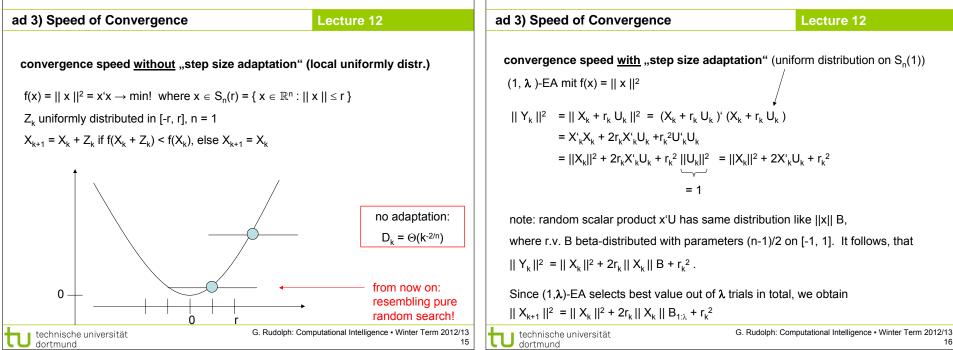
technische universität dortmund	Evolutionary Algorithms: State of the art in 1970 Lecture 12
Computational Intelligence Winter Term 2012/13	 main arguments against EA in ℝⁿ: 1. Evolutionary Algorithms have been developed heuristically. 2. No proofs of convergence have been derived for them. 3. Sometimes the rate of convergence can be very slow. what can be done? ⇒ disable arguments!
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund	ad 1) not really an argument against EAs EAs use principles of biological evolution as pool of inspiration purposely: - to overcome traditional lines of thought - to get new classes of optimization algorithms ⇒ the new ideas may be bad or good ⇒ necessity to analyze them! G. Rudolph: Computational Intelligence • Winter Term 2012/13 2
On the notion of "convergence" (I) Lecture 12	On the notion of "convergence" (II) Lecture 12
stochastic convergence ≠ "empirical convergence"	formal approach necessary:Ecotor of 2 $D_k = f(X_k) - f^* \ge 0$ is a random variable
frequent observation:	we shall consider the stochastic sequence D_0 , D_1 , D_2 ,
N runs on some test problem / averaging / comparison ⇒ this proves nothing!	Does the stochastic sequence $(D_k)_{k\geq 0}$ converge to 0? If so, then evidently "convergence to optimum"!
- no guarantee that behavior stable in the limit!	But: there are many modes of stochastic convergence !

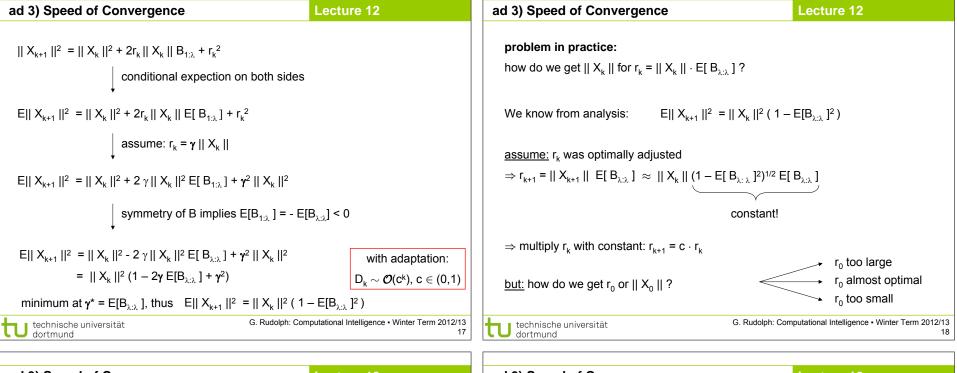
 \rightarrow therefore here only the most frequently used ...

notation: $\mathcal{P}^{(t)}$ = population at time step t ≥ 0, $f_b(\mathcal{P}(t))$ = min{ f(x): x \in \mathcal{P}(t) }

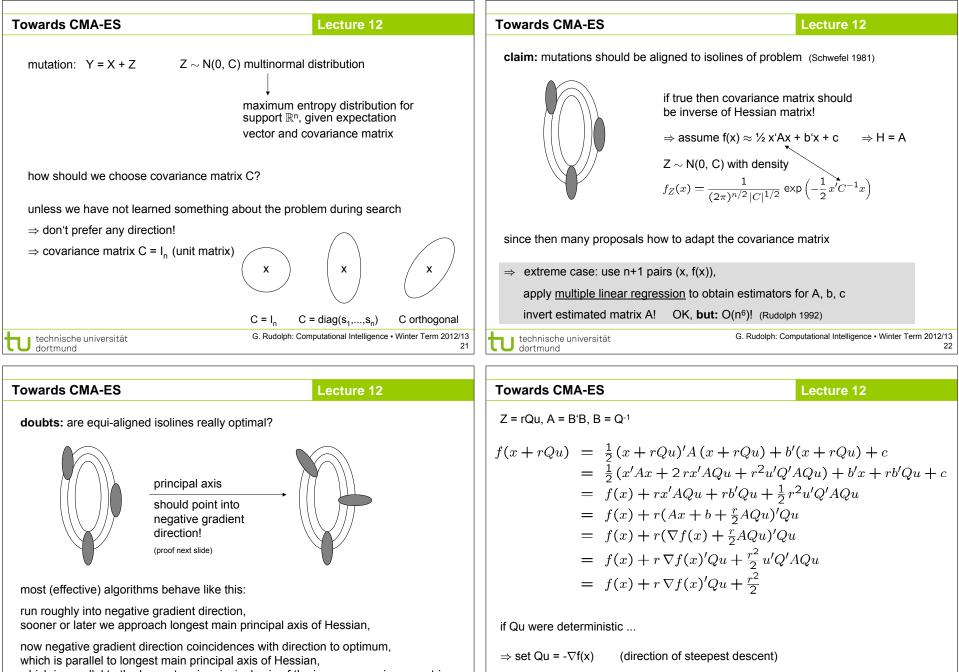
- etc.

- N lucky runs possible


On the notion of "convergence" (III)	Lecture 12	Relationships between m	nodes of convergence	Lecture	e 12	
Definition		Lemma				
Let $D_t = f_b(\mathcal{P}(t)) - f^* \ge 0$. We say: The EA		• (a) \Rightarrow (b) \Rightarrow (c).				
(a) <i>converges completely</i> to the optimum, if $\forall \epsilon > t$	0	• (d) \Rightarrow (c).	· · · · · · · · · · · · · · · · · · ·			
$\lim_{t o\infty}\sum_{k=1}^{\infty}P\{D_k>arepsilon\}<\infty$;		• If $\exists K < \infty : \forall t \ge 0 : D_t \le 0$				
$\kappa = 1$		• If $(D_t)_{t\geq 0}$ stochastically ind	dependent sequence, then (a	a) ⇔ (b).		•
(b) converges almost surely or with probability a	(w.p. 1) to the optimum, if					
$P\{\lim_{t\to\infty}D_k=0\}=1$;		Typical modus operan	di:			
(c) <i>converges in probability</i> to the optimum, if $\forall \ \epsilon$	> 0	1 Show convergence in r	probablity (c). Easy! (in most	cases)		
$\lim_{t\to\infty} P\{D_t > \varepsilon\} = 0;$			e fast enough (a). This also i			
(a) converges in mean to the optimum, if $\forall \epsilon > 0$			om above? This implies (d).			
$\lim_{t\to\infty} E\{D_t\} = 0.$	-					
technische universität G. Rudolp dortmund	h: Computational Intelligence • Winter Term 2012/13 5	technische universität	G. Rudolph: Co	mputational Inte	elligence • Wir	ter Term 2012/13 6
Examples (I)	Lecture 12	Examples (II)		Lecture	e 12	
Let $(X_k)_{k\geq 1}$ be sequence of independent random var	ables.	let $(X_k)_{k \ge 1}$ be sequence of in	ndependent random variable	s.		
distribution: $P\{X_k = 0\} = 1 - \frac{1}{k}$ $P\{X_k$	$=1$ = $\frac{1}{-}$	distribution:		(a)	(C)	(d)
	h	$P\{X_k = 0\} = 1 - \frac{1}{k}$	$P\{X_k = 1\} = \frac{1}{k}$	(-)	(+)	(+)
1. $P\{X_k > \varepsilon\} = P\{X_k = 1\} = \frac{1}{k} \to 0$ for $t \Rightarrow$ convergence in probability (c)	$z \to \infty$	$P\{X_k = 0\} = 1 - \frac{1}{k^2}$		(+)	(+)	(+)
2. $\sum_{k=1}^{\infty} P\{X_k > \varepsilon\} = \sum_{k=1}^{\infty} P\{X_k = 1\} = \sum_{k=1}^{\infty} P\{X_k = 1\}$	$\frac{1}{k} = \infty$	$P\{X_k = 0\} = 1 - \frac{1}{k}$	$P\{X_k = k\} = \frac{1}{k}$	(-)	(+)	(-)
$ \begin{array}{c} k=1 \\ \Rightarrow \text{ convergence too slow! Consequently, } \underline{no} \text{ convergence too slow! } \underline{no} convergence too slow$		$P\{X_k = 0\} = 1 - \frac{1}{k^2}$	$P\{X_k = k\} = \frac{1}{k^2}$	(+)	(+)	(+)
3. Note: $\forall k \geq 0: 0 \leq X_k \leq 1$. Hence: sequ	ence bounded with K = 1.	$P\{X_k = 0\} = 1 - \frac{1}{k}$	$P\{X_k = k^2\} = \frac{1}{k}$	(-)	(+)	(–)
since convergence in prob. (c) and bounded \Rightarrow	convergence in mean (d)	$P\{X_k = 0\} = 1 - \frac{1}{k}$ $P\{X_k = 0\} = 1 - \frac{1}{k^2}$	$P\{X_k = k^2\} = \frac{1}{k^2}$	(+)	(+)	(-)


technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2012/13 8


ad 2) no convergence	e proofs!	Lecture 12	ad 2) no	convergence	e proofs!	Lecture 12	
timeline of theoretica	I work on convergence		timelin	e of theoretica	al work on convergence		
1971 – 1975 Recl	henberg / Schwefel	convergence rates	1989	Eiben	a.s. convergence fo	r elitist GA	
1070 1000 D		for simple problems	1992	Nix/Vose	Markov chain mode	I of simple GA	
1976 – 1980 Born	1	convergence proof for EA with genetic load	1993	Fogel	a.s. convergence of	FEP (Markov chain based)	
1981 – 1985 Rapj	pl	convergence proof for (1+1)-EA in \mathbb{R}^n	1994	Rudolph	a.s. convergence of non-convergence of	f elitist GA f simple GA (MC based)	
1986 – 1989 Beye	er	convergence rates for simple problems	1994	Rudolph	a.s. convergence of (based on superma		
			1996	Rudolph	conditions for conve	ergence	
\Rightarrow results only knowr	<u>erman</u> and for EAs in ℝ ⁿ n to German-speaking EA n	erds!	\Rightarrow con	vergence proc	ofs are no issue any long	ger!	
technische universität dortmund	G. Rudolph:	Computational Intelligence • Winter Term 2012/13 9	tu techr dortr	nische universität nund	G. Ruc	dolph: Computational Intelligence • Winter Term	n 2012/13 10
A simple proof of co	nvergence (I)	Lecture 12	A simp	le proof of co	nvergence (II)	Lecture 12	
Theorem:			Proof:				
Let $D_k = f(x_k) - f^* $ with	h k \geq 0 be generated by (1+1)-	EA,	For the	(1+1)-EA holds	s: P(x, S*) = 1 for $x \in S^*$ du	e to elitist selection.	
$S^* = \{ x^* \in S : f(x^*) = f^* \}$	} is set of optimal solutions an	d	Thus, i	t is sufficient to	show that the EA reaches	S* with probability 1:	
$P_m(x, S^*)$ is probability	to get from $x \in S$ to S^* by a sir	ngle mutation operation.					
If for each $x \in S \setminus S^*$ ho	olds $P_m(x, S^*) \ge \delta > 0$, then D_k	\rightarrow 0 completely and in mean.			n: $P_m(x, S^*) \ge \delta$.		
				cess in 1st itera			
Remark:				cess in kth itera			
The proofs become s	simpler and simpler.		\Rightarrow at le	ast one succes	s in k iterations: \geq 1 - (1- δ)	$k \to 1 \text{ as } k \to \infty.$	
Born's proof (1978) t	ook about 10 pages.		Since			noo in probablity and	
Eiben's proof (1989)	took about 2 pages.				$\delta)^k \rightarrow 0$ we have converger		
Rudolph's proof (199	96) takes about 1 slide …		since	$\sum_{k=0}^{k} (1-\delta)^k < 1$	∞ we actually have com	plete convergence.	
			Moreov	/er: ∀ k ≥ 0: 0 ≤	$D_k \le D_0 < \infty$, implies conv	vergence in mean.	
technische universität dortmund	G. Rudolph:	Computational Intelligence • Winter Term 2012/13 11	tu techr dortr	nische universität nund	G. Ruc	dolph: Computational Intelligence • Winter Term	n 2012/13 12

ad 3) Speed of Convergence	Lecture 12	ad 3) Speed of Convergence	Lecture 12
Observation:		convergence speed <u>without</u> "step siz	e adaptation" (pure random search)
Sometimes EAs have been very slow		$f(x) = x ^2 = x'x \rightarrow min!$ where $x \in S_n$ Z_k is uniformly distributed in $S_n(r)$	$(r) = \{ x \in \mathbb{R}^n : x \le r \}$
Questions: Why is this the case?		$X_{k+1} = Z_k \text{ if } f(Z_k) < f(X_k), \text{ else } X_{k+1} = X_k$	
Can we do something against this?			st objective function value until iteration k $S_n(z) \;) \;/\; \text{Vol}(\; S_n(r) \;) \;=\; (\; z \;/\; r \;)^n \;\;,\;\; 0 \leq z \leq r$
\Rightarrow no speculations, instead: formal analysis!		$P\{ Z ^{2} \le z \} = P\{ Z \le z^{1/2} \} = z^{n/2} $	
first hint in Schwefel's masters thesis (1965):		$P\{ \; V_k \leq v \;\} \; = \; 1 \; - \; (\; 1 \; - \; P\{ \; \; Z \; ^2 \leq v \;\} \;)^k \; = \;$	= $1 - (1 - v^{n/2} / r^n)^k$ no adaptation:
observed that step size adaptation in \mathbb{R}^2 useful!		$E[V_k] \to r^2 \Gamma(1 + 2/n) k^{-2/n} \text{ for large } k$	$D_{k} = \Theta(k^{-2/n})$
G. Rudolph: Comp dortmund	putational Intelligence • Winter Term 2012/13 13	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2012/13 14

ad 3) Speed of Convergence	Lecture 12	ad 3) Spe	eed of Converge	ence	Lecture 12
(1+1)-EA with step-size adaptation (1/5 success rule, R	echenberg 1973)		ally known since 1 e adaptation incre	973: ases convergence speed dra	matically!
 If many successful mutation, then step size too small. If few successful mutations, then step size too large. 		about 1 (was ac		nultiplicative step size adapta	tion
for infinite small radi success r	us: (φ)	no proc	of convergence!		
approach:		1999	Rudolph	no a.s. convergence for all	continuous functions
count successful mutations in certain time interval	\	2003	Jägersküppers	shows a.s. convergence for and linear convergence spe	•
 if fraction larger than some threshold (z. B. 1/5), then increase step size by factor > 1, else decrease step size by factor < 1. 		⇒ sam	e order of local co	nvergence speed like gradien	t method!
technische universität G. Rudolph: Comp dortmund	outational Intelligence • Winter Term 2012/13 19	tu technis dortmu	che universität nd	G. Rudolph: Com	putational Intelligence • Winter Term 2012/13 20

technische universität

dortmund

which is parallel to the longest main principal axis of the inverse covariance matrix (Schwefel OK in this situation)

G. Rudolph: Computational Intelligence - Winter Term 2012/13 23 G. Rudolph: Computational Intelligence • Winter Term 2012/13

24

Towards CMA-ES Lecture 12	Towards CMA-ES Lecture 12
Apart from (inefficient) regression, how can we get matrix elements of Q?	Theorem A quadratic matrix $C^{(k)}$ is symmetric and positive definite for all $k \ge 0$,
\Rightarrow iteratively: C ^(k+1) = update(C ^(k) , Population ^(k))	if it is built via the iterative formula $C^{(k+1)} = \alpha_k C^{(k)} + \beta_k v_k v'_k$
basic constraint: $C^{(k)}$ must be positive definite (p.d.) and symmetric for all $k \ge 0$,	where $C^{(0)} = I_n$, $v_k \neq 0$, liminf $\alpha_k > 0$ and liminf $\beta_k > 0$.
otherwise Cholesky decomposition impossible: C = Q'Q	Proof:
Lemma Let A and B be quadratic matrices and α , $\beta > 0$.	 If v ≠ 0, then matrix V = vv' is symmetric and positive semidefinite, since as per definition of the dyadic product v_{ij} = v_i · v_j = v_j · v_i = v_{ji} for all i, j and for all x ∈ ℝⁿ : x' (vv') x = (x'v) · (v'x) = (x'v)² ≥ 0.
 a) A, B symmetric ⇒ α A + β B symmetric. b) A positive definite and B positive semidefinite ⇒ α A + β B positive definite 	Thus, the sequence of matrices $v_k v'_k$ is symmetric and p.s.d. for $k \ge 0$. Owing to the previous lemma matrix $C^{(k+1)}$ is symmetric and p.d., if
Proof: ad a) $C = \alpha A + \beta B$ symmetric, since $c_{ij} = \alpha a_{ij} + \beta b_{ij} = \alpha a_{ji} + \beta b_{ji} = c_{ji}$ ad b) $\forall x \in \mathbb{R}^n \setminus \{0\}$: $x'(\alpha A + \beta B) x = \alpha x'Ax + \beta x'Bx > 0$	$C^{(k)}$ is symmetric as well as p.d. and matrix $v_k v'_k$ is symmetric and p.s.d. Since $C^{(0)} = I_n$ symmetric and p.d. it follows that $C^{(1)}$ is symmetric and p.d. Repetition of these arguments leads to the statement of the theorem.
 > 0 ≥ 0 Computational Intelligence • Winter Term 20 G. Rudolph: Computational Intelligence • Winter Term 20 	
CMA-ES Lecture 12	CMA-ES Lecture 12
Idea: Don't estimate matrix C in each iteration! Instead, approximate <u>iteratively</u> ! (Hansen, Ostermeier et al. 1996ff → Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)	m = $\frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda}$ mean of all <u>selected</u> parents
Set initial covariance matrix to $C^{(0)} = I_n$ $C^{(t+1)} = (1-\eta) C^{(t)} + \eta \sum_{i=1}^{\mu} w_i d_i d_i^{*}$ η : "learning rate" $\in (0,1)$	$p^{(t+1)} = (1 - \chi) p^{(t)} + (\chi (2 - \chi) \mu_{eff})^{1/2} (m^{(t)} - m^{(t-1)}) / \sigma^{(t)} $ "Evolution path" $p^{(0)} = 0 \qquad \chi \in (0, 1)$
$m = \frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda} \qquad \text{mean of all } \underline{\text{selected parents}} \qquad \text{complexity} \\ \mathcal{O}(\mu n^2 + n^3)$	$C^{(0)} = I_n$ $C^{(t+1)} = (1 - \eta) C^{(t)} + \eta p^{(t)} (p^{(t)})^{t}$ complexity: $\mathcal{O}(n^2)$
$d_i = (x_{i:\lambda} - m) / \sigma \qquad \text{sorting: } f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le \le f(x_{\lambda:\lambda})$	\rightarrow Cholesky decomposition: $\mathcal{O}(n^3)$ für C ^(t)
dyadic product: dd' = $\begin{pmatrix} d_1d_1 & d_1d_2 & \cdots & d_1d_\mu \\ d_2d_1 & d_2d_2 & \cdots & d_2d_\mu \\ \vdots & & \vdots \\ d_\mu d_1 & d_\mu d_2 & \cdots & d_\mu d_\mu \end{pmatrix}$ is positive semidefinite dispersion matrix	

G. Rudolph: Computational Intelligence • Winter Term 2012/13 27

technische universität dortmund technische universität dortmund

CMA-ES	Lecture 12
State-of-the-art: CMA-EA (currently ma	ny variants)
\rightarrow successful applications in practice	
	C, C++, Java
available in WWW:	Fortran, Python,
 <u>http://www.lri.fr/~hansen/cmaes_inmatl</u> 	ab.html \longrightarrow Matlab, R, Scilab
 <u>http://shark-project.sourceforge.net/</u> 	(EAlib, C++)
•	
	O. Duddha Oracidational Intelligence - Winter Terry 0000/4
U technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2012/13 29