

Computational Intelligence

Winter Term 2012/13

Prof. Dr. Günter Rudolph

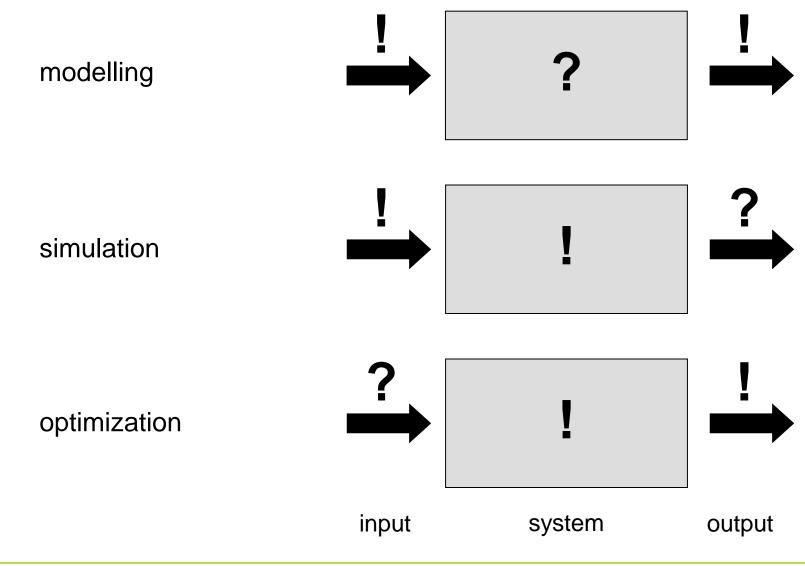
Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Evolutionary Algorithms (EA)
 - Optimization Basics
 - EA Basics

Optimization Basics



G. Rudolph: Computational Intelligence • Winter Term 2012/13

given:

objective function f: $X \to \mathbb{R}$

```
feasible region X (= nonempty set)
```

objective: find solution with minimal or maximal value!

optimization problem:

find $x^* \in X$ such that $f(x^*) = \min\{ f(x) : x \in X \}$

x* global solutionf(x*) global optimum

note:

```
max\{ f(x) : x \in X \} = -min\{ -f(x) : x \in X \}
```

local solution $x^* \in X$: $\forall x \in N(x^*): f(x^*) \leq f(x)$ neighborhood of $x^* =$ bounded subset of X if x* local solution then f(x*) **local optimum / minimum**

example:
$$X = \mathbb{R}^n$$
, $N_{\varepsilon}(x^*) = \{ x \in X : || x - x^* ||_2 \le \varepsilon \}$

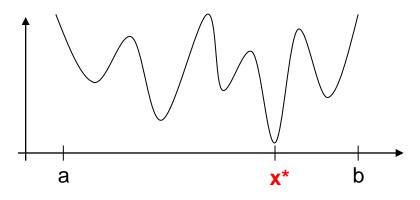
remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

example:

```
f: [a,b] \rightarrow \mathbb{R}, global solution at \mathbf{x}^*
```



What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)

→ $f(x) = a_1 x_1 + ... + a_n x_n \rightarrow max!$ with $x_i \in \{0,1\}$, $a_i \in \mathbb{R}$ add constaint $g(x) = b_1 x_1 + ... + b_n x_n \le b$ ⇒ NP-hard

add capacity constraint to TSP \Rightarrow CVRP

 \Rightarrow still harder

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required

\Rightarrow don't apply EAs

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient

⇒ EAs worth a try

idea: using biological evolution as metaphor and as pool of inspiration

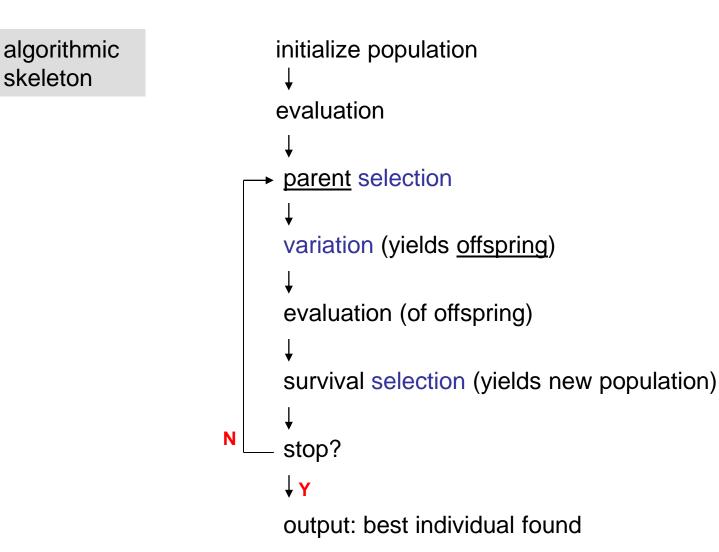
 \Rightarrow interpretation of biological evolution as iterative method of improvement

feasible solution $x \in X = S_1 \times ... \times S_n$ = chromosome of individualmultiset of feasible solutions= population: multiset of individualsobjective function $f: X \to \mathbb{R}$ = fitness function

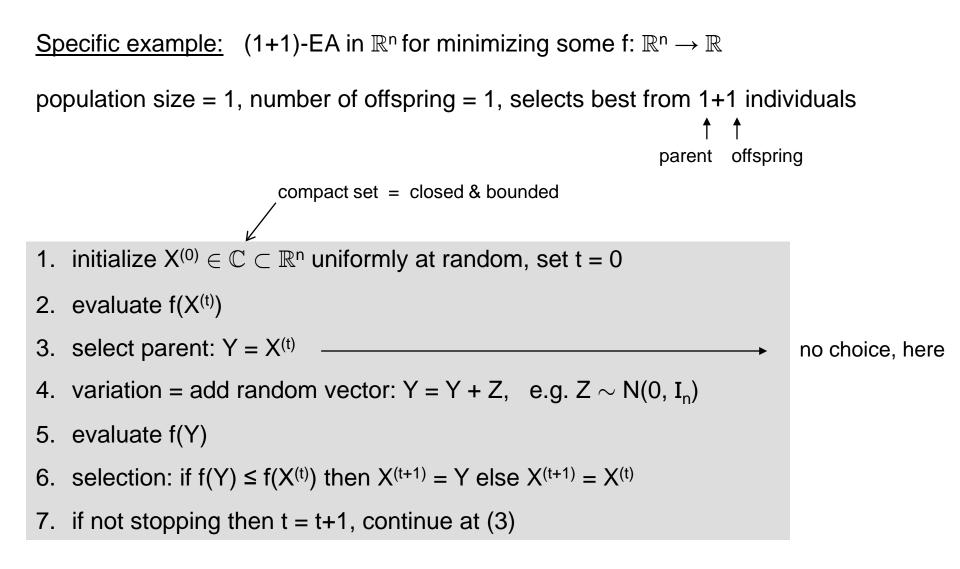
often: $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\} \}$

<u>also</u>: combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual



Evolutionary Algorithm Basics Lecture 09 <u>Specific example:</u> (1+1)-EA in \mathbb{B}^n for minimizing some f: $\mathbb{B}^n \to \mathbb{R}$ population size = 1, number of offspring = 1, selects best from 1+1 individuals parent offspring 1. initialize $X^{(0)} \in \mathbb{B}^n$ uniformly at random, set t = 0 2. evaluate $f(X^{(t)})$ 3. select parent: $Y = X^{(t)}$ no choice, here 4. variation: flip each bit of Y independently with probability $p_m = 1/n$ 5. evaluate f(Y) 6. selection: if $f(Y) \le f(X^{(t)})$ then $X^{(t+1)} = Y$ else $X^{(t+1)} = X^{(t)}$ 7. if not stopping then t = t+1, continue at (3)



 \rightarrow selection for **reproduction**

Selection

- (a) select parents that generate offspring
- (b) select individuals that proceed to next generation \rightarrow selection for survival

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals
- typically : selection only based on fitness values f(x) of individuals
- seldom : additionally based on individuals' chromosomes x (\rightarrow maintain diversity)

Selection methods

population P = $(x_1, x_2, ..., x_{\mu})$ with μ individuals

two approaches:

- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- uniform / neutral selection choose index i with probability 1/μ
- fitness-proportional selection choose index i with probability $s_i = \frac{f(x_i)}{\sum\limits_{x \in P} f(x)}$ problems: f(x) > 0 for all $x \in X$ required $\Rightarrow q(x) = exp(f(x))$

problems: f(x) > 0 for all $x \in X$ required $\Rightarrow g(x) = exp(f(x)) > 0$

but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

Selection methods

population P = $(x_1, x_2, ..., x_{\mu})$ with μ individuals

• rank-proportional selection

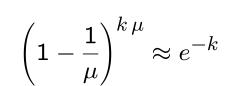
order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks

 \Rightarrow avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

 \Rightarrow has all advantages of rank-based selection and probability that best individual does not survive:



Selection methods without replacement

population P = ($x_1, x_2, ..., x_{\mu}$) with μ parents and population Q = ($y_1, y_2, ..., y_{\lambda}$) with λ offspring

- (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks
 - \Rightarrow best individual may get lost, $\lambda \ge \mu$ required
- (μ+λ)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
 - \Rightarrow best individual survives for sure

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring, best survives with probability 1
- *Forced elitism*: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

method	P{ select best }	from parents & offspring	intrinsic elitism
neutral	< 1	no	no
fitness proportionate	< 1	no	no
rank proportionate	< 1	no	no
k-ary tournament	< 1	no	no
$(\mu + \lambda)$	= 1	yes	yes
(μ , λ)	= 1	no	no

G. Rudolph: Computational Intelligence • Winter Term 2012/13 16

Variation operators: depend on representation

- mutation \rightarrow alters a <u>single</u> individual

recombination \rightarrow creates single offspring from two or more parents

may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

Variation in \mathbb{B}^n

Individuals $\in \{ 0, 1 \}^n$

Lecture 09

- Mutation
 - a) local \rightarrow choose index k \in { 1, ..., n } uniformly at random, flip bit k, i.e., x_k = 1 - x_k
 - b) global \rightarrow for each index k \in { 1, ..., n }: flip bit k with probability $p_m \in (0,1)$
 - c) "nonlocal" \rightarrow choose K indices at random and flip bits with these indices
 - d) inversion \rightarrow choose start index k_s and end index k_e at random invert order of bits between start and and index

1 1 0 1 k=2 k_s 1 0 0 0 1 K=2 0 1 0 0 0 1 0 k_e 1 0 0 1 1 1 1 b) 1 a) **C**) d)

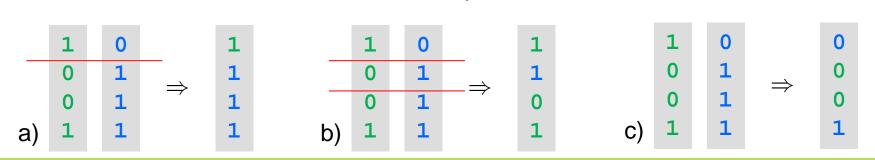
technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2012/13

Lecture 09

Variation in \mathbb{B}^n

Individuals \in { 0, 1 }ⁿ

- Recombination (two parents)
 - a) 1-point crossover → draw cut-point k ∈ {1,...,n-1} uniformly at random; choose first k bits from 1st parent, choose last n-k bits from 2nd parent
 - b) K-point crossover \rightarrow draw K distinct cut-points uniformly at random; choose bits 1 to k₁ from 1st parent, choose bits k₁+1 to k₂ from 2nd parent, choose bits k₂+1 to k₃ from 1st parent, and so forth ...
 - c) uniform crossover \rightarrow for each index i: choose bit i with equal probability from 1st or 2nd parent



U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2012/13 19

Variation in \mathbb{B}^n

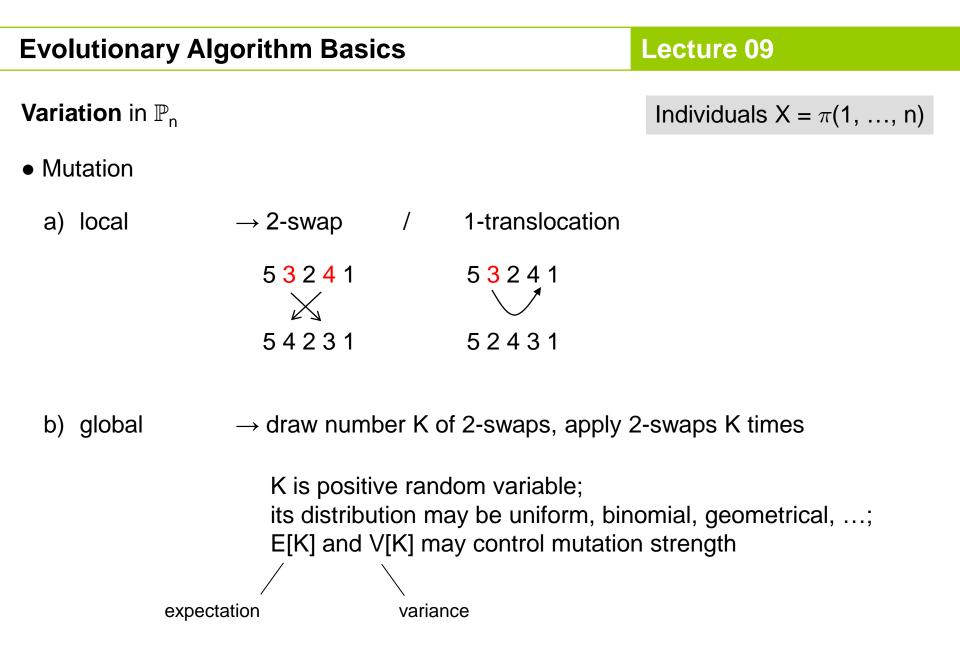
Individuals $\in \{ 0, 1 \}^n$

- Recombination (multiparent: ρ = #parents)
 - a) diagonal crossover (2 < ρ < n)
 - \rightarrow choose ρ 1 distinct cut points, select chunks from diagonals

ABBBCCDDDD BCCCDDAAAA CDDDAABBBB DAAABBCCCC

can generate ρ offspring; otherwise choose initial chunk at random for single offspring

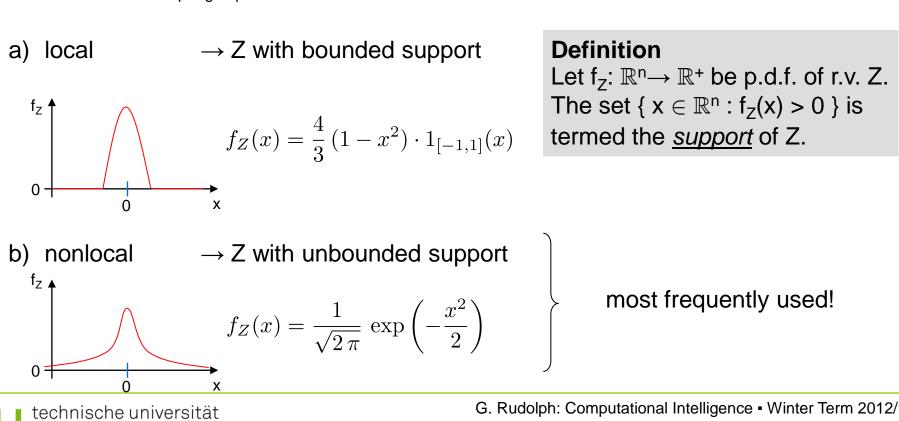
- b) gene pool crossover (ρ > 2)
 - \rightarrow for each gene: choose donating parent uniformly at random



Evolutionary Algorithm Basics	Lecture 09			
Variation in \mathbb{P}_n	Individuals $X = \pi(1,, n)$			
 Recombination (two parents) 				
a) order-based crossover (OBX) - select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at rando				
 copy genes k₁ to k₂ from 1st parent to offspring (keep posi copy genes from left to right from 2nd parent, starting after position k₂ 	itions) x x x 7 1 6 x 5 3 2 7 1 6 4			
b) partially mapped crossover (PMX)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
- select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at rando - copy genes k_1 to k_2 from 1 st parent to offspring (keep posi- - copy all genes not already contained in offspring from 2 nd	itions) x x x 7 1 6 x			
(keep positions)	x 4 5 7 1 6 x			
- from left to right: fill in remaining genes from 2 nd parent	3 4 5 7 1 6 2			

G. Rudolph: Computational Intelligence • Winter Term 2012/13 23

(Z: n-dimensional random vector)



Variation in \mathbb{R}^n

Mutation

additive:

dortmund

Evolutionary Algorithm Basics

Y = X + Z

≠ ↑

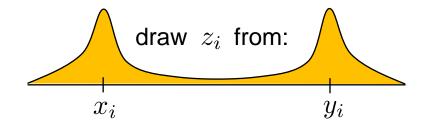
offspring = parent + mutation

Individuals $X \in \mathbb{R}^n$

G. Rudolph: Computational Intelligence - Winter Term 2012/13 24

Variation in \mathbb{R}^n

- Recombination (two parents)
 - a) all crossover variants adapted from \mathbb{B}^n
 - b) intermediate $z = \xi \cdot x + (1 \xi) \cdot y$ with $\xi \in [0, 1]$
 - c) intermediate (per dimension) $\forall i : z_i = \xi_i \cdot x_i + (1 \xi_i) \cdot y_i$ with $\xi_i \in [0, 1]$
 - d) discrete $\forall i: z_i = B_i \cdot x_i + (1 B_i) \cdot y_i$ with $B_i \sim B(1, \frac{1}{2})$
 - e) simulated binary crossover (SBX)
 - \rightarrow for each dimension with probability $\ensuremath{\textbf{p}_{c}}$



Individuals $X \in \mathbb{R}^n$

Variation in \mathbb{R}^n

Individuals $X \in \mathbb{R}^n$

Lecture 09

• Recombination (multiparent), $\rho \ge 3$ parents

a) intermediate
$$z = \sum_{k=1}^{\rho} \xi^{(k)} x_i^{(k)}$$
 where $\sum_{k=1}^{\rho} \xi^{(k)} = 1$ and $\xi^{(k)} \ge 0$

(all points in convex hull)

b) intermediate (per dimension) $\forall i : z_i = \sum_{k=1}^{\rho} \xi_i^{(k)} x_i^{(k)}$ $\forall i : z_i \in \left[\min_k \{x_i^{(k)}\}, \max_k \{x_i^{(k)}\}\right]$

Theorem

Let f: $\mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If f(x) = f(y) for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

f strictly quasiconvex $\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \max\{f(x), f(y)\}$ for $0 < \xi < 1$

since $f(x) = f(y) \implies \max\{f(x), f(y)\} = \min\{f(x), f(y)\}$

 $\Rightarrow \ f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{ f(x), f(y) \} \text{ for } 0 < \xi < 1$

Theorem

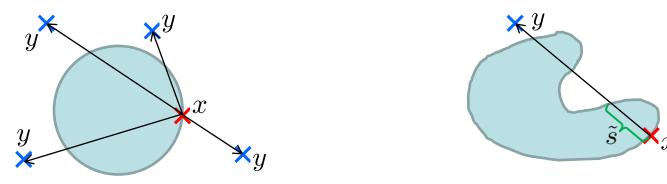
Let f: $\mathbb{R}^n \to \mathbb{R}$ be a differentiable function and f(x) < f(y) for some $x \neq y$. If (y - x), $\nabla f(x) < 0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

Proof:

If $d'\nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e.

 $\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$

Here: d = y - x such that $\mathsf{P}\{f(\xi x + (1 - \xi)y) < f(x)\} \ge \tilde{s} > 0$.



sublevel set $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$

U technische universität dortmund