

Design of Evolutionary Algorithms	Lecture 10	Des	ign of E	Evolutio	onary	Algori	thms			Lectu	ire 10	
Genotype-Phenotype-Mapping $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$ Genotype-Phenotype-Mapping $\mathbb{B}^n \to \mathbb{P}^{\log(n)}$ (example only)												
• Gray encoding for $b \in \mathbb{B}^n$ Let $a \in \mathbb{B}^n$ standard encoded. Then $b_i = \begin{cases} a_i, & \text{if } i = 1 \\ a_{i-1} \oplus a_i, & \text{if } i > 1 \end{cases} \oplus = XOR$			 e.g. standard encoding for b ∈ Bⁿ individual: 									
000 001 011 010 110 111 101	100 - genotype		010	101	111	000	110	001	101	100] ← genotyp	be
0 1 2 3 4 5 6	7 ← phenotype		0	1	2	3	4	5	6	7	← index	
OK, no hamming cliffs any longer \Rightarrow small changes in phenotype "lead to" small chang since we consider evolution in terms of Darwin (not I \Rightarrow small changes in genotype lead to small changes but: 1-Bit-change: 000 \rightarrow 100 \Rightarrow \circledast								-		ord / struct; permutation:	ex	
technische universität G. Rudolph: Computational Intelligence • Winter Term 2012/13 dortmund G. Rudolph: Computational Intelligence • Winter Term 2012/13								erm 2012/13 6				
Design of Evolutionary Algorithms ad 1a) genotype-phenotype mapping typically required: strong causality → small changes in individual leads to small changes in f → small changes in genotype should lead to small change	Design of Evolutionary Algorithms Lecture 10 ad 1b) use "most natural" representation typically required: strong causality → small changes in individual leads to small changes in fitness → need variation operators that obey that requirement											
but: how to find a genotype-phenotype mapping with that	but: how to find variation operators with that property?											
$\begin{tabular}{ c c c c }\hline \hline \textbf{necessary conditions}: \\ 1) g: \mathbb{B}^n \to X can be computed efficiently (otherwise it is solution is solution of the second s$	otimal solution) ality endangered)	⇒r	eed des	ign guid	elines .							
technische universität G. Rudolph: Comp dortmund	putational Intelligence • Winter Term 2012/13 7		technische dortmund	universitä	àt			G. Ru	dolph: Com	putational I	ntelligence • Winter Te	erm 2012/13 8

Design of Evolutionary Algorithms	Lecture 10	Design of Evolutionary Algorithms	Lecture 10						
ad 2) design guidelines for variation operators		ad 2) design guidelines for variation operators in practice							
 a) reachability every x ∈ X should be reachable from arbitrary x₀ ∈ X after finite number of repeated variations with positive probability bounded from 0 b) unbiasedness unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; known from theory: weaken variation strength when approaching optimum 		binary search space $X = \mathbb{B}^n$ variation by k-point or uniform crossover and subsequent mutation a) <i>reachability</i> : regardless of the output of crossover we can move from $x \in \mathbb{B}^n$ to $y \in \mathbb{B}^n$ in 1 step with probability $p(x, y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0$ where $H(x,y)$ is Hamming distance between x and y. Since min{ $p(x,y): x, y \in \mathbb{B}^n$ } = $\delta > 0$ we are done.							
G. Rudolph: Co dortmund Design of Evolutionary Algorithms	Imputational Intelligence • Winter Term 2012/13 9 Lecture 10	technische universität dortmund Design of Evolutionary Algorithms	G. Rudolph: Computational Intelligence • Winter Term 2012/13 10						
b) unbiasedness		<u>Formally:</u>							
don't prefer any direction or subset of points without re	eason	Definition:							
\Rightarrow use maximum entropy distribution for sampling!		Let X be discrete random variable (r.v.) with The quantity $H(X) = -\sum_{k \in K}$	with $p_k = P\{X = x_k\}$ for some index set K. $p_k \log p_k$						
properties: - distributes probability mass as uniform as possible - additional knowledge can be included as constrair → under given constraints sample as uniform as p	nts:	is called the <i>entropy of the distribution</i> $f_X(\cdot)$ then the entropy is given by $H(X) = -\int_{-\infty}^{\infty} f_X$ The distribution of a random variable X for <i>maximum entropy distribution</i> .	n of X. If X is a continuous r.v. with p.d.f. $_X(x) \log f_X(x) dx$						
technische universität G. Rudolph: Co dortmund	mputational Intelligence • Winter Term 2012/13 11	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2012/13 12						

Excursion: Maximum Entropy Distributions Lecture 10

Excursion: Maximum Entropy Distributions

Lecture 10

Discrete distribution with support {
$$x_1, x_2, ..., x_n$$
 } with $x_1 < x_2 < ..., x_n < \infty$
 $p_k = P\{X = x_k\}$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \quad \to \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2012/13 13

Excursion: Maximum Entropy Distributions Lecture 10

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{X = k\}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \quad \rightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

U technische universität dortmund

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$$

partial derivatives:

$$\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0 \qquad \Rightarrow p_k \stackrel{!}{=} e^{a-1}$$

$$\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0 \qquad p_k = \frac{1}{n}$$

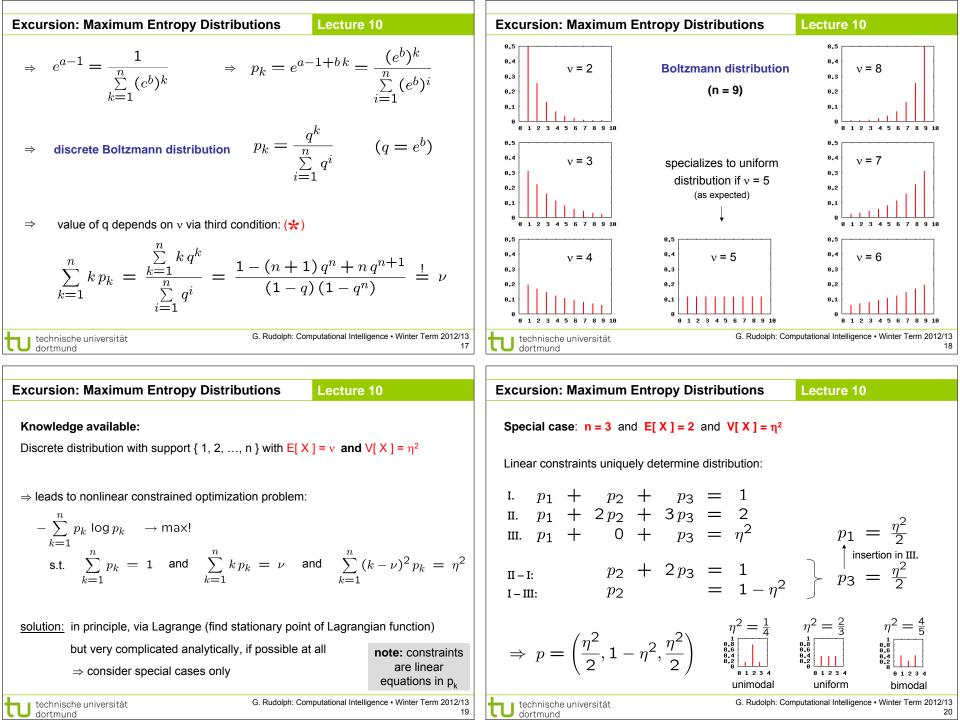
$$\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1} \stackrel{!}{=} 1 \qquad \Leftrightarrow \qquad e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} \frac{1}{n} e^{a-1} = \frac{1}{n}$$

Excursion: Maximum Entropy Distributions

Lecture 10

$$L(p,a,b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu\right)$$


partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=1}^n k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^n p_k = e^{a-1} \sum_{k=1}^n (e^b)^k \stackrel{!}{=} 1$$

(continued on next slide)

Excursion: Maximum Entropy Distributions Lecture 10

Discrete distribution with unbounded support { 0, 1, 2, ... } and E[X] = v

 \Rightarrow leads to infinite-dimensional nonlinear constrained optimization problem:

Knowledge available:

 $-\sum_{k=1}^{\infty} p_k \log p_k \longrightarrow \max!$

Excursion: Maximum Entropy Distributions

Lecture 10

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

partial derivatives:

$$\frac{\partial L(p, a, b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p, a, b)}{\partial a} = \sum_{k=0}^{\infty} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p, a, b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=0}^{\infty} k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=0}^{\infty} p_k = e^{a-1} \sum_{k=0}^{\infty} (e^b)^k \stackrel{!}{=} 1$$
(continued on next slide)

s.t.
$$\sum_{k=0}^{\infty} p_k = 1 \quad \text{and} \quad \sum_{k=0}^{\infty} k p_k = \nu$$
solution: via Lagrange (find stationary point of Lagrangian function)
$$L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

$$\underbrace{\text{Lecture 10}}_{\text{Constrained}}$$
Excursion: Maximum Entropy Distributions
$$\underbrace{\text{Lecture 10}}_{k=0}$$

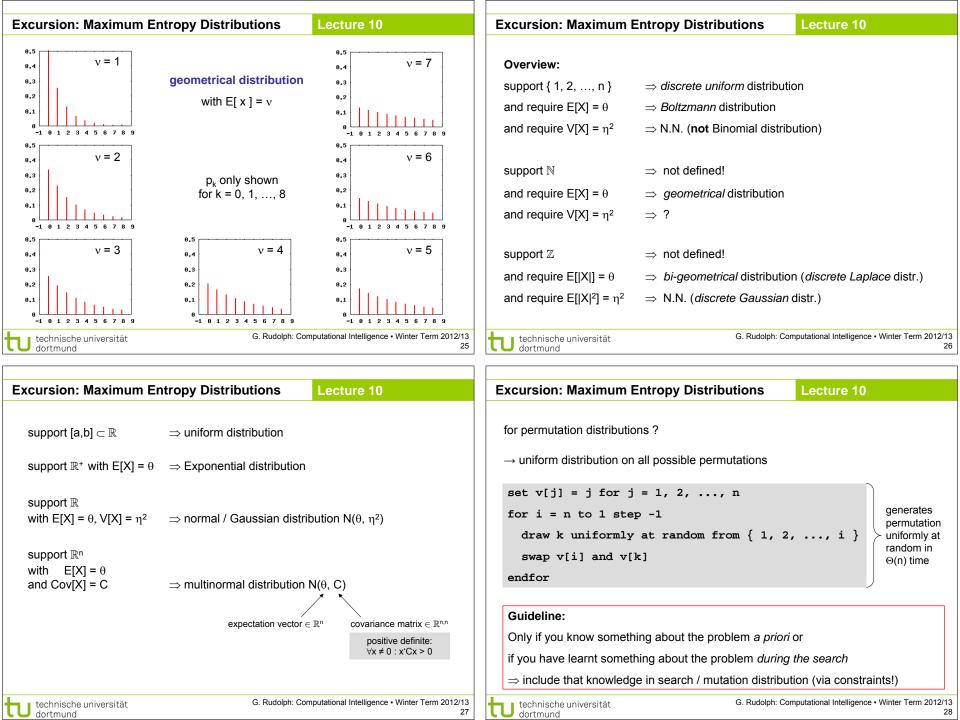
$$\Rightarrow \quad e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \quad \Rightarrow \quad p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$
set $q = e^b$ and insists that $q < 1 \quad \Rightarrow \quad \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$

$$\Rightarrow p_k = (1-q) q^k$$
 for $k = 0, 1, 2, \dots$ geometrical distribution

it remains to specify q; to proceed recall that

technische universität

dortmund


$$\sum_{k=0}^{\infty} k \, q^k \; = \; \frac{q}{(1-q)^2}$$

G. Rudolph: Computational Intelligence • Winter Term 2012/13

insert

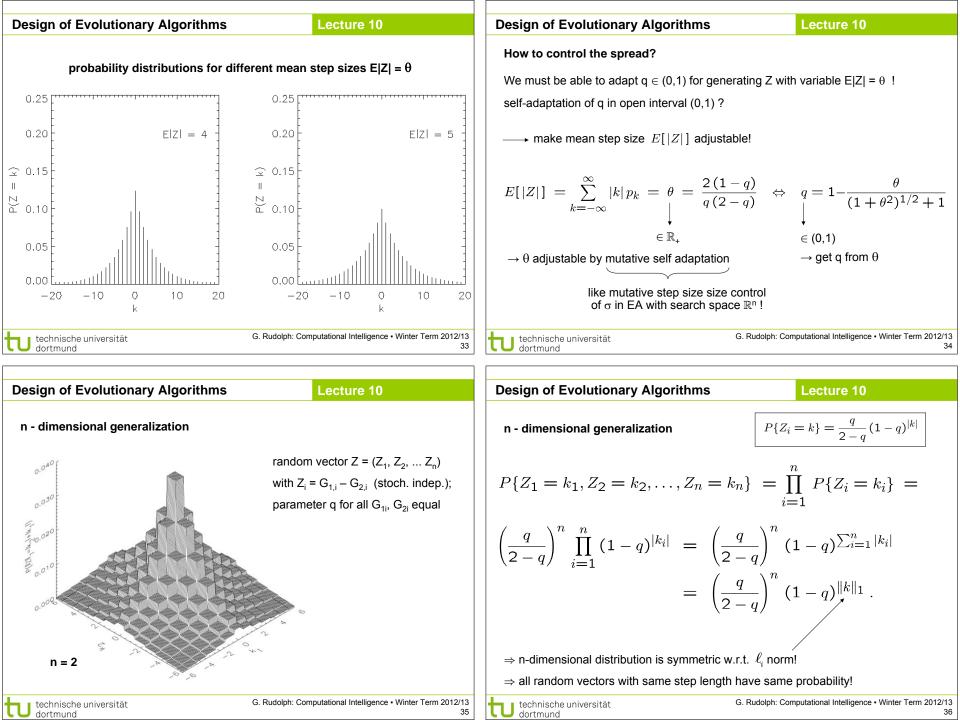
23

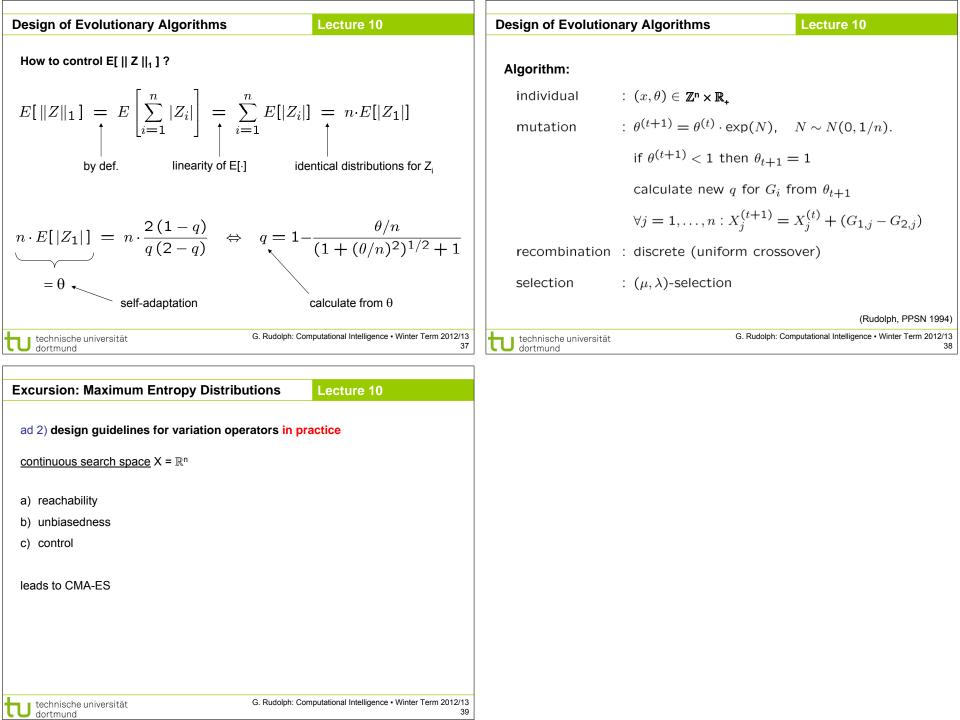
Excursion: Maximum Entropy Distributions Lecture 10 value of q depends on v via third condition: (*) \Rightarrow $\sum_{k=0}^{\infty} k p_k = \frac{\sum_{k=0}^{\infty} k q^k}{\sum_{k=0}^{\infty} q^i} = \frac{q}{1-q} \stackrel{!}{=} \nu$ $\Rightarrow \quad q = \frac{\nu}{\nu+1} = 1 - \frac{1}{\nu+1}$ $\Rightarrow p_k = \frac{1}{\nu+1} \left(1 - \frac{1}{\nu+1} \right)^k$

Design of Evolutionary Algorithms
 Lecture 10

 ad 2) design guidelines for variation operators in practice
 Image: Search space X = 2ⁿ

 a) reachability
 • every recombination results
in some z = 2ⁿ


 a) reachability
 • every recombination results
in some z = 2ⁿ


 b) unbiasedness
 • mean and the same metropy distribution of z = vary then teach
probability in one step
probability in one step
probability on any the risk
indary z = 2ⁿ with positive
probability on any the risk
of any z = 2ⁿ with positive
probability of mutation should be 2ⁿ.

 ad b) need maximum entropy distribution over support 7ⁿ
ad c) control variability by parameter
-- formulate as constraint of maximum entropy distribution
 • React Compational functionary Algorithms
 Lecture 10

 Design of Evolutionary Algorithms
 Lecture 10

 result:
a random variable Z with support 7, and probability distribution
$$p_k := P\{Z = k\} = \frac{q}{2-q}(1-q)^{k}|$$
, $k \in \mathbb{Z}$, $q \in (0, 1)$
symmetric with to 1, unimodal, spread manageable by q and has max entropy •
generation of pseudo random numbers:
 $Z = G_1 - G_2$
where
 $U_i \sim U(0, 1) \Rightarrow G_i = \begin{bmatrix} log(1 - U_i) \\ log(1 - q_i) \end{bmatrix}$, $i = 1, 2$.
sochastic
independent
 0 . React: Compatibulation long reactions of the reaction of the reaction of the reaction of the pendent
 0 . React: Compatibulation long reactions that the reaction of the reaction of pseudo random numbers:
 $Z = G_1 - G_2$
where
 $U_i \sim U(0, 1) \Rightarrow G_i = \begin{bmatrix} log(1 - U_i) \\ log(1 - Q_i) \end{bmatrix}$, $i = 1, 2$.
sochastic
independent
 0 . React: Compatibulation long reactine reactine reaction reacting the reacting reaction re

