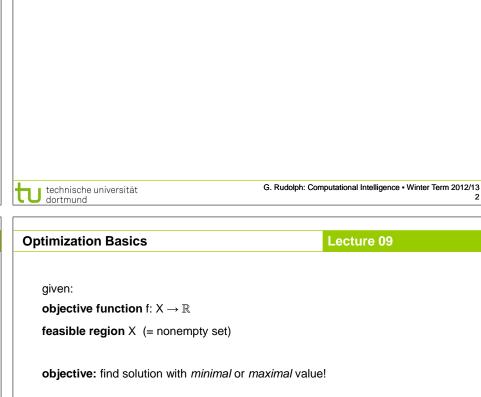


technische universität

technische universität

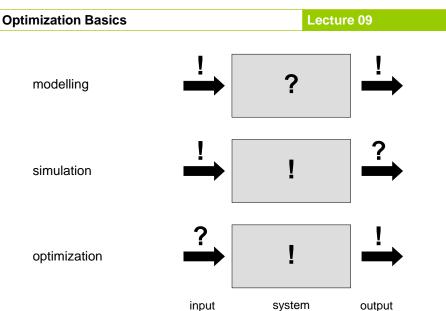


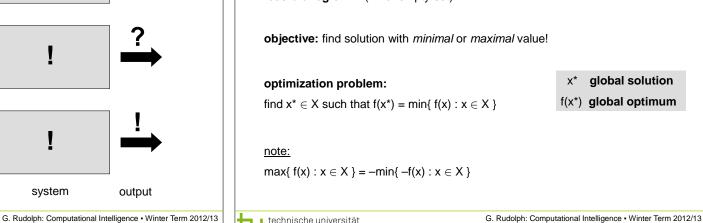
Plan for Today

 Evolutionary Algorithms (EA) • Optimization Basics

• EA Basics

technische universität

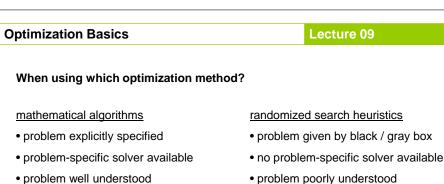




Lecture 09

local solution $x^* \in X$: if x* local solution then f(x*) local optimum / minimum $\forall x \in N(x^*): f(x^*) \leq f(x)$ neighborhood of $x^* =$ example: $X = \mathbb{R}^n$, $N_c(x^*) = \{ x \in X : ||x - x^*||_2 \le \varepsilon \}$ bounded subset of X remark: evidently, every global solution / optimum is also local solution / optimum; the reverse is wrong in general! example: f: [a,b] $\rightarrow \mathbb{R}$, global solution at \mathbf{x}^* G. Rudolph: Computational Intelligence • Winter Term 2012/13 technische universität Lecture 09

Optimization Basics



algorithm affordable algorithm solution with proven quality solution with satisfactory quality required sufficient ⇒ don't apply EAs

ressources for designing

⇒ EAs worth a try

insufficient ressources for designing

Lecture 09

 local optima (is it a global optimum or not?) constraints (ill-shaped feasible region) strong causality needed! non-smoothness (weak causality)

Lecture 09

 \Rightarrow $x_i^* = 1$ if $a_i > 0$

 \Rightarrow NP-hard

⇒ still harder

G. Rudolph: Computational Intelligence • Winter Term 2012/13

 discontinuities (⇒ nondifferentiability, no gradients) lack of knowledge about problem (⇒ black / gray box optimization)

Optimization Basics

some causes:

What makes optimization difficult?

 \vdash f(x) = a₁ x₁ + ... + a_n x_n → max! with x_i ∈ {0,1}, a_i ∈ ℝ add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$

add capacity constraint to TSP ⇒ CVRP

G. Rudolph: Computational Intelligence • Winter Term 2012/13 technische universität **Evolutionary Algorithm Basics** Lecture 09

idea: using biological evolution as metaphor and as pool of inspiration ⇒ interpretation of biological evolution as iterative method of improvement feasible solution $x \in X = S_1 \times ... \times S_n$ = chromosome of individual

multiset of feasible solutions = population: multiset of individuals = fitness function objective function $f: X \to \mathbb{R}$

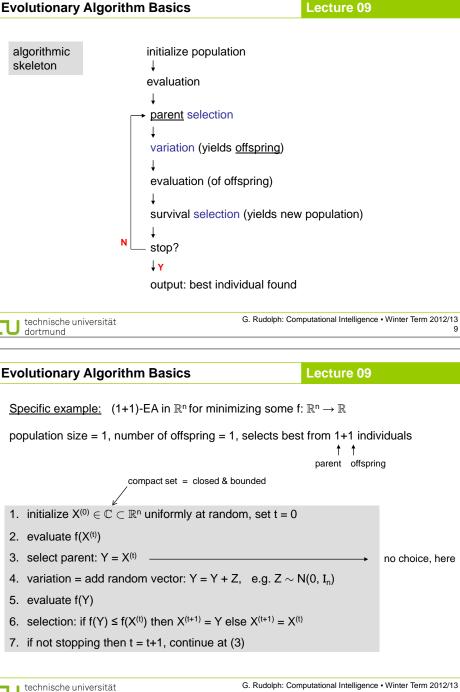
<u>often:</u> $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\} \}$

<u>also</u>: combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets ⇒ structure of feasible region / search space defines representation of individual

technische universität

dortmund

G. Rudolph: Computational Intelligence • Winter Term 2012/13 technische universität



2. evaluate f(X(t)) 3. select parent: Y = X^(t) no choice, here 4. variation: flip each bit of Y independently with probability $p_m = 1/n$ evaluate f(Y) 6. selection: if $f(Y) \le f(X^{(t)})$ then $X^{(t+1)} = Y$ else $X^{(t+1)} = X^{(t)}$ 7. if not stopping then t = t+1, continue at (3) ■ technische universität G. Rudolph: Computational Intelligence • Winter Term 2012/13 dortmund

Lecture 09

parent offspring

Lecture 09

→ selection for reproduction

G. Rudolph: Computational Intelligence • Winter Term 2012/13

(a) select parents that generate offspring (b) select individuals that proceed to next generation → selection for **survival**

technische universität

Selection

Evolutionary Algorithm Basics

Evolutionary Algorithm Basics

Specific example: (1+1)-EA in \mathbb{B}^n for minimizing some $f: \mathbb{B}^n \to \mathbb{R}$

1. initialize $X^{(0)} \in \mathbb{B}^n$ uniformly at random, set t = 0

population size = 1, number of offspring = 1, selects best from 1+1 individuals

- necessary requirements:

one selection step may be neutral (e.g. select uniformly at random)

- selection steps must not favor worse individuals
- typically: selection only based on fitness values f(x) of individuals

- at least one selection step must favor better individuals

seldom: additionally based on individuals' chromosomes x (→ maintain diversity)

two approaches: 1. repeatedly select individuals from population with replacement 2. rank individuals somehow and choose those with best ranks (no replacement) uniform / neutral selection choose index i with probability 1/u

Evolutionary Algorithm Basics

population $P = (x_1, x_2, ..., x_n)$ with μ individuals

Selection methods

dortmund

fitness-proportional selection choose index i with probability $s_i = \frac{f(x_i)}{\sum_{i=1}^{n} f(x_i)}$

problems: f(x) > 0 for all $x \in X$ required $\Rightarrow g(x) = \exp(f(x)) > 0$ but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

G. Rudolph: Computational Intelligence • Winter Term 2012/13 technische universität

Lecture 09

Lecture 09

assign ranks fitness-proportional selection based on ranks

Selection methods

but: best individual has only small selection advantage (can be lost!) k-ary tournament selection

rank-proportional selection

Evolutionary Algorithm Basics

population $P = (x_1, x_2, ..., x_n)$ with μ individuals

order individuals according to their fitness values

⇒ avoids all problems of fitness-proportional selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and probability that best individual does not survive:

G. Rudolph: Computational Intelligence • Winter Term 2012/13

outdated!

Lecture 09

Evolutionary Algorithm Basics

technische universität

Lecture 09

if best individual has not survived then re-injection into population

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring,

best survives with probability 1

i.e., replace worst selected individual by previously best parent			
method	P{ select best }	from parents & offspring	intrinsic elitism
neutral	< 1	no	no
fitness proportionate	< 1	no	no
rank proportionate	< 1	no	no
k-ary tournament	< 1	no	no
$(\mu + \lambda)$	= 1	ves	ves

• (μ, λ) -selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks

Selection methods without replacement

population Q = $(y_1, y_2, ..., y_{\lambda})$ with λ offspring

population $P = (x_1, x_2, ..., x_n)$ with μ parents and

 \Rightarrow best individual may get lost, $\lambda \ge \mu$ required

(μ+λ)-selection or truncation selection on parents + offspring or plus-selection

merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks

Evolutionary Algorithm Basics

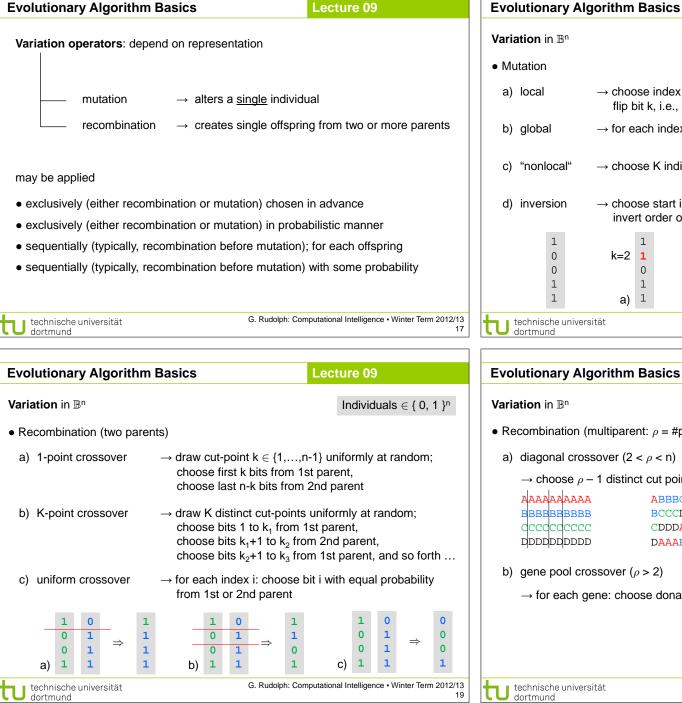
⇒ best individual survives for sure

G. Rudolph: Computational Intelligence • Winter Term 2012/13 technische universität

 (μ, λ)

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2012/13



0 k=2 1 K=2 0 b) 1 a) c) G. Rudolph: Computational Intelligence • Winter Term 2012/13 technische universität dortmund **Evolutionary Algorithm Basics** Lecture 09 Variation in Bn • Recombination (multiparent: ρ = #parents) a) diagonal crossover $(2 < \rho < n)$ \rightarrow choose ρ – 1 distinct cut points, select chunks from diagonals AAAAAAAA **ABBBCCDDDD** can generate ρ offspring; BBBBBBBBB **BCCCDDAAAA** otherwise choose initial chunk decdedecee **CDDDAABBBB** at random for single offspring DDDDDDDDDD DAAABBCCCC b) gene pool crossover ($\rho > 2$) → for each gene: choose donating parent uniformly at random

a) local

b) global

c) "nonlocal"

d) inversion

technische universität

Lecture 09

 k_e

G. Rudolph: Computational Intelligence • Winter Term 2012/13

d) 1

Individuals $\in \{0, 1\}^n$

 \rightarrow choose index k \in { 1, ..., n } uniformly at random,

→ choose start index k_s and end index k_e at random

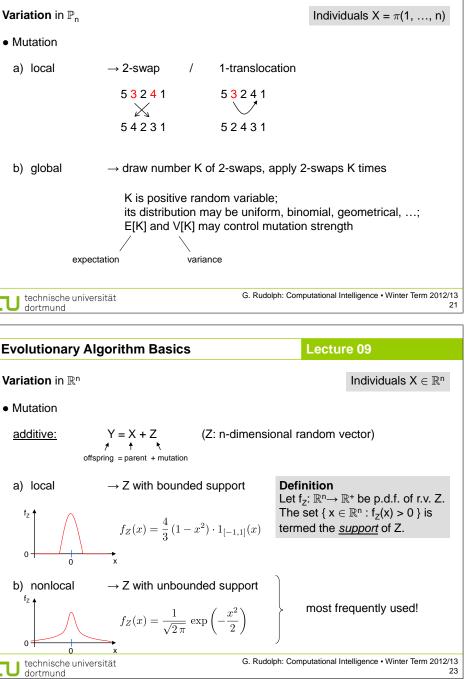
invert order of bits between start and and index

 \rightarrow for each index k \in { 1, ..., n }: flip bit k with probability $p_m \in (0,1)$

→ choose K indices at random and flip bits with these indices

flip bit k, i.e., $x_k = 1 - x_k$

Individuals $\in \{0, 1\}^n$



Lecture 09

Evolutionary Algorithm Basics

b) partially mapped crossover (PMX) - select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random - copy genes k₁ to k₂ from 1st parent to offspring (keep positions) x x x 7 1 6 x - copy all genes not already contained in offspring from 2nd parent (keep positions) x 4 5 7 1 6 x - from left to right: fill in remaining genes from 2nd parent 3 4 5 7 1 6 2

Lecture 09

Individuals $X = \pi(1, ..., n)$

2 3 5 7 1 6 4

x x x 7 1 6 x

5 3 2 7 1 6 4

technische universität G. Rudolph: Computational Intelligence • Winter Term 2012/13 dortmund

- select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random

- copy genes from left to right from 2nd parent,

- copy genes k₁ to k₂ from 1st parent to offspring (keep positions)

Evolutionary Algorithm Basics

a) order-based crossover (OBX)

starting after position k₂

Recombination (two parents)

technische universität

dortmund

a) all crossover variants adapted from Bⁿ

Recombination (two parents)

Variation in \mathbb{P}_n

Evolutionary Algorithm Basics Lecture 09 Variation in Rⁿ Individuals $X \in \mathbb{R}^n$

b) intermediate
$$z=\xi\cdot x+(1-\xi)\cdot y \text{ with } \xi\in[0,1]$$
 c) intermediate (per dimension)
$$\forall i:z_i=\xi_i\cdot x_i+(1-\xi_i)\cdot y_i \text{ with } \xi_i\in[0,1]$$
 d) discrete
$$\forall i:z_i=B_i\cdot x_i+(1-B_i)\cdot y_i \text{ with } B_i\sim B(1,\frac{1}{2})$$

e) simulated binary crossover (SBX) draw z_i from: → for each dimension with probability p_c

 x_i G. Rudolph: Computational Intelligence • Winter Term 2012/13

Variation in ℝⁿ

Evolutionary Algorithm Basics

• Recombination (multiparent), $\rho \ge 3$ parents

Individuals $X \in \mathbb{R}^n$

- a) intermediate $z=\sum_{k=1}^{\rho}\xi^{(k)}\,x_i^{(k)}$ where $\sum_{k=1}^{\rho}\xi^{(k)}=1$ and $\xi^{(k)}\geq 0$ (all points in convex hull)

Lecture 09

- b) intermediate (per dimension) $\forall i: z_i = \sum_{i=1}^p \xi_i^{(k)} \, x_i^{(k)}$
 - $\forall i: z_i \in \left[\min_{k} \{x_i^{(k)}\}, \max_{k} \{x_i^{(k)}\}\right]$

Lecture 09

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Theorem

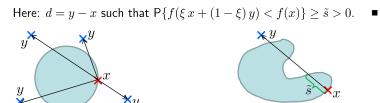
Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and f(x) < f(y) for some $x \neq y$.

Proof:

If $(y - x)^{\ell} \nabla f(x) < 0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

If $d'\nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e.

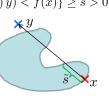
 $\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$



technische universität

technische universität

Evolutionary Algorithm Basics



sublevel set $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If f(x) = f(y) for some $x \neq y$ then

every offspring generated by intermediate recombination is better than its parents.

Theorem

Proof:

since f(x) = f(y) \Rightarrow max{ f(x), f(y) } = min{ f(x), f(y) }

technische universität

 $\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{f(x), f(y)\} \text{ for } 0 < \xi < 1$

f strictly quasiconvex $\Rightarrow f(\xi \cdot x + (1-\xi) \cdot y) < \max\{f(x), f(y)\}\$ for $0 < \xi < 1$

Lecture 09

G. Rudolph: Computational Intelligence • Winter Term 2012/13

Evolutionary Algorithm Basics