Generators Dual tripels 			
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		tu techni dortm	sche universität G. Rudolph und	:: Computational Intelligence • Winter Term 2012/13 2	
Fuzzy Sets	Lecture 06	Fuzzy C	omplement: Axioms	Lecture 06	
 Considered so far: Standard fuzzy operators A^c(x) = 1 – A(x) (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets with membership functions with values in B = { 0, 1 ∃ Non-standard operators? ⇒ Yes! Innumerable mar Defined via axioms. 	-	(A1) (A2) "nice to (A3) (A4) Examp a) star	ion c: $[0,1] \rightarrow [0,1]$ is a <i>fuzzy complement</i> c(0) = 1 and $c(1) = 0$. $\forall a, b \in [0,1]$: $a \le b \Rightarrow c(a) \ge c(b)$. b have": $c(\cdot)$ is continuous. $\forall a \in [0,1]$: $c(c(a)) = a$	iff monotone decreasing involutive	
Creation via generators.			(A2): $c'(a) = -1 < 0$ (monotone decreasing)	ad (A4): 1 – (1 – a) = a	
C. Rudolph: Com dortmund	uputational Intelligence • Winter Term 2012/13 3	tu techni dortm	oono annononcae	:: Computational Intelligence • Winter Term 2012/13 4	

Fuzzy Complement: 1 st Characterization	Lecture 06	Fuzzy Complement: 1 st Characterization Lecture 06
Theorem c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function g: $[0,1] \rightarrow \mathbb{R}$ with • $g(0) = 0$ • strictly monotone increasing • $\forall a \in [0,1]$: $c(a) = g^{(-1)}(g(1) - g(a))$. Examples a) $g(x) = x \Rightarrow g^{-1}(x) = x \Rightarrow c(a) = 1 - a$ b) $g(x) = x^w \Rightarrow g^{-1}(x) = x^{1/w} \Rightarrow c(a) = (1 - a^w)^4$ c) $g(x) = \log(x+1) \Rightarrow g^{-1}(x) = e^x - 1 \Rightarrow c(a) = \exp(\log a)$ $= \frac{1-a}{1+a}$		Examples d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a) \text{ for } \lambda > -1$ $\cdot g(0) = \log_e(1) = 0$ $\cdot \text{ strictly monotone increasing since } g'(a) = \frac{1}{1 + \lambda a} > 0 \text{ for } a \in [0, 1]$ $\cdot \text{ inverse function on } [0,1] \text{ is } g^{-1}(a) = \frac{\exp(\lambda a) - 1}{\lambda} \text{ , thus}$ $c(a) = g^{-1} \left(\frac{\log(1 + \lambda)}{\lambda} - \frac{\log(1 + \lambda a)}{\lambda} \right)$ $= \frac{\exp(\log(1 + \lambda) - \log(1 + \lambda a)) - 1}{\lambda}$ $= \frac{1}{\lambda} \left(\frac{1 + \lambda}{1 + \lambda a} - 1 \right) = \frac{1 - a}{1 + \lambda a} \text{ (Sugeno Complement)}$
tochnische universität G. Rudolph: Co	11	technische universität G. Rudolph: Computational Intelligence • Winter Term 2012/13 dortmund 12

Fuzzy Complement: 2 nd Characterization	Lecture 06	Fuzzy Intersection: t-norm	Lecture 06
Theorem c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function f: $[0,1] \rightarrow \mathbb{R}$ with • f(1) = 0 • strictly monotone decreasing • $\forall a \in [0,1]$: c(a) = f(-1)(f(0) - f(a)).	defines a decreasing generator $f^{(-1)}(x)$ pseudo-inverse $-\frac{k-(k-ka)}{k} = 1-a$	Definition A function $t:[0,1] \times [0,1] \rightarrow [0,1]$ is a <i>fuzzy inters</i> (A1) $t(a, 1) = a$ (A2) $b \le d \Rightarrow t(a, b) \le t(a, d)$ (A3) $t(a,b) = t(b, a)$ (A4) $t(a, t(b, d)) = t(t(a, b), d)$ "nice to have" (A5) $t(a, b)$ is continuous	(monotonicity) (commutative) (associative) •
b) $f(x) = 1 - x^w$ $f^{(-1)}(x) = (1 - x)^{1/w}$ $c(a) = f^{-1}$	(aw) = (1 aw) ^{1/w} (Vacar)	(A6) t(a, a) < a (A7) $a_1 \le a_2$ and $b_1 \le b_2 \implies t(a_1, b_1) \le t(a_2, b_2)$	(subidempotent) (strict monotonicity)
-	nputational Intelligence • Winter Term 2012/13	Note: the only idempotent t-norm is the standar	
Fuzzy Intersection: t-norm	Lecture 06	Fuzzy Intersection: Characterization	Lecture 06
Examples:		71	
Name Function	(a) (b)	Theorem Function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a t-norm \Leftrightarrow	
(a) Standard $t(a, b) = min \{ a, b \}$ (b) Algebraic Product $t(a, b) = a \cdot b$ (c) Bounded Difference $t(a, b) = max \{ 0, a + b - 1 \}$ a if $b = 1$		∃ decreasing generator f:[0,1] → \mathbb{R} with t(a, b) = Example: f(x) = 1/x - 1 is decreasing generator since	
(d) Drastic Product t(a, b) = b if a = 1 0 otherwise	(c) (d)	• $f(x)$ is continuous ☑ • $f(1) = 1/1 - 1 = 0$ ☑ • $f'(x) = -1/x^2 < 0$ (monotone decreasing) ☑	
	e = a · b = b · a = t(b, a) ☑	inverse function is f ⁻¹ (x) = $\frac{1}{x+1}$	ch
ad (A2): $a \cdot b \le a \cdot d \Leftrightarrow b \le d$ \square ad (A4): $a \cdot (b)$	\cdot d) = (a \cdot b) \cdot d \square	\Rightarrow t(a, b) = $f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 2}$	$\frac{ab}{a+b-ab}$
C. Rudolph: Com dortmund	nputational Intelligence • Winter Term 2012/13 15	technische universität G. R dortmund	Rudolph: Computational Intelligence • Winter Term 2012/13 16

Fuzzy Union: s-norm	Lecture 06	Fuzzy Union: s-norm		Lecture 06	
Definition		Examples:			
A function s:[0,1] \times [0,1] \rightarrow [0,1] is a <i>fuzzy union</i> or	s-norm or t-conorm iff	Name	Function		(b)
(A1) s(a, 0) = a		Standard	s(a, b) = max { a, b }	(a)	(d)
$(A2) \ b \leq d \ \Rightarrow s(a, b) \leq s(a, d)$	(monotonicity)	Algebraic Sum	$s(a, b) = a + b - a \cdot b$		
(A3) $s(a, b) = s(b, a)$	(commutative)	Bounded Sum	s(a, b) = min { 1, a + b }		
(A4) s(a, s(b, d)) = s(s(a, b), d)	(associative)		$\int a \text{ if } b = 0$		
		Drastic Union	s(a, b) = ∖ b if a = 0		
"nice to have"			1 otherwise		
(A5) s(a, b) is continuous	(continuity)			(C)	(d)
(A6) s(a, a) > a	(superidempotent)	Is algebraic sum a t-nor	m? Check the 4 axioms!		(-)
(A7) $a_1 \le a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) \le s(a_2, b_2)$	(strict monotonicity)	ad (A1): s(a, 0) = a + 0 -			
Note: the only idempotent s-norm is the standard fu	zzy union		u + d – a · d ⇔ b (1 – a) ≤ d (1 –	-a)⇔ h < d ⊠	ad (A3) ad (A4)
	,				au (74)
technische universität G. Rudolpi dortmund	h: Computational Intelligence • Winter Term 2012/13 17	technische universität dortmund	G. Rudolph: Con	nputational Intelligence • V	Vinter Term 20
Fuzzy Union: Characterization	Lecture 06	Combination of Fuzzy	Operations: Dual Triples	Lecture 06	
		Background from class	sical set theory:		
Theorem			ual w.r.t. complement since the	ey obey DeMorga	n's laws
Function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a s-norm \Leftrightarrow			, ,	, , ,	
\exists increasing generator g:[0,1] $\rightarrow \mathbb{R}$ with s(a, b) = g ⁽⁻⁾	¹⁾ (g(a) + g(b)). ■	Definition		Definition	
Example: $g(x) = -\log(1 - a)$ is increasing generator since			I s-norm $s(\cdot, \cdot)$ is said to be <i>fuzzy complement</i> $c(\cdot)$ iff	Let (c, s, t) be a of fuzzy comple	
		• c(t(a, b)) = s(c(a), c(b))	s- and t-norm.	
g(x) is continuous g(0) = −log(1 − 0) = 0		• c(s(a, b)) = t(c(a), c(b))	If t and s are du then the tripel (or	
		for all $a, b \in [0,1]$.	-	called a <i>dual tr</i>	· · · ·
• g'(x) = 1/(1-a) > 0 (monotone increasing) ☑					

inverse function is $g^{-1}(x) = 1 - \exp(-a)$

technische universität dortmund

 \Rightarrow s(a, b) = $g^{-1}(-\log(1-a) - \log(1-b))$

 $= 1 - \exp(\log(1 - a) + \log(1 - b))$

= 1 - (1 - a) (1 - b) = a + b - a b (algebraic sum)

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Examples of dual tripels

t-norm	s-norm	complement
min { a, b }	max { a, b }	1 – a
a⋅b	a+b−a · b	1 – a
max { 0, a + b – 1 }	min { 1, a + b }	1 – a

19

Dual Triples vs. Non-Dual T	riples	Lecture 06	Dual Triples vs. Non-Dual Tr	riples	Lecture 06
	Dual Triple: - bounded difference - bounded sum - standard complement ⇒ left image = right image	Why are dual triples so important? \Rightarrow allow equivalent transformations of fuzzy set expressions \Rightarrow required to transform into some normal form (standardized input) \Rightarrow e.g. two stages: intersection of unions			
c(t(a, b))	c(t(a,b)) s(c(a),c(b)) Non-Dual Triple: - algebraic product - bounded sum - standard complement	$i=1$ or union of intersections $\bigcup_{i=1}^{n} (A_i \cap B_i)$ $\underbrace{\text{Example:}}_{A \cup (B \cap (C \cap D)^c)} = \leftarrow \text{ not in normal form}$			
G. Rudolph: C dortmund	⇒ left image ≠ right image	$A \cup (B \cap (C^c \cup D^c)) =$ $A \cup (B \cap C^c) \cup (B \cap D^c)$ $\texttt{technische universität}$ $\texttt{dortmund}$	← equivalent (distribu	rgan's law valid (dual triples!) itive lattice!)	