

technische universität dortmund		Swarm Intelligence	Lecture 15
Computational Intelli Winter Term 2012/13	igence	Contents Ant algorithms Particle swarm algorithms 	(combinatorial optimization) (optimization in \mathbb{R}^n)
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS Fakultät für Informatik TU Dortmund	\$ 11)	technische universität	G. Rudolph: Computational Intelligence • Winter Term 2012/13 2
Swarm Intelligence	Lecture 15	Swarm Intelligence	Lecture 15
metaphor		ant algorithms (ACO: Ant Colony Optimization) paradigm for design of metaheuristics for combinatorial optimization	
swarms of bird or fish seeking for food ↓ <u>concepts:</u>	ants or termites seeking for food ↓ <u>concepts:</u>	stigmergy = indirect communication thr \sim 1991 Colorni / Dorigo / Maniezzo: Ar <u>Dorigo</u> (1992): collective behavor of so	nt System (also: 1. ECAL, Paris 1991)
 evaluation of own current situation comparison with other conspecific imitation of behavior of successful conspecifics 	 communication / coordination by means of "stigmergy" reinforcement learning → positive feedback 	 some facts: about 2% of all insects are social about 50% of all social insects are ants total weight of all ants = total weight of all humans ants populate earth since 100 millions years 	
\Rightarrow audio-visual communication	⇒ olfactoric communication	humans populate earth since 50.000	years
to technische universität	G. Rudolph: Computational Intelligence • Winter Term 2012/13	technische universität	G. Rudolph: Computational Intelligence • Winter Term 2012/13 4

Swarm Intelligence	Lecture 15	Swarm Intelligence	Lecture 15
ant k in state i		Combinatorial Problems (Example TSP)	
determine all possible continuations of current state i		TOD	
 choice of continuation according to probability distribution p_{ii} 		TSP:	
		ant starts in arbitrary city i	
p _{ij} = q(attractivity, amount of pheromone)		• pheromone on edges (i, j): τ_{ij} • probability to move from i to j: $p_{ij}^{(t)} = \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum\limits_{k \in \mathcal{N}_i(t)} \tau_{ik}^{\alpha} \eta_{ik}^{\beta}}$ for $j \in \mathcal{N}_i(t)$	
, , , , , , , , , , , , , , , , , , , ,	ori desirability of the move	• $\eta_{ij} = 1/d_{ij}$; $d_{ij} = distance between city$	
desirability of the move "how rewardi	ng was the move in the past?"	• α = 1 and $\beta \in [2, 5]$ (empirical), $\rho \in (0,1)$ "evaporation rate"	
 update of pheromone amount on the paths: as soon as all ants have compiled their solutions good solution		• $\mathcal{N}_{i}(t)$ = neighborhood of i at time step	
		• update of pheromone after μ journeys of ants: $\tau_{ij} := \rho \tau_{ij} + \sum_{\mu}^{\mu} \Delta \tau_{ij}(k)$	
		• $\Delta \tau_{ii}(k) = 1 / (\text{tour length of ant } k), if (i,j) belongs to tour$	
		$\Delta t_{ij}(\mathbf{k}) = 17$ (but length of ant k), if (i,	
technische universität G. Rudolph: Co dortmund	omputational Intelligence • Winter Term 2012/13 9	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2012/13 10
Swarm Intelligence	Lecture 15	Swarm Intelligence	Lecture 15
two odditional machaniama.		Partiala Swarm Ontimization (DSO)	
two additional mechanisms:		Particle Swarm Optimization (PSO)	
 trail evaporation demon actions (for centralized actions; not executable in general) 		abstraction from fish / bird / bee swarm	
		paradigm for design of metaheuristics for continuous optimization	
Ant System (AS) is prototype		developed by Russel Eberhard & James Kennedy (~1995)	
tested on TSP-Benchmark \rightarrow not competitive			
\Rightarrow but: works in principle!		concepts: • particle (x, v) consists of position $x \in \mathbb{R}^n$ and "velocity" (i.e. direction) $v \in \mathbb{R}^n$	
subsequent: 2 targets		PSO maintains multiple potential solutions at one time	
1. increase efficiency (\rightarrow competitiveness with <i>state-of-the-art</i> method)		 during each iteration, each solution/position is evaluated by an objective function particles "fly" or "swarm" through the search space 	
2. better explanation of behavior		to find position of an extremal value returned by the objective function	
1995 ANT-Q (Gambardella & Dorigo), simplified: 1996	ACS ant colony system		
G. Rudolph: C. dortmund	omputational Intelligence • Winter Term 2012/13	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2012/13 12

